1
|
Mathew N, Rathod R, Saha S, Santra PK, Pati SK, Eswaramoorthy M. Engineering Ni(OH) 2 with Pd for Efficient Electrochemical Urea Oxidation. Chem Asian J 2025; 20:e202401188. [PMID: 40048285 DOI: 10.1002/asia.202401188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025]
Abstract
Urea-assisted water electrolysis is a promising and energy-efficient alternative to electrochemical water splitting due to its low thermodynamic potential of 0.37 V, which is 860 mV less than that needed for water splitting (1.23 V). Ni(OH)2 has proven to be an efficient catalyst for this reaction. However, the non-spontaneous desorption of CO2 molecules from the catalyst surface leads to active site poisoning, which significantly impacts its long-term stability. Herein, we have demonstrated that Pd incorporated NiOH2 (Pd/Ni(OH)2) results in a significant decrease in the overpotential by 40 mV at 10 mA cm-2 as compared to Ni(OH)2. The decrease in the Tafel slope and charge transfer resistance of Pd/Ni(OH)2 indicates an improvement in the kinetics of the reaction, resulting in a maximum current density of 380 mA cm-2 at 1.5 V, which is higher than that observed for Ni(OH)2 (180 mA cm-2). XAS analysis was utilized to determine the nature of the metal species in the catalyst. It revealed that while Pd predominantly exists in its metallic state within the bulk of the catalyst, the surface is enriched with the oxide phase. The presence of Pd prevents the strong adsorption of CO2 at the active site in Pd/Ni(OH)2, resulting in a substantial improvement of stability of up to 300 h as compared to Ni(OH)2. DFT calculations were performed to explore the detailed reaction mechanism of urea oxidation on Ni(OH)2 and Pd/Ni(OH)2. These calculations provided further insight into the experimental observations and evaluated the contribution of Pd in enhancing the catalytic efficiency of Ni(OH)2. Additionally, the operando Raman and IR spectroscopy were used to understand the formation of the active sites and the intermediates during urea electrooxidation.
Collapse
Affiliation(s)
- Nijita Mathew
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| | - Radha Rathod
- Centre for Nano and Soft Matter Sciences, Bengaluru, Karnataka, 562162, India
| | - Sougata Saha
- Theoretical Sciences Unit, JNCASR, Bengaluru, 560064, India
- International Centre for Materials Science, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| | - Pralay K Santra
- Centre for Nano and Soft Matter Sciences, Bengaluru, Karnataka, 562162, India
| | - Swapan K Pati
- Theoretical Sciences Unit, JNCASR, Bengaluru, 560064, India
- International Centre for Materials Science, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
- International Centre for Materials Science, School of Advanced Materials (SAMat); JNCASR, Bengaluru, 560064, India
| |
Collapse
|
2
|
Li J, Lv Y, Wu X, Xue R, Yang Z, Guo J, Jia D. Electronic and vacancy engineering of ruthenium doped hollow-structured NiO/Co 3O 4 nanoreactors for low-barrier electrochemical urea-assisted energy-saving hydrogen production. J Colloid Interface Sci 2025; 683:600-611. [PMID: 39742741 DOI: 10.1016/j.jcis.2024.12.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Discovering a valid approach to achieve a novel and efficient water splitting catalyst is essential for the development of hydrogen energy technology. Herein, unique hollow-structured ruthenium (Ru)-doped nickel-cobalt oxide (Ru-NiO/Co3O4/NF) nanocube arrays are fabricated as high-efficiency bifunctional electrocatalysts for hydrogen evolution reaction (HER)/urea oxidation reaction (UOR) through combined electronic and vacancy engineering. The structural characterization and experimental results indicate that the doping of Ru can not only effectively modulate the electronic structure of Ru-NiO/Co3O4/NF, but also increase the content of oxygen vacancies in the structure of Ru-NiO/Co3O4/NF to stabilize the existence of oxygen vacancies during the catalytic process. This can optimize the adsorption and desorption of the reactive intermediates on the surface of Ru-NiO/Co3O4/NF and dramatically accelerate the HER and UOR kinetics. As a result, the Ru-NiO/Co3O4/NF hollow structure nanocube arrays exhibit overpotentials of 21 and 60 mV for HER, as well as potentials of 1.36 and 1.42 V for UOR at 10 and 100 mA cm-2, respectively. Furthermore, the coupled HER and UOR system requires only 1.59 V of cell voltage to drive a current density of 100 mA cm-2, which is approximately 240 mV lower than conventional water electrolysis. This work provides a tremendous promise for the development of novel and high-activity electrocatalysts in future energy conversion applications.
Collapse
Affiliation(s)
- Jiaxin Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Rui Xue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Zhuojun Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
3
|
Abraham DS, Vinoba M, Bhagiyalakshmi M. NiCr-LDH/V 4C 3 MXene nanocomposites as an efficient electrocatalyst for urea oxidation. NANOSCALE 2025; 17:4111-4122. [PMID: 39782877 DOI: 10.1039/d4nr04064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The quest for highly efficient electrocatalysts for direct urea fuel cells (DUFCs) is vital in addressing the energy deficits and environmental crisis. Ni-based LDHs are widely known for their substantial capability in urea oxidation reactions (UOR). This study involved the synthesis of NiCr-LDH/V4C3 MXene nanocomposites (NCVs) and the evaluation of their electrochemical efficiency towards UOR. The hybridization of V4C3 with NiCr-LDH improved the redox kinetics of the nanocomposite. NCV-21 achieved a notable efficiency of 10 mA cm-2 at a lower onset potential of 1.36 V versus the reversible hydrogen electrode in a 1.0 M KOH solution containing 0.33 M urea. Furthermore, it demonstrated an enhanced current density of 112.64 mA cm-2 and long-term durability. The robust interaction and electronic coupling between NiCr-LDH and V4C3 MXene, marked by superior current density and significant charge transfer, confers the nanocomposite with remarkable catalytic activity and stability towards substantial urea oxidation performance. Based on the results obtained, the NiCr-LDH/V4C3 MXene nanocomposite is an efficient anodic catalyst for urea oxidation. This study will open a new avenue for the development of various LDH/MXene nanocomposites for energy conservation applications.
Collapse
Affiliation(s)
| | - Mari Vinoba
- Kuwait Institute for Scientific Research, Safat-13109, Kuwait
| | | |
Collapse
|
4
|
Chen Q, Chen J, Dong X, Dong C, Zhou Y, Zhang J, Wang G, Wang R. What Is the Mechanism by which the Introduction of Amorphous SeO x Effectively Promotes Urea-Assisted Water Electrolysis Performance of Ni(OH) 2? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409306. [PMID: 39811982 DOI: 10.1002/smll.202409306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Nickel hydroxide (Ni(OH)2) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (Ov) defects with amorphous SeOx-covered Ni(OH)2 (Ov-SeOx/Ni(OH)2). Surprisingly, at 100 mA cm-2, compared with Ni(OH)2 (1.46 V (vs RHE)), Ov-SeOx/Ni(OH)2 has a potential of 1.35 V. Meanwhile, Ov-SeOx/Ni(OH)2 catalyst also showed good hydrogen evolution reaction (HER) performance, so it is used as the electrolytic cell assembled by UOR and HER bifunctional catalysts and only 1.57 V could reach 100 mA cm-2. Density functional theory (DFT) study revealed that introduce of amorphous SeOx optimizes the electronic structure of the central active metal, amorphous/crystalline interfaces promote charge-carrier transfer, shift d-band center and entail numerous spin-polarized electrons during the reaction, which speeds up the UOR reaction kinetics.
Collapse
Affiliation(s)
- Qiuyan Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, P. R. China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, P. R. China
| | - Xinran Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, P. R. China
| | - Changxue Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, P. R. China
| | - Yunzhe Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, P. R. China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, P. R. China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
5
|
Sharma PJ, Joshi KK, Siraj S, Sahatiya P, Sumesh CK, Pataniya PM. Vanadium-Doped Ni 3S 2: Morphological Evolution for Enhanced Industrial-Scale Water and Urea Electrolysis. CHEMSUSCHEM 2025; 18:e202401371. [PMID: 39215757 DOI: 10.1002/cssc.202401371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
The development of an earth abundant, cost-effective, facile and multifunctional 3D-porous catalytic network for green hydrogen production is a tremendous challenge. Herein, we report the V-Ni3S2 self-supported catalytic network with optimized morphology grown directly on nickel foam (NF) by the one-step hydrothermal technique for water and urea electrolysis at industrial scale hydrogen generation. The morphology of Ni3S2 was modulated by doping of different concentrations of vanadium from granules to cross-linked wires to hierarchal nanosheets arrays, which is beneficial in electrochemical charge and mass transport, and generates more exposed active sites. The V-Ni3S2 catalyst requires the overpotential of 147 mV for hydrogen evolution reaction (HER). The OER and UOR half-cell reaction on V-Ni3S2 catalyst requires potential 1.57 V and 1.39 V (vs RHE), respectively to generate current 100 mA/cm2. The water electrolysis cell developed by V-Ni3S2 as both anode and cathode generates 100 mA/cm2 at cell voltage of 1.88 V in laboratory condition (1 M KOH, 25 °C) and 1.61 V at industrial condition (5 M KOH, 80 °C) and also shows considerable stability for 82 hr at current 300 mA/cm2. The urea electrolysis cell with 1 M KOH and 0.33 M urea generates 100 mA/cm2 at a cell voltage of 1.73 V, which is 150 mV less than that required for water electrolysis and demonstrate stability for 85 hr at a current of 100 mA/cm2. The results provide an innovative plan for the considerate synthesis and design of bifunctional catalysts for energy storage and water splitting.
