1
|
Yu L, Tao B, Ma L, Zhao F, Wei L, Tang G, Wang Y, Guo X. A Robust Network Sodium Carboxymethyl Cellulose-Epichlorohydrin Binder for Silicon Anodes in Lithium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39115326 DOI: 10.1021/acs.langmuir.4c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Silicon (Si), as an ideal anode component for lithium-ion batteries, is susceptible to substantial volume changes, leading to pulverization and excessive electrolyte consumption, ultimately resulting in a rapid decline in the cycle stability. Herein, a new sodium carboxymethyl cellulose-epichlorohydrin (CMC-ECH) binder featuring a three-dimensional (3D) network cross-linked structure is synthesized by a simple ring-opening reaction, which can effectively bond the Si anode through abundant covalent and hydrogen bonds to mitigate its pulverization. Benefitting from the merits of the CMC-ECH binder, the electrochemical performance is significantly enhanced compared to the CMC binder. The CMC-ECH binder is applied to Si anodes, a specific capacity of 1054.2 mAh g-1 can be maintained at 0.2 C following 200 cycles under an elevated Si mass loading of around 1.0 mg cm-2, and the corresponding capacity retention is 65.6%. In the case of the LiFePO4//Si@CMC-ECH full battery, the cycle stability exhibits a substantial enhancement compared with the LiFePO4//Si@CMC full battery. Furthermore, the CMC-ECH binder demonstrates compatibility with micron-Si anode materials. Based on the above, we have successfully developed a facilely prepared water-based CMC-ECH binder that is suitable for Si and micron-Si anodes in lithium-ion batteries.
Collapse
Affiliation(s)
- Liming Yu
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai 200240, China
| | - Bowen Tao
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Lei Ma
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai 200240, China
| | - Fangfang Zhao
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai 200240, China
| | - Liangming Wei
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai 200240, China
| | - Gen Tang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Yue Wang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| |
Collapse
|
2
|
Ye R, Liu J, Tian J, Deng Y, Yang X, Chen Q, Zhang P, Zhao J. Novel Binder with Cross-Linking Reconfiguration Functionality for Silicon Anodes of Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16820-16829. [PMID: 38527957 DOI: 10.1021/acsami.4c00590] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Silicon is expected to be used as a high theoretical capacity anode material in lithium-ion batteries with high energy densities. However, the huge volume change incurred when silicon de-embeds lithium ions, leading to destruction of the electrode structure and a rapid reduction in battery capacity. Although binders play a key role in maintaining the stability of the electrode structure, commonly used binders cannot withstand the large volume expansion of the silicon. To alleviate this problem, we propose a PGC cross-linking reconfiguration binder based on poly(acrylic acid) (PAA), gelatin (GN), and β-cyclodextrin (β-CD). Within PGC, PAA supports the main chain and provides a large number of carboxyl groups (-COOH), GN provides rich carboxyl and amide groups that can form a cross-linking network with PAA, and β-CD offers rich hydroxyl groups and a cone-shaped hollow ring structure that can alleviate stress accumulation in the polymer chain by forming a new dynamic cross-linking coordination conformation during stretching. In the half cell, the silicon negative prepared by the PGC binder exhibited a high specific capacity and capacity maintenance ratio, and the specific capacity of the silicon negative electrode prepared by the PGC binder is still 1809 mAh g-1 and the capacity maintenance ratio is 73.76% following 200 cycles at 2 A g-1 current density, indicating that PGC sufficiently maintains the silicon negative structure during the battery cycle. The PGC binder has a simple preparation method and good capacity retention ability, making it a potential reference for the further development of silicon negative electrodes.