Collapse
Affiliation(s)
- Pooja J Sharma
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Anand, Gujarat, 388421, India
| | - Kinjal K Joshi
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Anand, Gujarat, 388421, India
| | - Sohel Siraj
- Department of Electrical and Electronics Engineering, BITS Pilani Hyderabad, Secunderabad, 500078, India
| | - Parikshit Sahatiya
- Department of Electrical and Electronics Engineering, BITS Pilani Hyderabad, Secunderabad, 500078, India
| | - C K Sumesh
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Anand, Gujarat, 388421, India
| | - Pratik M Pataniya
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Anand, Gujarat, 388421, India
| |
Collapse
|
6
|
Acharya A, Mandal K, Kumari N, Chatterjee K. Synergistic Inclusion of Reaction Activator and Reaction Accelerator to Ni-MOF Toward Extra-Ordinary Performance of Urea Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407377. [PMID: 39580688 DOI: 10.1002/smll.202407377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Recently electrochemical urea oxidation reaction (UOR) has emerged as the technology of demand for commercialization of urea-based energy conversion. However, the nascent idea is limited by the energy burden of threshold voltage and the sluggish reaction kinetics involving a six-electron transfer mechanism. Herein, for the first time, the engineering of electrocatalysts are proposed with simultaneous inclusion of UOR activator and UOR accelerator. Nitrogen-doped carbon-decorated Ni-based Metal Organic Framework (MOF) has been synthesized as the base catalyst material. MoO2 and rGO with varied loading have been attached to the MOF to get the desired MoO2/Ni-MOF/rGO heterostructure incorporating defects and crystal strain within the materials. Investigations reveal that the invoked lattice strain and atomic defects promote plenteous Ni3+ active sites. The optimized sample demonstrates extraordinary performance of UOR having the potential value as low as 1.32 V versus RHE to reach the current density of 10 mA cm-2 and the tafel slope is only 31 mV dec-1 reflecting very fast reaction kinetics. Here MoO2 plays the role of UOR activator whereas optimized loading of rGO proliferates the reaction speed. This work, experimentally and theoretically, presents a new insight to enhance electrocatalytic urea oxidation reaction opening an avenue of urea-based energy-harvesting technology.
Collapse
Affiliation(s)
- Animesh Acharya
- Department of Physics, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Koustav Mandal
- Department of Physics, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Neetu Kumari
- Department of Chemical Engineering, MNIT, Jaipur, Rajasthan, 302017, India
| | - Kuntal Chatterjee
- Department of Physics, Vidyasagar University, Midnapore, West Bengal, 721102, India
| |
Collapse
|
7
|
Chen L, Wang L, Ren JT, Wang HY, Tian WW, Sun ML, Yuan ZY. Artificial Heterointerfaces with Regulated Charge Distribution of Ni Active Sites for Urea Oxidation Reaction. SMALL METHODS 2024; 8:e2400108. [PMID: 38558249 DOI: 10.1002/smtd.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/20/2024] [Indexed: 04/04/2024]
Abstract
In contrast to the thermodynamically unfavorable anodic oxygen evolution reaction, the electrocatalytic urea oxidation reaction (UOR) presents a more favorable thermodynamic potential. However, the practical application of UOR has been hindered by sluggish kinetics. In this study, hierarchical porous nanosheet arrays featuring abundant Ni-WO3 heterointerfaces on nickel foam (Ni-WO3/NF) is introduced as a monolith electrode, demonstrating exceptional activity and stability toward UOR. The Ni-WO3/NF catalyst exhibits unprecedentedly rapid UOR kinetics (200 mA cm-2 at 1.384 V vs. RHE) and a high turnover frequency (0.456 s-1), surpassing most previously reported Ni-based catalysts, with negligible activity decay observed during a durability test lasting 150 h. Ex situ X-ray photoelectron spectroscopy and density functional theory calculations elucidate that the WO3 interface significantly modulates the local charge distribution of Ni species, facilitating the generation of Ni3+ with optimal affinity for interacting with urea molecules and CO2 intermediates at heterointerfaces during UOR. This mechanism accelerates the interfacial electrocatalytic kinetics. Additionally, in situ Fourier transform infrared spectroscopy provides deep insights into the substantial contribution of interfacial Ni-WO3 sites to UOR electrocatalysis, unraveling the underlying molecular-level mechanisms. Finally, the study explores the application of a direct urea fuel cell to inspire future practical implementations.
Collapse
Affiliation(s)
- Lei Chen
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Wen-Wen Tian
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| |
Collapse
|
8
|
Sohel A, Kovilakath MSN, Gogoi PJ, Ansari H, Phukan P, Bag S, John NS, Baksi A. Mechanistic Insights into the Stabilization of In Situ Formed γ-NiOOH Species on Ni 60Nb 40 Nanoglass for Effective Urea Electro-Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405160. [PMID: 39109948 DOI: 10.1002/smll.202405160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Indexed: 11/22/2024]
Abstract
The formation of NiOOH on the catalyst surface is widely considered to be the active species in electrochemical urea oxidation reactions (UOR). Though in situ-formed NiOOH species are reported to be more active than the synthesized ones, the mechanistic study of the actual active species remains a daunting task due to the possibility of different phases and instability of surface-formed NiOOH. Herein, mechanistic UOR aspects of electrochemically activated metallic Ni60Nb40 Nanoglass showing stability toward the γ-NiOOH phase are reported, probed via in situ Raman spectroscopy, supported by electron microscopy analysis and X-ray photoelectron spectroscopy in contrast with the β-NiOOH formation favored on Ni foil. Detailed mechanistic study further reveals that γ-NiOOH predominantly follows a direct UOR mechanism while β-NiOOH favors indirect UOR from time-dependent Raman study, and electrochemical impedance spectroscopy (EIS) analysis. The Nanoglass has shown outstanding UOR performance with a low Tafel slope of 16 mV dec-1 and stability for prolonged electrolysis (≈38 mA cm-2 for 70 h) that can be attributed to the nanostructured glassy interfaces facilitating more γ-NiOOH species formation and stabilization on the surface. The present study opens up a new direction for the development of inexpensive Ni-based UOR catalysts and sheds light on the UOR mechanism.
Collapse
Affiliation(s)
- Amir Sohel
- Centre for Nano and Soft Matter Sciences, Bangalore, Karnataka, 562162, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Palash J Gogoi
- Centre for Nano and Soft Matter Sciences, Bangalore, Karnataka, 562162, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hasem Ansari
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Plabana Phukan
- Department of Industrial Chemistry, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Soumabha Bag
- Department of Industrial Chemistry, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Neena S John
- Centre for Nano and Soft Matter Sciences, Bangalore, Karnataka, 562162, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ananya Baksi
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| |
Collapse
|
9
|
Pyka A, Bergsman DS, Stuve EM. Catalytic urea electrooxidation on nickel‐metal hydroxide foams for use in a simplified dialysis device. AIChE J 2024; 70. [DOI: 10.1002/aic.18547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/13/2024] [Indexed: 01/03/2025]
Abstract
AbstractElectrocatalytic urea removal is a promising technology for artificial kidney dialysis and wastewater treatment. Urea electrooxidation was studied on nickel electrocatalysts modified with Cr, Mo, Mn, and Fe. Mass transfer limits were observed for urea oxidation at physiological concentrations (10 mmol L). Urea oxidation kinetics were explored at higher concentrations (200 mmol L), showing improved performance, but with lower currents per active site. A simplified dialysis model was developed to examine the relationship of mass transfer coefficients and extent of reaction on flowrate, composition, and pH of the reacting stream. For a nickel hydroxide catalyst operating at 1.45 V, 37 , and pH 7.1, the model shows a minimum geometric electrode area of 1314 cm2 is needed to remove 3.75 g urea h with a flow rate of 200 mL min for continuous operation.
Collapse
Affiliation(s)
- Anthony Pyka
- Department of Chemical Engineering University of Washington Seattle Washington USA
| | - David S. Bergsman
- Department of Chemical Engineering University of Washington Seattle Washington USA
| | - Eric M. Stuve
- Department of Chemical Engineering University of Washington Seattle Washington USA
| |
Collapse
|
10
|
Zhang Z, Ren X, Dai W, Zhang H, Sun Z, Ye Z, Hou Y, Liu P, Xu B, Qian L, Liao T, Zhang H, Guo J, Sun Z. In Situ Reconstructing NiFe Oxalate Toward Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408754. [PMID: 39360598 PMCID: PMC11600197 DOI: 10.1002/advs.202408754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Surface reconstruction plays an essential role in electrochemical catalysis. The structures, compositions, and functionalities of the real catalytic species and sites generated by reconstruction, however, are yet to be clearly understood, for the metastable or transit state of most reconstructed structures. Herein, a series of NiFe oxalates (NixFe1- xC2O4, x = 1, 0.9, 0.7, 0.6, 0.5, and 0) are synthesized for overall water splitting electrocatalysis. Whilst NixFe1-xC2O4 shows great hydrogen evolution reaction (HER) activity, the in situ reconstructed NixFe1-xOOH exhibits outstanding oxygen evolution reaction (OER) activity. As identified by the in situ Raman spectroscopy and quasi-in situ X-ray absorption spectroscopy (XAS) techniques, reconstructions from NixFe1-xC2O4 into defective NixFe1-xOOH and finally amorphous NixFe1-xOOH active species (R-NixFe1-xOOH) are confirmed upon cyclic voltammetry processes. Specifically, the fully reconstructed R-Ni0.6Fe0.4OOH demonstrates the best OER activity (179 mV to reach 10 mA cm-2), originating from its abundant real active sites and optimal d-band center. Benefiting from the reconstruction, an alkaline electrolyzer composed of a Ni0.6Fe0.4C2O4 cathode and an in situ reconstructed R-Ni0.6Fe0.4OOH anode achieves a superb overall water splitting performance (1.52 V@10 mA cm-2). This work provides an in-depth structure-property relationship understanding on the reconstruction of catalysts and offers a new pathway to designing novel catalyst.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Wenyuan Dai
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Hang Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Zhengyin Sun
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Zhuang Ye
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ying Hou
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
- Materials Institute of Atomic and Molecular ScienceShaanxi University of Science &TechnologyXi'an710021P. R. China
| | - Lihua Qian
- School of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Ting Liao
- School of Mechanical Medical and Process EngineeringQueensland University of TechnologyGeorge StreetBrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbane4000Australia
| | - Haixia Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ziqi Sun
- School of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbane4000Australia
| |
Collapse
|
11
|
Song Y, Huang J, Tang C, Wang T, Liu Y, He X, Xie C, Chen G, Deng C, He Z. Improved Urea Oxidation Performance via Interface Electron Redistributions of the NiFe(OH) x/MnO 2/NF p-p Heterojunction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403612. [PMID: 38924298 DOI: 10.1002/smll.202403612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/12/2024] [Indexed: 06/28/2024]
Abstract
The development of highly efficient urea oxidation reaction (UOR) electrocatalysts is the key to simultaneously achieving green hydrogen production and the treatment of urea-containing wastewater. Ni-based electrocatalysts are expected to replace precious metal catalysts for UOR because of their high activity and low cost. However, the construction of Ni-based electrocatalysts that can synergistically enhance UOR still needs further in-depth study. In this study, highly active electrocatalysts of NiFe(OH)x/MnO2 p-p heterostructures are constructed on nickel foam (NF) by electrodeposition (NiFe(OH)x/MnO2/NF), illustrating the effect of electronic structure changes at heterogeneous interfaces on UOR and revealing the catalytic mechanism of UOR. The NiFe(OH)x/MnO2/NF only needs 1.364 V (vs Reversible Hydrogen Electrode, RHE) to reach 10 mA cm-2 for UOR. Structural characterizations and theoretical calculations indicate that energy gap leads to directed charge transfer and redistribution at the heterojunction interface, forming electron-rich (MnO2) and electron-poor (NiFe(OH)x) regions. This enhances the catalyst's adsorption of urea and reaction intermediates, reduces thermodynamic barriers during the UOR process, promotes the formation of Ni3+ phases at lower potentials, and thus improves UOR performance. This work provides a new idea for the development of Ni-based high-efficiency UOR electrocatalysts.
Collapse
Affiliation(s)
- Yulan Song
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Jinglin Huang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Cuilan Tang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tao Wang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Yansong Liu
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Xiaoshan He
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Chunping Xie
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Guo Chen
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Chengfu Deng
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Zhibing He
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, China
| |
Collapse
|
12
|
Wu TH, Hou BW, Lee YY, Tsai MC, Liao CC, Chang CC. Simultaneously Boosting Direct and Indirect Urea Oxidation of Nickel Hydroxide via Strategic Yttrium Doping. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50937-50947. [PMID: 39258713 DOI: 10.1021/acsami.4c11951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Urea electrolysis can address pressing environmental concerns caused by urea-containing wastewater while realizing energy-saving hydrogen production. Highly efficient and affordable electrocatalysts are indispensable for realizing the great potential of this emerging technology. Among the numerous candidates, α-Ni(OH)2 has the merits of good electrocatalytic activity, adjustable heteroelement doping, and low cost; consequently, it has received tremendous attention in the electrolytic fields. Herein, a Y3+-doping strategy is developed to effectively enhance the catalytic performance of nickel hydroxide in the urea oxidation reaction (UOR). Our results show that Y3+ incorporation successfully modulates the electronic structure of α-Ni(OH)2 by inducing Ni3+ formation in the crystal lattice to initiate direct UOR, facilitates the Ni3+/Ni2+ redox transition with higher current responses to promote indirect UOR, and maintains the structural stability of YNi-10 (Ni2+/Y3+ molar ratio = 1:0.1) during long-term UOR operation. Owing to these features, the obtained YNi-10 sample exhibits a higher current density (127 vs 79 mA cm-2 at 1.5 V), a lower Tafel slope (48 vs 75 mV dec-1), a larger potential difference between the UOR and oxygen evolution reaction (OER, 0.26 vs 0.22 V at 80 mA cm-2), a higher reaction rate constant (1.1 × 105 vs 3.1 × 103 cm3 mol-1 s-1), and a reduced activation energy of UOR (2.9 vs 14.8 kJ mol-1) compared with the Y-free counterpart (YNi-0). This study presents a promising strategy to simultaneously boost direct and indirect UORs, providing new insights for further developing high-performance electrocatalysts.
Collapse
Affiliation(s)
- Tzu-Ho Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Bo-Wei Hou
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Yi-Ying Lee
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Meng-Che Tsai
- Department of Greenergy, National University of Tainan, 67 Rongyu St., East Dist., Tainan City 701027, Taiwan
| | - Chen-Cheng Liao
- Department of Chemical and Materials Engineering, Chinese Culture University, 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei 11114, Taiwan
| | - Chun-Chih Chang
- Department of Chemical and Materials Engineering, Chinese Culture University, 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei 11114, Taiwan
| |
Collapse
|
13
|
Li J, Yin C, Wang S, Zhang B, Feng L. Built-in electrophilic/nucleophilic domain of nitrogen-doped carbon nanofiber-confined Ni 2P/Ni 3N nanoparticles for efficient urea-containing water-splitting reactions. Chem Sci 2024; 15:13659-13667. [PMID: 39211499 PMCID: PMC11351610 DOI: 10.1039/d4sc01862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
Transferring urea-containing waste water to clean hydrogen energy has received increasing attention, while challenges are still faced in the sluggish catalytic kinetics of urea oxidation. Herein, a novel hybrid catalyst of Ni2P/Ni3N embedded in nitrogen-doped carbon nanofiber (Ni2P/Ni3N/NCNF) is developed for energy-relevant urea-containing water-splitting reactions. The built-in electrophilic/nucleophilic domain resulting from the electron transfer from Ni2P to Ni3N accelerates the formation of high-valent active Ni species and promotes favourable urea molecule adsorption. A spectral study and theoretical analysis reveal that the negatively shifted Ni d-band centre in Ni2P/Ni3N/NCNF weakens the adsorption of intermediate CO2 and facilitates its desorption, thereby improving the urea oxidation reaction kinetics. The overall reaction process is also optimized by minimizing the energy barrier of the rate-determining step. Following the stability test, the surface reconstruction of the pre-catalyst is discussed, where an amorphous layer of NiOOH as the real active phase is formed on the surface/interface of Ni2P/Ni3N for urea oxidation. Benefiting from these characteristics, a high current density of 151.11 mA cm-2 at 1.54 V vs. RHE is obtained for urea oxidation catalysed by Ni2P/Ni3N/NCNF, exceeding that of most of the similar catalysts. A low cell voltage of 1.39 V is required to reach 10 mA cm-2 for urea electrolysis, which is about 200 mV less than that of the general water electrolysis. The current work will be helpful for the development of advanced catalysts and their application in the urea-containing waste water transfer to clean hydrogen energy.