Collapse
Affiliation(s)
- Ruilai Ye
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaxiang Liu
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianling Tian
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Yi Deng
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Xueying Yang
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Qichen Chen
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Peng Zhang
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinbao Zhao
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Engineering Research Center of Electrochemical Technology, Ministry of Education, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
3
|
Yoon J, Lee J, Kim H, Kim J, Jin HJ. Polymeric Binder Design for Sustainable Lithium-Ion Battery Chemistry. Polymers (Basel) 2024; 16:254. [PMID: 38257053 PMCID: PMC10821008 DOI: 10.3390/polym16020254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The design of binders plays a pivotal role in achieving enduring high power in lithium-ion batteries (LIBs) and extending their overall lifespan. This review underscores the indispensable characteristics that a binder must possess when utilized in LIBs, considering factors such as electrochemical, thermal, and dispersion stability, compatibility with electrolytes, solubility in solvents, mechanical properties, and conductivity. In the case of anode materials, binders with robust mechanical properties and elasticity are imperative to uphold electrode integrity, particularly in materials subjected to substantial volume changes. For cathode materials, the selection of a binder hinges on the crystal structure of the cathode material. Other vital considerations in binder design encompass cost effectiveness, adhesion, processability, and environmental friendliness. Incorporating low-cost, eco-friendly, and biodegradable polymers can significantly contribute to sustainable battery development. This review serves as an invaluable resource for comprehending the prerequisites of binder design in high-performance LIBs and offers insights into binder selection for diverse electrode materials. The findings and principles articulated in this review can be extrapolated to other advanced battery systems, charting a course for developing next-generation batteries characterized by enhanced performance and sustainability.
Collapse
Affiliation(s)
- Juhee Yoon
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea; (J.Y.); (H.K.); (J.K.)
| | - Jeonghun Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea;
| | - Hyemin Kim
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea; (J.Y.); (H.K.); (J.K.)
| | - Jihyeon Kim
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea; (J.Y.); (H.K.); (J.K.)
| | - Hyoung-Joon Jin
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea; (J.Y.); (H.K.); (J.K.)
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Dobryden I, Montanari C, Bhattacharjya D, Aydin J, Ahniyaz A. Bio-Based Binder Development for Lithium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5553. [PMID: 37629845 PMCID: PMC10456484 DOI: 10.3390/ma16165553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The development of rechargeable lithium-ion battery (LIB) technology has facilitated the shift toward electric vehicles and grid storage solutions. This technology is currently undergoing significant development to meet industrial applications for portable electronics and provide our society with "greener" electricity. The large increase in LIB production following the growing demand from the automotive sector has led to the establishment of gigafactories worldwide, thus increasing the substantial consumption of fossil-based and non-sustainable materials, such as polyvinylidene fluoride and/or styrene-butadiene rubber as binders in cathode and anode formulations. Furthermore, the use of raw resources, such as Li, Ni, and Mn in cathode active materials and graphite and nanosilicon in anodes, necessitates further efforts to enhance battery efficiency. To foster a global sustainable transition in LIB manufacturing and reduce reliance on non-sustainable materials, the implementation of bio-based binder solutions for electrodes in LIBs is crucial. Bio-based binders such as cellulose, lignin, alginate, gums, starch, and others can address environmental concerns and can enhance LIBs' performance. This review aims to provide an overview of the current progress in the development and application of bio-based binders for LIB electrode manufacturing, highlighting their significance toward sustainable development.
Collapse
Affiliation(s)
- Illia Dobryden
- RISE Research Institutes of Sweden, Drottning Kristinas väg 61, 114 28 Stockholm, Sweden; (C.M.)
| | | | | | | | | |
Collapse
|
5
|
Akhlaq M, Mushtaq U, Naz S, Uroos M. Carboxymethyl cellulose-based materials as an alternative source for sustainable electrochemical devices: a review. RSC Adv 2023; 13:5723-5743. [PMID: 36816074 PMCID: PMC9929619 DOI: 10.1039/d2ra08244f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
In electrochemistry, bio-based materials are preferred over the traditional costly and synthetic polymers due to their abundance, versatility, sustainability and low cost. One of the bio-based polymers is carboxymethyl cellulose (CMC) which has become an overarching material in electrochemical devices pertaining to its amphiphilic nature with multi-carbon functional groups. Owing to its flexible framework with fascinating groups on its surface like hydroxide (-OH) and carboxylate (-COO-), CMC is able to be modified into conducting materials by blending it with other biopolymers, synthetic polymers, salts, acids and others. This blending has improved the profile of CMC by exploiting the ability of hydrogen bonding, swelling, adhesiveness and dispersion of charges and ions. These properties of CMC have made it possible to utilize this bio-sourced polymer in several applications as a conducting electrolyte, binder in electrodes, detector, sensor and active material in fuel cells, actuators and triboelectric nanogenerators (TENG). Thus, CMC based materials are cheap, environment friendly, hydrophilic, biodegradable, non-toxic and biocompatible which render it a desirable material in energy storage devices.