Collapse
Affiliation(s)
- Jiaxin Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing) Beijing 100083 P.R. China
| | - Chun Yin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing) Beijing 100083 P.R. China
| | - Ligang Feng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
14
|
Shu W, Sun Q, Guo M. A novel design of urea-assisted hydrogen production in electrochemical-chemical decoupled self-circulating systems. RSC Adv 2024; 14:26659-26666. [PMID: 39175676 PMCID: PMC11340426 DOI: 10.1039/d4ra04644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
In traditional water electrolysis processes, the oxidation and reduction reactions of water are coupled in both time and space, which presents significant challenges. Here, we propose an optimized design for an electrochemical-chemical self-circulating decoupled system. This system uses the continuous Ni2+/Ni3+ redox process on nickel hydroxide electrode sheets to stepwise couple the urea oxidation-assisted hydrogen production system, separating the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) into two distinct steps: electrochemical and chemical reactions. In the first electrochemical step, water is reduced at the cathode to produce hydrogen, while the single-electron electrochemical oxidation of Ni(OH)2 at the anode generates NiOOH. Then, in the second chemical reaction step, NiOOH spontaneously oxidizes urea, causing its decomposition and simultaneously reducing back to the Ni(OH)2 state. We concurrently investigated the effects of temperature and OH-concentration on the spontaneous oxidation of urea. At 80 °C and with a 1 M KOH concentration containing 50 mg of urea solution, the NiOOH electrode successfully catalyzed the spontaneous decomposition of urea, achieving conversion rate of 100% and faradaic efficiency of 98%.
Collapse
Affiliation(s)
- Weihang Shu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Qi Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Mingrui Guo
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| |
Collapse
|
15
|
Qin Y, Yang F, Chen Z, Lu M, Wang P. Revealing the Electro-oxidation Mechanism of 5-Aminotetrazole on Nickel-Based Oxides and Synthesizing 5,5'-Azotetrazolate Salts. Inorg Chem 2024; 63:12299-12308. [PMID: 38888107 DOI: 10.1021/acs.inorgchem.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
With the gradual expansion of the application of organic electromechanical synthesis in the field of energetic materials, it is necessary to explore deeply the mechanisms behind the organic electromechanical oxidation of energetic materials in order to develop efficient electrocatalysts. Electrochemical synthesis of 5,5'-azotetrazolate (ZT) salts is not only environmentally friendly and efficient but also can replace oxygen evolution reaction (OER) combined with hydrogen production, significantly reducing the battery voltage of overall water splitting (OWS) and achieving low energy consumption hydrogen production. Here, we prepared the Co-modified nickel-based oxide electrodes (Ni3-xCoO4/carbon cloth (CC), x = 1, 2) as a medium to reveal the oxidative coupling mechanism of 5-aminotetrazole (5-AT). Experimental and theoretical calculations verified that Ni-catalyzed oxidative coupling of 5-AT is a proton-coupled electron transfer (PCET) process, including electron transfer of electrocatalytic intermediates (Ni2+-O + OH- = Ni3+-O(OH) + e-) and spontaneous dehydrogenation process (Ni3+-O(OH) + X-H = Ni2+-O + X•). The Ni3+-O(OH) is an extremely fast nonreducing electron transfer center that serves as a chemical oxidant to directly abstract hydrogen atoms from the 5-AT. Simultaneously, the synergistic effect of Co doping on the electric cloud around Ni causes the upshift of the d-band centers, which is conducive to the easier adsorption of OH*, forming the generation of active intermediate Ni3+-O(OH). Thus, Ni2CoO4/CC has higher Faraday efficiency (FE) and yield for the oxidation reaction of 5-AT, with a yield of approximately 72.3% after electrolysis at 1.7 V vs reversible hydrogen electrode (RHE).
Collapse
Affiliation(s)
- Yaqi Qin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Feng Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pengcheng Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
16
|
Zeng Y, Xiang S, Lu S, Qi X. Structural Design of Nickel Hydroxide for Efficient Urea Electrooxidation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2617. [PMID: 38893881 PMCID: PMC11173756 DOI: 10.3390/ma17112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Urea stands as a ubiquitous environmental contaminant. However, not only does urea oxidation reaction technology facilitate energy conversion, but it also significantly contributes to treating wastewater rich in urea. Furthermore, urea electrolysis has a significantly lower theoretical potential (0.37 V) compared to water electrolysis (1.23 V). As an electrochemical reaction, the catalytic efficacy of urea oxidation is largely contingent upon the catalyst employed. Among the plethora of urea oxidation electrocatalysts, nickel-based compounds emerge as the preeminent transition metal due to their cost-effectiveness and heightened activity in urea oxidation. Ni(OH)2 is endowed with manifold advantages, including structural versatility, facile synthesis, and stability in alkaline environments. This review delineates the recent advancements in Ni(OH)2 catalysts for electrocatalytic urea oxidation reaction, encapsulating pivotal research findings in morphology, dopant incorporation, defect engineering, and heterogeneous architectures. Additionally, we have proposed personal insights into the challenges encountered in the research on nickel hydroxide for urea oxidation, aiming to promote efficient urea conversion and facilitate its practical applications.
Collapse
Affiliation(s)
- Yi Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shouqin Xiang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xueqiang Qi
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
17
|
Zhou C, Wang P, Li J, Zhang Y, Bai J, Cui H, Liu G, Long M, Zhou B. Synergistic catalysis of TiO 2/WO 3 photoanode and Sb-SnO 2 electrode with highly efficient ClO• generation for urine treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134118. [PMID: 38547752 DOI: 10.1016/j.jhazmat.2024.134118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Urine is the major source of nitrogen pollutants in domestic sewage and is a neglected source of H2. Although ClO• is used to overcome the poor selectivity and slow kinetics of urea decomposition, the generation of ClO• suffers from the inefficient formation reaction of HO• and reactive chlorine species (RCS). In this study, a synergistic catalytic method based on TiO2/WO3 photoanode and Sb-SnO2 electrode efficiently producing ClO• is proposed for urine treatment. The critical design is that TiO2/WO3 photoanode and Sb-SnO2 electrode that generate HO• and RCS, respectively, are assembled in a confined space through face-to-face (TiO2/WO3//Sb-SnO2), which effectively strengthens the direct reaction of HO• and RCS. Furthermore, a Si solar panel as rear photovoltaic cell (Si PVC) is placed behind TiO2/WO3//Sb-SnO2 to fully use sunlight and provide the driving force of charge separation. The composite photoanode (TiO2/WO3//Sb-SnO2 @Si PVC) has a ClO• generation rate of 260% compared with the back-to-bake assembly way. In addition, the electrons transfer to the NiFe LDH@Cu NWs/CF cathode for rapid H2 production by the constructed photoelectric catalytic (PEC) cell without applied external biasing potential, in which the H2 production yield reaches 84.55 μmol h-1 with 25% improvement of the urine denitrification rate. The superior performance and long-term stability of PEC cell provide an effective and promising method for denitrification and H2 generation.
Collapse
Affiliation(s)
- Changhui Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pengbo Wang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinhua Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Yan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing Bai
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hanbo Cui
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Geying Liu
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
18
|
Yu J, Li Z, Wang C, Xu X, Liu T, Chen D, Shao Z, Ni M. Engineering advanced noble-metal-free electrocatalysts for energy-saving hydrogen production from alkaline water via urea electrolysis. J Colloid Interface Sci 2024; 661:629-661. [PMID: 38310771 DOI: 10.1016/j.jcis.2024.01.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
When the anodic oxygen evolution reaction (OER) of water splitting is replaced by the urea oxidation reaction (UOR), the electrolyzer can fulfill hydrogen generation in an energy-economic manner for urea electrolysis as well as sewage purification. However, owing to the sluggish kinetics from a six-electron process for UOR, it is in great demand to design and fabricate high-performance and affordable electrocatalysts. Over the past years, numerous non-precious materials (especially nickel-involved samples) have offered huge potential as catalysts for urea electrolysis under alkaline conditions, even in comparison with frequently used noble-metal ones. In this review, recent efforts and progress in these high-efficiency noble-metal-free electrocatalysts are comprehensively summarized. The fundamentals and principles of UOR are first described, followed by highlighting UOR mechanism progress, and then some discussion about density functional theory (DFT) calculations and operando investigations is given to disclose the real reaction mechanism. Afterward, aiming to improve or optimize UOR electrocatalytic properties, various noble-metal-free catalytic materials are introduced in detail and classified into different classes, highlighting the underlying activity-structure relationships. Furthermore, new design trends are also discussed, including targetedly designing nanostructured materials, manipulating anodic products, combining theory and in situ experiments, and constructing bifunctional catalysts. Ultimately, we point out the outlook and explore the possible future opportunities by analyzing the remaining challenges in this booming field.
Collapse
Affiliation(s)
- Jie Yu
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Zheng Li
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Chen Wang
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Daifen Chen
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China; WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia.
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China.
| |
Collapse
|
19
|
Tatarchuk SW, Choueiri RM, MacKay AJ, Johnston SJ, Cooper WM, Snyder KS, Medvedev JJ, Klinkova A, Chen LD. Understanding the Mechanism of Urea Oxidation from First-Principles Calculations. Chemphyschem 2024; 25:e202300889. [PMID: 38316612 DOI: 10.1002/cphc.202300889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/07/2024]
Abstract
Developing electrocatalysts for urea oxidation reaction (UOR) works toward sustainably treating urea-enriched water. Without a clear understanding of how UOR products form, advancing catalyst performance is currently hindered. This work examines the thermodynamics of UOR pathways to produce N2, NO2 -, and NO3 - on a (0001) β-Ni(OH)2 surface using density functional theory with the computational hydrogen electrode model. Our calculations show support for two major experimental observations: (1) N2 favours an intramolecular mechanism, and (2) NO2 -/NO3 - are formed in a 1 : 1 ratio with OCN-. In addition, we found that selectivity between N2 and NO2 -/NO3 - on our model surface appears to be controlled by two key factors, the atom that binds the surface intermediates to the surface and how they are deprotonated. These UOR pathways were also examined with a Cu dopant, revealing that an experimentally observed increased N2 selectivity may originate from increasing the limiting potential required to form NO2 -. This work builds towards developing a more complete atomic understanding of UOR at the surface of NiOxHy electrocatalysts.
Collapse
Affiliation(s)
- Stephen W Tatarchuk
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Rachelle M Choueiri
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Alexander J MacKay
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Shayne J Johnston
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - William M Cooper
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Kayla S Snyder
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jury J Medvedev
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Anna Klinkova
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Leanne D Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
20
|
Dhawale SC, Munde AV, Mulik BB, Dighole RP, Zade SS, Sathe BR. CTAB-Assisted Synthesis of FeNi Alloy Nanoparticles: Effective and Stable Electrocatalysts for Urea Oxidation Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2672-2685. [PMID: 38265983 DOI: 10.1021/acs.langmuir.3c03205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Development of highly efficient electrocatalysts for treating urea-rich wastewater is an important problem in environmental management and energy production. In this work, an iron-nickel alloy (Fe-Ni alloy) was synthesized via soft-template cetyltrimethylammonium bromide (CTAB)-assisted precipitation using low-temperature calcination. The as-synthesized nanoalloy was characterized by X-ray diffraction (XRD), which revealed the formation of a face-centered cubic (FCC) structure of the Fe-Ni alloy; field emission-scanning electron microscopic (FE-SEM) analysis revealed the spherical shape of the Fe-Ni alloy; high-resolution transmission electron microscopy (HR-TEM) revealed the average size to be ∼33.09 nm; and X-ray photoelectron spectroscopy (XPS) showed the presence of Fe, Ni, C, and O components and their chemical composition and valence states in the Fe-Ni alloy. The electrochemical urea oxidation reaction (UOR) was investigated by conducting linear sweep voltammetry (LSV) tests on the synthesized electrocatalysts with different Ni/Fe ratios in alkaline electrolytes with urea. The potential required to reach a current density of 10 mA cm-2 is 1.27 V vs RHE, which demonstrates the higher electrochemical activity of the Fe-Ni alloy compared to other individual compounds. This could be due to CTAB which improved the structural stability and synergetic and electronic effects in the nanoscale. This study will further contribute to renewable energy generation technology with long-term energy sustainability and also opens up great potential for reducing water pollution.
Collapse
Affiliation(s)
- Somnath C Dhawale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
| | - Ajay V Munde
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
- Indian Institute of Science Education and Research (IISER), Kolkata 741246, West Bengal, India
| | - Balaji B Mulik
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
- MGM University, Chhatrapati Sambhajinagar 431001, Maharashtra, India
| | - Raviraj P Dighole
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
- Arts, Science & Commerce College, Badnapur, Jalna 431202, India
| | - Sanjio S Zade
- Indian Institute of Science Education and Research (IISER), Kolkata 741246, West Bengal, India
| | - Bhaskar R Sathe
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
- Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
| |
Collapse
|
21
|
Gao X, Zhang S, Wang P, Jaroniec M, Zheng Y, Qiao SZ. Urea catalytic oxidation for energy and environmental applications. Chem Soc Rev 2024; 53:1552-1591. [PMID: 38168798 DOI: 10.1039/d3cs00963g] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Urea is one of the most essential reactive nitrogen species in the nitrogen cycle and plays an indispensable role in the water-energy-food nexus. However, untreated urea or urine wastewater causes severe environmental pollution and threatens human health. Electrocatalytic and photo(electro)catalytic urea oxidation technologies under mild conditions have become promising methods for energy recovery and environmental remediation. An in-depth understanding of the reaction mechanisms of the urea oxidation reaction (UOR) is important to design efficient electrocatalysts/photo(electro)catalysts for these technologies. This review provides a critical appraisal of the recent advances in the UOR by means of both electrocatalysis and photo(electro)catalysis, aiming to comprehensively assess this emerging field from fundamentals and materials, to practical applications. The emphasis of this review is on the design and development strategies for electrocatalysts/photo(electro)catalysts based on reaction pathways. Meanwhile, the UOR in natural urine is discussed, focusing on the influence of impurity ions. A particular emphasis is placed on the application of the UOR in energy and environmental fields, such as hydrogen production by urea electrolysis, urea fuel cells, and urea/urine wastewater remediation. Finally, future directions, prospects, and remaining challenges are discussed for this emerging research field. This critical review significantly increases the understanding of current progress in urea conversion and the development of a sustainable nitrogen economy.
Collapse
Affiliation(s)
- Xintong Gao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shuai Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
22
|
Zhou T, Jagadeesan SN, Zhang L, Deskins NA, Teng X. Enhanced Urea Oxidation Electrocatalytic Activity by Synergistic Cobalt and Nickel Mixed Oxides. J Phys Chem Lett 2024; 15:81-89. [PMID: 38133934 DOI: 10.1021/acs.jpclett.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Exploring reactive and selective Ni-based electrocatalysts for the urea oxidation reaction (UOR) is crucial for developing urea-related energy conversion technologies. Herein, synergistic interactions in Ni/Co mixed oxides/hydroxides enhanced the UOR with low onset potential, fast reaction kinetics, and good selectivity against the oxygen evolution reaction (OER). Our electrochemical measurements and theoretical calculations signified the collaborative interaction of Ni/Co mixed oxide/hydroxide heterostructures to enhance UOR activity. Our results showed that Ni3+ species, formed at high anodic potential, produced a high anodic current primarily from unwanted OER. Instead, the Ni/Co heterostructures with dominant Ni2+ and Co3+ species remained stable at low anodic potential and exhibited anodic current exclusively attributed to UOR. This work highlights the importance of tuning valence charges for designing high-performance and selective UOR electrocatalysts to benefit the environmental remediation of urea runoff and enable urea electrolysis for hydrogen production by replacing conventional OER with UOR at the anode.
Collapse
Affiliation(s)
- Tongxin Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Sathya Narayanan Jagadeesan
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - N Aaron Deskins
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Xiaowei Teng
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| |
Collapse
|
23
|
Zhong M, Yang J, Xu M, Ren S, Chen X, Wang C, Gao M, Lu X. Significantly Enhanced Energy-Saving H 2 Production Coupled with Urea Oxidation by Low- and Non-Pt Anchored on NiS-Based Conductive Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304782. [PMID: 37649181 DOI: 10.1002/smll.202304782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Indexed: 09/01/2023]
Abstract
Rational designing electrocatalysts is of great significance for realizing high-efficiency H2 production in the water splitting process. Generally, reducing the usage of precious metals and developing low-potential nucleophiles oxidation reaction to replace anodic oxygen evolution reaction (OER) are efficient strategies to promote H2 generation. Here, NiS-coated nickel-carbon nanofibers (NiS@Ni-CNFs) are prepared for low-content Pt deposition (Pt-NiS@Ni-CNFs) to attain the alkaline HER catalyst. Due to the reconfiguration of NiS phase and synergistic effect between Pt and nickel sulfides, the Pt-NiS@Ni-CNFs catalyst shows a high mass activity of 2.74-fold of benchmark Pt/C sample. In addition, the NiS@Ni-CNFs catalyst performs a superior urea oxidation reaction (UOR) activity with the potential of 1.366 V versus reversible hydrogen electrode (RHE) at 10 mA cm-2 , which demonstrates the great potential in the replacement of OER. Thus, a urea-assisted water splitting electrolyzer of Pt-NiS@Ni-CNFs (cathode)||NiS@Ni-CNFs (anode) is constructed to exhibit small voltages of 1.44 and 1.65 V to reach 10 and 100 mA cm-2 , which is much lower than its overall water splitting process, and presents a 6.5-fold hydrogen production rate enhancement. This work offers great opportunity to design new catalysts toward urea-assisted water splitting with significantly promoted hydrogen productivity and reduced energy consumption.