Collapse
Affiliation(s)
- Maida Akhlaq
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Umair Mushtaq
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Sadia Naz
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Maliha Uroos
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| |
Collapse
|
6
|
Ball mill–assisted synthesis of carbon-free SnSe nanoparticles for sodium-ion battery anodes. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Rasheed T, Anwar MT, Naveed A, Ali A. Biopolymer Based Materials as Alternative Greener Binders for Sustainable Electrochemical Energy Storage Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202203202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Muhammad Tuoqeer Anwar
- Department of Mechanical Engineering COMSATS University Islamabad Sahiwal Campus Off G.T. Road Sahiwal 57000 Pakistan
| | - Ahmad Naveed
- Research School of Polymeric Materials Science & Engineering Jiangsu University Zhenjiang 212013 PR China
| | - Amjad Ali
- Research School of Polymeric Materials Science & Engineering Jiangsu University Zhenjiang 212013 PR China
| |
Collapse
|
8
|
Study of the Role of Void and Residual Silicon Dioxide on the Electrochemical Performance of Silicon Nanoparticles Encapsulated by Graphene. NANOMATERIALS 2021; 11:nano11112864. [PMID: 34835629 PMCID: PMC8622490 DOI: 10.3390/nano11112864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Silicon nanoparticles are used to enhance the anode specific capacity for the lithium-ion cell technology. Due to the mechanical deficiencies of silicon during lithiation and delithiation, one of the many strategies that have been proposed consists of enwrapping the silicon nanoparticles with graphene and creating a void area between them so as to accommodate the large volume changes that occur in the silicon nanoparticle. This work aims to investigate the electrochemical performance and the associated kinetics of the hollow outer shell nanoparticles. To this end, we prepared hollow outer shell silicon nanoparticles (nps) enwrapped with graphene by using thermally grown silicon dioxide as a sacrificial layer, ball milling to enwrap silicon particles with graphene and hydro fluorine (HF) to etch the sacrificial SiO2 layer. In addition, in order to offer a wider vision on the electrochemical behavior of the hollow outer shell Si nps, we also prepared all the possible in-between process stages of nps and corresponding electrodes (i.e., bare Si nps, bare Si nps enwrapped with graphene, Si/SiO2 nps and Si/SiO2 nps enwrapped with graphene). The morphology of all particles revealed the existence of graphene encapsulation, void, and a residual layer of silicon dioxide depending on the process of each nanoparticle. Corresponding electrodes were prepared and studied in half cell configurations by means of galvanostatic cycling, cyclic voltammetry and electrochemical impedance spectroscopy. It was observed that nanoparticles encapsulated with graphene demonstrated high specific capacity but limited cycle life. In contrast, nanoparticles with void and/or SiO2 were able to deliver improved cycle life. It is suggested that the existence of the void and/or residual SiO2 layer limits the formation of rich LiXSi alloys in the core silicon nanoparticle, providing higher mechanical stability during the lithiation and delithiation processes.
Collapse
|
9
|
Yu LM, Luo Z, Gong CR, Zheng YQ, Zhou ZX, Zhao H, Xu Y. Water-based binder with easy reuse characteristics for silicon/graphite anodes in lithium-ion batteries. Polym J 2021. [DOI: 10.1038/s41428-021-00486-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Polysaccharides for sustainable energy storage - A review. Carbohydr Polym 2021; 265:118063. [PMID: 33966827 DOI: 10.1016/j.carbpol.2021.118063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
The increasing amount of electric vehicles on our streets as well as the need to store surplus energy from renewable sources such as wind, solar and tidal parks, has brought small and large scale batteries into the focus of academic and industrial research. While there has been huge progress in performance and cost reduction in the past years, batteries and their components still face several environmental issues including safety, toxicity, recycling and sustainability. In this review, we address these challenges by showcasing the potential of polysaccharide-based compounds and materials used in batteries. This particularly involves their use as electrode binders, separators and gel/solid polymer electrolytes. The review contains a historical section on the different battery technologies, considerations about safety on batteries and requirements of polysaccharide components to be used in different types of battery technologies. The last sections cover opportunities for polysaccharides as well as obstacles that prevent their wider use in battery industry.