Collapse
Affiliation(s)
- Mengxiao Zhong
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Junyu Yang
- Division of Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Meijiao Xu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Siyu Ren
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaojie Chen
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Mingbin Gao
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
24
|
Wu TH, Liu YS, Hong CT, Hou BW. Binary and nanostructured NiMn perovskite fluorides as efficient electrocatalysts for urea oxidation reaction. J Colloid Interface Sci 2024; 653:1094-1102. [PMID: 37783009 DOI: 10.1016/j.jcis.2023.09.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Urea electrolysis holds tremendous promise to provide green and sustainable energy and environmental solutions, because it can simultaneously remedy urea-containing wastewater and provide energy-saving hydrogen. However, the development of this emerging technology remains challenging mainly due to a dearth of high-performance electrocatalysts for efficient urea oxidation reaction (UOR). Perovskite fluorides have the advantages of intrinsic 3D diffusion pathways, robust architecture, and tunable chemical composition, thus receiving increasing attention in many applications. In this work, the UOR performances of a series of ABF3 samples (A = K; B = Ni/Mn, Ni/Co, Co/Mn) with various compositions are investigated in a systematic fashion for the first time. Among the binary samples, KNMF41 (Ni/Mn atomic ratio = 4:1) is the optimal sample with reduced overpotential (reaching 100 mA cm-2 at 1.43 V), low Tafel slope (40 mV dec-1), enhanced reaction rate constant (6.3 × 105 cm3 mol-1 s-1), and high turnover frequency (TOF, 0.19 s-1 at 1.60 V) toward urea oxidation. By comparing with NiCo and CoMn samples, the binary NiMn design is confirmed to endow the perovskite fluoride with higher electrocatalytic activity, thanks to the directed adsorption of urea molecules on the adjacent NiMn active sites. This work presents a targeted synthetic strategy for obtaining efficient electrocatalysts.
Collapse
Affiliation(s)
- Tzu Ho Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.
| | - Yong Shan Liu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Chung Ting Hong
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Bo-Wei Hou
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| |
Collapse
|
25
|
Huang CJ, Xu HM, Shuai TY, Zhan QN, Zhang ZJ, Li GR. Modulation Strategies for the Preparation of High-Performance Catalysts for Urea Oxidation Reaction and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301130. [PMID: 37434036 DOI: 10.1002/smll.202301130] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/02/2023] [Indexed: 07/13/2023]
Abstract
Compared with the traditional electrolysis of water to produce hydrogen, urea-assisted electrolysis of water to produce hydrogen has significant advantages and has received extensive attention from researchers. Unfortunately, urea oxidation reaction (UOR) involves a complex six-electron transfer process leading to high overpotential, which forces researchers to develop high-performance UOR catalysts to drive the development of urea-assisted water splitting. Based on the UOR mechanism and extensive literature research, this review summarizes the strategies for preparing highly efficient UOR catalysts. First, the UOR mechanism is introduced and the characteristics of excellent UOR catalysts are pointed out. Aiming at this, the following modulation strategies are proposed to improve the catalytic performance based on summarizing various literature: 1) Accelerating the active phase formation to reduce initial potential; 2) Creating double active sites to trigger a new UOR mechanism; 3) Accelerating urea adsorption and promoting C─N bond cleavage to ensure the effective conduct of UOR; 4) Promoting the desorption of CO2 to improve stability and prevent catalyst poisoning; 5) Promoting electron transfer to overcome the inherent slow dynamics of UOR; 6) Increasing active sites or active surface area. Then, the application of UOR in electrochemical devices is summarized. Finally, the current deficiencies and future directions are discussed.
Collapse
Affiliation(s)
- Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
26
|
Zhao L, Cai Q, Mao B, Mao J, Dong H, Xiang Z, Zhu J, Paul R, Wang D, Long Y, Qu L, Yan R, Dai L, Hu C. A universal approach to dual-metal-atom catalytic sites confined in carbon dots for various target reactions. Proc Natl Acad Sci U S A 2023; 120:e2308828120. [PMID: 37871204 PMCID: PMC10622929 DOI: 10.1073/pnas.2308828120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
Here, a molecular-design and carbon dot-confinement coupling strategy through the pyrolysis of bimetallic complex of diethylenetriamine pentaacetic acid under low-temperature is proposed as a universal approach to dual-metal-atom sites in carbon dots (DMASs-CDs). CDs as the "carbon islands" could block the migration of DMASs across "islands" to achieve dynamic stability. More than twenty DMASs-CDs with specific compositions of DMASs (pairwise combinations among Fe, Co, Ni, Mn, Zn, Cu, and Mo) have been synthesized successfully. Thereafter, high intrinsic activity is observed for the probe reaction of urea oxidation on NiMn-CDs. In situ and ex situ spectroscopic characterization and first-principle calculations unveil that the synergistic effect in NiMn-DMASs could stretch the urea molecule and weaken the N-H bond, endowing NiMn-CDs with a low energy barrier for urea dehydrogenation. Moreover, DMASs-CDs for various target electrochemical reactions, including but not limited to urea oxidation, are realized by optimizing the specific DMAS combination in CDs.
Collapse
Affiliation(s)
- Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Qifeng Cai
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Laboratory of Theoretical and Computational Nanoscience, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Hui Dong
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing100029, China
| | - Rajib Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH44242
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yongde Long
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Liangti Qu
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Riqing Yan
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Liming Dai
- Australian Carbon Materials Centre, School of Chemical Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
27
|
Liu W, Xu W, Dong G, Fang M. Controlled Fabrication of Hierarchically Structured MnO 2@NiCo-LDH Nanoarrays for Efficient Electrocatalytic Urea Oxidization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2268. [PMID: 37570585 PMCID: PMC10421065 DOI: 10.3390/nano13152268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Urea, a prevalent component found in wastewater, shows great promise as a substrate for energy-efficient hydrogen production by electrolysis. However, the slow kinetics of the anodic urea oxidation reaction (UOR) significantly hamper the overall reaction rate. This study presents the design and controlled fabrication of hierarchically structured nanomaterials as potential catalysts for UOR. The prepared MnO2@NiCo-LDH hybrid catalyst demonstrates remarkable improvements in reaction kinetics, benefiting from synergistic enhancements in charge transfer and efficient mass transport facilitated by its unique hierarchical architecture. Notably, the catalyst exhibits an exceptionally low onset potential of 1.228 V and requires only 1.326 V to achieve an impressive current density of 100 mA cm-2, representing a state-of-the-art performance in UORs. These findings highlight the tremendous potential of this innovative material designing strategy to drive advancements in electrocatalytic processes.
Collapse
Affiliation(s)
- Wenjun Liu
- Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Centre for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (W.L.); (W.X.)
| | - Wenbo Xu
- Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Centre for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (W.L.); (W.X.)
| | - Guofa Dong
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Ming Fang
- Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Centre for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (W.L.); (W.X.)
| |
Collapse
|
28
|
Alamro FS, Hefnawy MA, Nafee SS, Al-Kadhi NS, Pashameah RA, Ahmed HA, Medany SS. Chitosan Supports Boosting NiCo 2O 4 for Catalyzed Urea Electrochemical Removal Application. Polymers (Basel) 2023; 15:3058. [PMID: 37514447 PMCID: PMC10384518 DOI: 10.3390/polym15143058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, wastewater containing high urea levels poses a significant risk to human health. Else, electrocatalytic methodologies have the potential to transform urea present in urea-rich wastewater into hydrogen, thereby contributing towards environmental conservation and facilitating the production of sustainable energy. The characterization of the NiCo2O4@chitosan catalyst was performed by various analytical techniques, including scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, the activity of electrodes toward urea removal was investigated by several electrochemical techniques. As a function of current density, the performance of the modified NiCo2O4@chitosan surface was employed to remove urea using electrochemical oxidation. Consequently, the current density measurement was 43 mA cm-2 in a solution of 1.0 M urea and 1.0 M KOH. Different kinetic characteristics were investigated, including charge transfer coefficient (α), Tafel slope (29 mV dec-1), diffusion coefficient (1.87 × 10-5 cm2 s-1), and surface coverage 4.29 × 10-9 mol cm-2. The electrode showed high stability whereas it lost 10.4% of its initial current after 5 h of urea oxidation.
Collapse
Affiliation(s)
- Fowzia S. Alamro
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud A. Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sherif S. Nafee
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nada S. Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Hoda A. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia
| | - Shymaa S. Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
29
|
Zhu Y, Liu C, Cui S, Lu Z, Ye J, Wen Y, Shi W, Huang X, Xue L, Bian J, Li Y, Xu Y, Zhang B. Multistep Dissolution of Lamellar Crystals Generates Superthin Amorphous Ni(OH) 2 Catalyst for UOR. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301549. [PMID: 37058392 DOI: 10.1002/adma.202301549] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Indexed: 06/16/2023]
Abstract
Urea oxidation reaction (UOR) is an ideal replacement of the conventional anodic oxygen evolution reaction (OER) for efficient hydrogen production due to the favorable thermodynamics. However, the UOR activity is severely limited by the high oxidation potential of Ni-based catalysts to form Ni3+ , which is considered as the active site for UOR. Herein, by using in situ cryoTEM, cryo-electron tomography, and in situ Raman, combined with theoretical calculations, a multistep dissolution process of nickel molybdate hydrate is reported, whereby NiMoO4 ·xH2 O nanosheets exfoliate from the bulk NiMoO4 ·H2 O nanorods due to the dissolution of Mo species and crystalline water, and further dissolution results in superthin and amorphous nickel (II) hydroxide (ANH) flocculus catalyst. Owing to the superthin and amorphous structure, the ANH catalyst can be oxidized to NiOOH at a much lower potential than conventional Ni(OH)2 and finally exhibits more than an order of magnitude higher current density (640 mA cm-2 ), 30 times higher mass activity, 27 times higher TOF than those of Ni(OH)2 catalyst. The multistep dissolution mechanism provides an effective methodology for the preparation of highly active amorphous catalysts.
Collapse
Affiliation(s)
- Yajie Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Cheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shiwen Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Zhuorong Lu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jinyu Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yunzhou Wen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wenjuan Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaoxiong Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Liangyao Xue
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Juanjuan Bian
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
30
|
Wang Y, Zhang M, Liu Y, Zheng Z, Liu B, Chen M, Guan G, Yan K. Recent Advances on Transition-Metal-Based Layered Double Hydroxides Nanosheets for Electrocatalytic Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207519. [PMID: 36866927 PMCID: PMC10161082 DOI: 10.1002/advs.202207519] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Transition-metal-based layered double hydroxides (TM-LDHs) nanosheets are promising electrocatalysts in the renewable electrochemical energy conversion system, which are regarded as alternatives to noble metal-based materials. In this review, recent advances on effective and facile strategies to rationally design TM-LDHs nanosheets as electrocatalysts, such as increasing the number of active sties, improving the utilization of active sites (atomic-scale catalysts), modulating the electron configurations, and controlling the lattice facets, are summarized and compared. Then, the utilization of these fabricated TM-LDHs nanosheets for oxygen evolution reaction, hydrogen evolution reaction, urea oxidation reaction, nitrogen reduction reaction, small molecule oxidations, and biomass derivatives upgrading is articulated through systematically discussing the corresponding fundamental design principles and reaction mechanism. Finally, the existing challenges in increasing the density of catalytically active sites and future prospects of TM-LDHs nanosheets-based electrocatalysts in each application are also commented.
Collapse
Affiliation(s)
- Yuchen Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Man Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Yaoyu Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Zhikeng Zheng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Biying Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Meng Chen
- Energy Conversion Engineering LaboratoryInstitute of Regional Innovation (IRI)Hirosaki University3‐BunkyochoHirosaki036‐8561Japan
| | - Guoqing Guan
- Energy Conversion Engineering LaboratoryInstitute of Regional Innovation (IRI)Hirosaki University3‐BunkyochoHirosaki036‐8561Japan
| | - Kai Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
31
|
Mangrio S, Tahira A, Chang AS, Mahar IA, Markhand M, Shah AA, Medany SS, Nafady A, Dawi EA, Saleem LMA, Mustafa EM, Vigolo B, Ibupoto ZH. Advanced Urea Precursors Driven NiCo 2O 4 Nanostructures Based Non-Enzymatic Urea Sensor for Milk and Urine Real Sample Applications. BIOSENSORS 2023; 13:444. [PMID: 37185519 PMCID: PMC10135918 DOI: 10.3390/bios13040444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
The electrochemical performance of NiCo2O4 with urea precursors was evaluated in order to develop a non-enzymatic urea sensor. In this study, NiCo2O4 nanostructures were synthesized hydrothermally at different concentrations of urea and characterized using scanning electron microscopy and X-ray diffraction. Nanostructures of NiCo2O4 exhibit a nanorod-like morphology and a cubic phase crystal structure. Urea can be detected with high sensitivity through NiCo2O4 nanostructures driven by urea precursors under alkaline conditions. A low limit of detection of 0.05 and an analytical range of 0.1 mM to 10 mM urea are provided. The concentration of 006 mM was determined by cyclic voltammetry. Chronoamperometry was used to determine the linear range in the range of 0.1 mM to 8 mM. Several analytical parameters were assessed, including selectivity, stability, and repeatability. NiCo2O4 nanostructures can also be used to detect urea in various biological samples in a practical manner.
Collapse
Affiliation(s)
- Sanjha Mangrio
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan (A.S.C.)
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University, Khairpur Mirs 66111, Pakistan
| | - Abdul Sattar Chang
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan (A.S.C.)
| | - Ihsan Ali Mahar
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan (A.S.C.)
| | - Mehnaz Markhand
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan (A.S.C.)
| | - Aqeel Ahmed Shah
- Department of metalluargy and Materials, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Shymaa S. Medany
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Elmuez A. Dawi
- Nonlinear Dynamics Research Centre (NDRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Lama M. A. Saleem
- Biomolecular Science, Earth and Life Science, Amsterdam University, 1081 HV Amsterdam, The Netherlands
| | - E. M. Mustafa
- Department of Sciences and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Brigitte Vigolo
- The Institut Jean Lamour (IJL), Université de Lorraine, CNRS, F-54000 Nancy, France
| | - Zafar Hussain Ibupoto
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan (A.S.C.)
| |
Collapse
|
32
|
Xu X, Dong Y, Wang X, Liu F, Ren J, Wang H, Wang R. High-Density NiCu Bimetallic Phosphide Nanosheet Clusters Constructed by Cu-Induced Effect Boost Total Urea Hydrolysis for Hydrogen Production. Inorg Chem 2023; 62:4648-4661. [PMID: 36893334 DOI: 10.1021/acs.inorgchem.3c00082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The development of urea electrolysis technologies toward energy-saving hydrogen production can alleviate the environmental issues caused by urea-rich wastewater. In the current practices, the development of high-performance electrocatalysts in urea electrolysis remains critical. In this work, the NiCu-P/NF catalyst is prepared by anchoring Ni/Cu bimetallic phosphide nanosheets onto Ni foam (NF). In the experiments, the micron-sized elemental Cu polyhedron is first anchored on the surface of the NF substrate to provide more space for the growth of bimetallic nanosheets. Meanwhile, the Cu element adjusted the electron distribution within the composite and formed Ni/P orbital vacancies, which in turn accelerated the kinetic process. As a result, the optimal NiCu-P/NF sample exhibits excellent catalytic activity and cycling stability in a hybrid electrolysis system for the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Further, the alkaline urea-containing electrolyzer is assembled with NiCu-P/NF as two electrodes reached a current density of 50 mA cm-2 with a low driving potential of 1.422 V, which outperforms the typical commercial noble metal electrolyzer (RuO2||Pt/C). Those findings suggest the feasibility of the substrate regulation strategy to increase the growth density of active species in preparation of an efficient bifunctional electrocatalyst for cracking the urea-containing wastewater.
Collapse
Affiliation(s)
- Xiao Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yucheng Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuyun Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fangfang Liu
- Weifang University of Science and Technology, Shouguang, Weifang 262700, China
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, Johannesburg 2092, South Africa
| | - Hui Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rongfang Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
33
|
Naz I, Tahira A, Shah AA, Bhatti MA, Mahar IA, Markhand MP, Mastoi GM, Nafady A, Medany SS, Dawi EA, Saleem LM, Vigolo B, Ibupoto ZH. Green Synthesis of NiO Nanoflakes Using Bitter Gourd Peel, and Their Electrochemical Urea Sensing Application. MICROMACHINES 2023; 14:677. [PMID: 36985084 PMCID: PMC10053069 DOI: 10.3390/mi14030677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
To determine urea accurately in clinical samples, food samples, dairy products, and agricultural samples, a new analytical method is required, and non-enzymatic methods are preferred due to their low cost and ease of use. In this study, bitter gourd peel biomass waste is utilized to modify and structurally transform nickel oxide (NiO) nanostructures during the low-temperature aqueous chemical growth method. As a result of the high concentration of phytochemicals, the surface was highly sensitive to urea oxidation under alkaline conditions of 0.1 M NaOH. We investigated the structure and shape of NiO nanostructures using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). In spite of their flake-like morphology and excellent crystal quality, NiO nanostructures exhibited cubic phases. An investigation of the effects of bitter gourd juice demonstrated that a large volume of juice produced thin flakes measuring 100 to 200 nanometers in diameter. We are able to detect urea concentrations between 1-9 mM with a detection limit of 0.02 mM using our urea sensor. Additionally, the stability, reproducibility, repeatability, and selectivity of the sensor were examined. A variety of real samples, including milk, blood, urine, wheat flour, and curd, were used to test the non-enzymatic urea sensors. These real samples demonstrated the potential of the electrode device for measuring urea in a routine manner. It is noteworthy that bitter gourd contains phytochemicals that are capable of altering surfaces and activating catalytic reactions. In this way, new materials can be developed for a wide range of applications, including biomedicine, energy production, and environmental protection.
Collapse
Affiliation(s)
- Irum Naz
- Dr. M.A Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan; (I.N.); (A.T.); (G.M.M.)