Collapse
|
11
|
Mechanical Integrity of Conductive Carbon-Black-Filled Aqueous Polymer Binder in Composite Electrode for Lithium-Ion Battery. Polymers (Basel) 2020; 12:polym12071460. [PMID: 32629774 PMCID: PMC7407390 DOI: 10.3390/polym12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
The mechanical stability of aqueous binder and conductive composites (BCC) is the basis of the long-term service of composite electrodes in advanced secondary batteries. To evaluate the stress evolution of BCC in composite electrodes during electrochemical operation, we established an electrochemical–mechanical model for multilayer spherical particles that consists of an active material and a solid-electrolyte-interface (SEI)-enclosed BCC. The lithium-diffusion-induced stress distribution was studied in detail by coupling the influence of SEI and the viscoelasticity of inorganic-filler-doped polymeric bonding material. It was found that tensile hoop stress plays a critical role in determining whether a composite electrode is damaged or not—and circumferential cracks may primarily initiate in BCC, rather than in other electrode components. Further, the peak tensile stress of BCC is at the interface with SEI and does not occur at full lithiation due to the relaxation nature of polymer composite. Moreover, mechanical damage would be greatly misled if neglecting the existence of SEI. Finally, the structure integrity of the binder and conductive system can be effectively improved by (1) increasing the carbon black content as much as possible in the context of meeting cell capacity requirements—it is greater than 27% and 50% for sodium alginate and the mixtures of carboxy styrene butadiene latex and sodium carboxymethyl cellulose, respectively, for composite graphite anode; (2) reducing the elastic modulus of SEI to less than that of BCC; (3) decreasing the lithiation rate.
Collapse
|
12
|
Shin D, Park H, Lee S, Paik U, Song T. High Rate Capability of a LiNi 0.84Co 0.12Mn 0.04O 2 Cathode with a Uniform Conducting Network of Functionalized Graphene Nanoribbons for Li-Ion Batteries. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Donghyeok Shin
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
| | - Hyunjung Park
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
| | - Seungwoo Lee
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
| | - Ungyu Paik
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
| | - Taeseup Song
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
13
|
Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density. Nat Commun 2019; 10:4597. [PMID: 31601812 PMCID: PMC6787095 DOI: 10.1038/s41467-019-12542-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/10/2019] [Indexed: 11/08/2022] Open
Abstract
While high sulfur loading has been pursued as a key parameter to build realistic high-energy lithium-sulfur batteries, less attention has been paid to the cathode porosity, which is much higher in sulfur/carbon composite cathodes than in traditional lithium-ion battery electrodes. For high-energy lithium-sulfur batteries, a dense electrode with low porosity is desired to minimize electrolyte intake, parasitic weight, and cost. Here we report the profound impact on the discharge polarization, reversible capacity, and cell cycling life of lithium-sulfur batteries by decreasing cathode porosities from 70 to 40%. According to the developed mechanism-based analytical model, we demonstrate that sulfur utilization is limited by the solubility of lithium-polysulfides and further conversion from lithium-polysulfides to Li2S is limited by the electronically accessible surface area of the carbon matrix. Finally, we predict an optimized cathode porosity to maximize the cell level volumetric energy density without sacrificing the sulfur utilization.
Collapse
|
14
|
Hu H, Tao B, He Y, Zhou S. Effect of Conductive Carbon Black on Mechanical Properties of Aqueous Polymer Binders for Secondary Battery Electrode. Polymers (Basel) 2019; 11:polym11091500. [PMID: 31540090 PMCID: PMC6780842 DOI: 10.3390/polym11091500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/25/2022] Open
Abstract
To predict the cyclic stability of secondary battery electrodes, the mechanical behaviors of polymer binders and conductive composites (BCC) is of great significance. In terms of uniaxial tension, tensile stress relaxation, and bonding strength tests, the present study encompasses a systematic investigation of the mechanical properties of two typical aqueous binders with different contents of Super-S carbon black (SS) under a liquid electrolyte. Meanwhile, the microstructure of cured film and the surface morphology of the bonding interface are investigated in detail. When the weight ratio of SS increases from 0% to 50%, the cured BCC films manifest a higher ratio of tensile strength to modulus and a shorter characteristic relaxation time. Moreover, suitable loadings of SS can improve the tensile shear strength and remarkably reduce the percentage of interface failure of aqueous polymer-bonded Cu current collector. Nevertheless, an excess of carbon black amount cannot maintain its enhancing effect and can even impair the adhesive layer. Finally, a sodium alginate-based polymer composite holds much more superior mechanical properties than the mixture of sodium carboxymethyl cellulose and styrene-butadiene rubber at the same content of carbon black. Noticeably, the two kinds of aqueous polymer doped by 50 wt % of SS exhibit the best adhesive properties.
Collapse
Affiliation(s)
- Hongjiu Hu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China.
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China.
| | - Bao Tao
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China
| | - Yaolong He
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China
| | - Sihao Zhou
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China
| |
Collapse
|
15
|
Xu H, Jiang K, Zhang X, Zhang X, Guo S, Zhou H. Sodium Alginate Enabled Advanced Layered Manganese-Based Cathode for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26817-26823. [PMID: 31286760 DOI: 10.1021/acsami.9b06564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sodium-ion batteries (SIBs) are promising candidates applied to large-scale energy storage systems owing to abundant sodium resources and high economic efficiency. Layered manganese-based oxides as a prevailing cathode for sodium-ion batteries have been extensively studied, where doping or coating has been demonstrated to improve the electrochemical performance. However, the binder that tends to be the popular poly(vinylidene difluoride), is revealed to generate swellability upon cycling, leading to electrode material cracks and disconnection with current collectors. For the above issues, in this work, environmentally friendly sodium alginate is utilized as the aqueous binder in a conventional layered transition-metal oxide cathode P2-Na2/3MnO2 for SIBs. Through credible comparative experiments, sodium alginate is testified to play an essential role in suppressing cracks on the surface of materials, preventing surge in charge-transfer resistance and restraining detachment between electrode and current collector. Therefore, sodium alginate is proved to be an ideal binder to match with P2-Na2/3MnO2, where some issues existed before, as a promising cathode material with excellent performance and low cost. This study displays that improving battery performance by exploring suitable binder systems can equal or even exceed the performance improvement through modification of the material itself, and this perspective of enhancement should not be ignored.
Collapse
Affiliation(s)
- Hang Xu
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure , Nanjing University , Nanjing 210093 , China
| | - Kezhu Jiang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure , Nanjing University , Nanjing 210093 , China
| | - Xueping Zhang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure , Nanjing University , Nanjing 210093 , China
| | - Xiaoyu Zhang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure , Nanjing University , Nanjing 210093 , China
| | - Shaohua Guo
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure , Nanjing University , Nanjing 210093 , China
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure , Nanjing University , Nanjing 210093 , China
- National Institute of Advanced Industrial Science and Technology (AIST) , Umezono 1-1-1 , Tsukuba 305-8568 , Japan
| |
Collapse
|
16
|
Lee D, Park H, Goliaszewski A, Byeun YK, Song T, Paik U. In Situ Cross-linked Carboxymethyl Cellulose-Polyethylene Glycol Binder for Improving the Long-Term Cycle Life of Silicon Anodes in Li Ion Batteries. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00870] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dongsoo Lee
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
| | - Hyunjung Park
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Alan Goliaszewski
- Ashland Specialty Ingredients, 500 Hercules Road, Wilmington, Delaware 19808, United States
| | - Yun-ki Byeun
- Steelmaking Research Group, Technical Research Laboratory of POSCO, Pohang, Gyeongbuk 37859, Korea
| | - Taeseup Song
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
| | - Ungyu Paik
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
17
|
Park K, Myeong S, Shin D, Cho CW, Kim SC, Song T. Improved swelling behavior of Li ion batteries by microstructural engineering of anode. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Thermally stable and green cellulose-based composites strengthened by styrene-co-acrylate latex for lithium-ion battery separators. Carbohydr Polym 2019; 206:801-810. [DOI: 10.1016/j.carbpol.2018.11.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022]
|
19
|
Chen H, Ling M, Hencz L, Ling HY, Li G, Lin Z, Liu G, Zhang S. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chem Rev 2018; 118:8936-8982. [PMID: 30133259 DOI: 10.1021/acs.chemrev.8b00241] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tremendous efforts have been devoted to the development of electrode materials, electrolytes, and separators of energy-storage devices to address the fundamental needs of emerging technologies such as electric vehicles, artificial intelligence, and virtual reality. However, binders, as an important component of energy-storage devices, are yet to receive similar attention. Polyvinylidene fluoride (PVDF) has been the dominant binder in the battery industry for decades despite several well-recognized drawbacks, i.e., limited binding strength due to the lack of chemical bonds with electroactive materials, insufficient mechanical properties, and low electronic and lithium-ion conductivities. The limited binding function cannot meet inherent demands of emerging electrode materials with high capacities such as silicon anodes and sulfur cathodes. To address these concerns, in this review we divide the binding between active materials and binders into two major mechanisms: mechanical interlocking and interfacial binding forces. We review existing and emerging binders, binding technology used in energy-storage devices (including lithium-ion batteries, lithium-sulfur batteries, sodium-ion batteries, and supercapacitors), and state-of-the-art mechanical characterization and computational methods for binder research. Finally, we propose prospective next-generation binders for energy-storage devices from the molecular level to the macro level. Functional binders will play crucial roles in future high-performance energy-storage devices.
Collapse
Affiliation(s)
- Hao Chen
- Centre for Clean Environment and Energy, School of Environment and Science , Griffith University, Gold Coast Campus , Gold Coast , Queensland 4222 , Australia
| | - Min Ling
- Centre for Clean Environment and Energy, School of Environment and Science , Griffith University, Gold Coast Campus , Gold Coast , Queensland 4222 , Australia.,Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology , College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Luke Hencz
- Centre for Clean Environment and Energy, School of Environment and Science , Griffith University, Gold Coast Campus , Gold Coast , Queensland 4222 , Australia
| | - Han Yeu Ling
- Centre for Clean Environment and Energy, School of Environment and Science , Griffith University, Gold Coast Campus , Gold Coast , Queensland 4222 , Australia
| | - Gaoran Li
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology , College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Zhan Lin
- Electrochemical NanoEnergy Group , School of Chemical Engineering and Light Industry at Guangdong University of Technology , Guangzhou , China
| | - Gao Liu
- Electrochemistry Division , Lawrence Berkeley National Lab , San Francisco , California 94720 , United States
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, School of Environment and Science , Griffith University, Gold Coast Campus , Gold Coast , Queensland 4222 , Australia
| |
Collapse
|
20
|
Park H, Lee D, Song T. Synthesis of Carboxymethyl Cellulose Lithium by Weak Acid Treatment and Its Application in High Energy-Density Graphite Anode for Li-Ion Batteries. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyunjung Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
| | - Dongsoo Lee
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
| | - Taeseup Song
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
21
|
Ma X, Zou S, Tang A, Chen L, Deng Z, Pollet BG, Ji S. Three-dimensional hierarchical walnut kernel shape conducting polymer as water soluble binder for lithium-ion battery. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Yao W, Tian Q, Liu J, Xue Q, Li M, Liu L, Lu Q, Wu W. Preparation and RGB upconversion optic properties of transparent anti-counterfeiting films. NANOSCALE 2017; 9:15982-15989. [PMID: 29022638 DOI: 10.1039/c7nr05744j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Advanced anti-counterfeiting labels have aroused an intensive interest in packaging industry to avoid the serious issue of counterfeit. However, the preparation and cost of the existing labels associated with the drawbacks, including the complex and high-cost equipment, limit the protection of the authenticity of goods. Herein, we developed a series of anti-counterfeiting labels based on multicolor upconversion micro-particles (UCMPs) inks via straightforward and low-cost solutions, including spin-coating, stamping and screen printing. The UCMPs were synthesized through a facile hydrothermal process and displayed tunable red (R), green (G) and blue (B) color by doping different lanthanide ions, which are Er3+/Tm3+, Yb3+/Er3+ and Yb3+/Tm3+ in NaYF4 hosts, respectively. The optimal UCMPs inks were deposited on a flexible polyethylene terephthalate (PET) substrate to obtain transparent anti-counterfeiting labels possessing higher transmittance, stronger upconversion fluorescence intensity and good photostability. Under ambient conditions, the patterns and films were transparent, but could exhibit multicolor light under 980 nm laser excitation. They can be used as anti-counterfeiting labels for die-cutting packages to further elevate the security of goods. The tunable and designable transparent anti-counterfeiting labels based on RGB UCMPs inks exhibit the merits of low-cost, easy-manufacture and versatility, underlying the practical application in the field of anti-counterfeiting.
Collapse
Affiliation(s)
- Weijing Yao
- Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|