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan; (I.N.); (A.T.); (G.M.M.)
- Institute of Chemistry, Shah Abdul Latif University, Khairpur Mirs 66111, Pakistan;
| | - Aqeel Ahmed Shah
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan;
| | - Muhammad Ali Bhatti
- Centre for Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Ihsan Ali Mahar
- Dr. M.A Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan; (I.N.); (A.T.); (G.M.M.)
| | | | - Ghulam Murtaza Mastoi
- Dr. M.A Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan; (I.N.); (A.T.); (G.M.M.)
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Shymaa S. Medany
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| | - Elmuez A. Dawi
- Nonlinear Dynamics Research Centre (NDRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Lama M. Saleem
- Biomolecular Science, Earth and Life Science, Amsterdam University, De Boelelaan 1 105, 1081 HV Amsterdam, The Netherlands;
| | - Brigitte Vigolo
- Institut Jean Lamour, CNRS-Université de Lorraine, F-54000 Nancy, France;
| | - Zafar Hussain Ibupoto
- Dr. M.A Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan; (I.N.); (A.T.); (G.M.M.)
| |
Collapse
|
34
|
Yang M, Liu Y, Ge W, Liu Z. Enhanced electrocatalytic activity of sulfur and tungsten co-doped nickel hydroxide nanosheets for urea oxidation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
35
|
Liu X, Zhang J, Jin L, Chen C, He J, Xu Q, Lu J. Divalent Oxidation State Ni as an Active Intermediate in Prussian Blue Analogues for Electrocatalytic Urea Oxidation. Inorg Chem 2023; 62:3637-3645. [PMID: 36792148 DOI: 10.1021/acs.inorgchem.2c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Urea degradation is one of the most crucial links in the natural nitrogen cycle. Exploring the real active species in the urea electro-oxidation process is of great significance for understanding the urea electro-oxidation mechanism and designing catalysts. A highly active and stable Prussian blue analogue catalyst (PBA@NiFe/NF) loaded on nickel foam was synthesized for electro-oxidation of urea. In situ Raman spectra revealed that Ni in PBA@NiFe/NF was able to maintain a stable divalent nickel (Ni(II)) state for up to 3.5 h during the initial urea oxidation process, which is rarely reported in previous research studies. In addition, with the participation of iron, the Ni-Fe bimetallic center significantly improves the electro-oxidation of urea. Our work provides a new idea for prolonging the Ni(II) activity in electrocatalytic oxidation of urea.
Collapse
Affiliation(s)
- Xiaofang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianhua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chunchao Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
36
|
Liu H, Wen D, Zhu B. In-situ growth of hierarchical nickel sulfide composites on nickel foam for enhanced urea oxidation reaction and urine electrolysis. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Yan X, Xiang L, Zhang WD, Xu H, Yao Y, Liu J, Gu ZG. Metal organic framework-assisted in-situ synthesis of β-NiMnOOH nanosheets with abundant NiOOH active sites for efficient electro-oxidation of urea. J Colloid Interface Sci 2023; 629:370-378. [PMID: 36162394 DOI: 10.1016/j.jcis.2022.08.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
NiOOH has been considered as the active center for urea oxidation reaction (UOR), but it remains challenging to synthesize high-performance NiOOH-based catalysts. Herein, we realize the synthesis of a high-performance NiOOH-based catalyst through in-situ transformation from the NiMn-based metal-organic framework to NiMnOOH. X-ray photoelectron spectroscopy characterization shows that the Ni3+/Ni2+ ratio in the NiMnOOH is 3.9 times as big as that in the Ni(OH)2, and in-situ Raman characterization further consolidates the presence of the NiOOH species in the NiMnOOH and as well unveils the faciliated Ni2+/Ni3+ redox reaction. The abundant NiOOH species, the markedly facilitated Ni2+/Ni3+ redox reaction and the Ni-Mn synergy contribute to the high intrinsic activity of the NiMnOOH towards UOR. The NiMnOOH exhibits an impressively low onset potential of 1.305 V vs reversible hydrogen electrode (RHE) and requires only a small potential of 1.34 V vs RHE to deliver a current density of 100 mA cm-2 in 1.0 M KOH + 0.33 M urea. In addition, the NiMnOOH catalyst possesses good long-term working stability.
Collapse
Affiliation(s)
- Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Li Xiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hanwen Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yang Yao
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
38
|
Hopsort G, Carmo DPD, Latapie L, Loubière K, Serrano KG, Tzedakis T. Progress toward a better understanding of the urea oxidation by electromediation of Ni(II)/Ni(III) system in alkaline media. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Coupling Dual-phased nickel selenides with N-doped carbon enables efficient urea electrocatalytic oxidation. J Colloid Interface Sci 2023; 629:33-43. [DOI: 10.1016/j.jcis.2022.08.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
|
40
|
Xu X, Ji S, Wang H, Wang X, Linkov V, Wang P, Pan L, Wang G, Wang R. Cu-induced NiCu-P and NiCu-Pi with multilayered nanostructures as highly efficient electrodes for hydrogen production via urea electrolysis. NANOSCALE 2022; 14:16490-16501. [PMID: 36278435 DOI: 10.1039/d2nr04409a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since urea is commonly present in domestic sewage and industrial wastewater, its use in hydrogen production by electrolysis can simultaneously help in water decontamination. To achieve this goal, the development of highly active and inexpensive urea electrolysis catalysts is necessary. This study deals with the preparation of multilayered nickel and copper phosphides/phosphates (NiCu-P/NF and NiCu-Pi/NF) supported on Ni foam (NF) and their application as new electrocatalyst types for the electrolysis of urea-containing wastewaters. In these materials, Cu atoms induce the formation of multilayer nanostructures and modulate electron distribution, allowing for the exposure of additional active sites and acceleration of the process kinetics. NiCu-P/NF is used as a cathode and NiCu-Pi/NF as an anode in an electrolysis cell and exhibits significant catalytic activity and stability in the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER). The NiCu-Pi/NF||NiCu-P/NF electrolysis cell, operating with an alkaline urea-containing aqueous electrolyte, achieves a current density of 10 mA cm- at a potential of 1.41 V, which is less than required by the RuO2||Pt/C cell utilizing commercial noble metal-based electrodes. The study provides a novel strategy for designing efficient catalysts to produce hydrogen by urea electrolysis.
Collapse
Affiliation(s)
- Xiao Xu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Shan Ji
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xuyun Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Vladimir Linkov
- South African Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town, 7535, South Africa
| | - Peng Wang
- Shandong Hydrogen Energy Co., Ltd, Weifang, 261000, China
| | - Lei Pan
- Shandong Hydrogen Energy Co., Ltd, Weifang, 261000, China
| | - Guoqiang Wang
- Shandong Hydrogen Energy Co., Ltd, Weifang, 261000, China
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
41
|
Bhaduri SN, Ghosh D, Chatterjee S, Biswas R, Banerjee R, Bhaumik A, Biswas P. Ni(II)-Incorporated Porphyrin-Based Conjugated Porous Polymer Derived from 2,6-Diformyl-4-methylphenol as a Catalyst for the Urea Oxidation Reaction. Inorg Chem 2022; 61:18390-18399. [DOI: 10.1021/acs.inorgchem.2c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah711 103, West Bengal, India
| | - Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah711 103, West Bengal, India
| | - Sauvik Chatterjee
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata700 032, West Bengal, India
| | - Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah711 103, West Bengal, India
| | - Rumeli Banerjee
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah711 103, West Bengal, India
| | - Asim Bhaumik
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata700 032, West Bengal, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah711 103, West Bengal, India
| |
Collapse
|
42
|
Huang X, He R, Wang S, Yang Y, Feng L. High-Valent Ni Species Induced by Inactive MoO 2 for Efficient Urea Oxidation Reaction. Inorg Chem 2022; 61:18318-18324. [DOI: 10.1021/acs.inorgchem.2c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xingyu Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| | - Runze He
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou325035, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou325035, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| |
Collapse
|
43
|
Rebiai L, Muller-Bouvet D, Benyahia R, Torralba E, Viveros ML, Rocher V, Azimi S, Cachet-Vivier C, Bastide S. Photoelectrocatalytic conversion of urea under solar illumination using Ni decorated Ti-Fe2O3 electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Unraveling the formation of optimum point in NiCo-based electrocatalysts for urea oxidation reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Liao Q, Liu X, Deng K, Liu P, Lv X, Tian W, Ji J. Plasma-Induced Surface Reconstruction of NiFe/Co 3O 4 Nanoarrays for High-Current and Ultrastable Oxygen Evolution and the Urea Oxidation Reaction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingdian Liao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xuesong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kuan Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Peng Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, P. R. China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
46
|
Systematic development of bimetallic MOF and its phosphide derivative as an efficient multifunctional electrocatalyst for urea-assisted water splitting in alkaline medium. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Carboxyferrocene modulated Ni/Co bimetallic metal-organic framework for highly efficient electrocatalysis of urea oxidation reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Anuratha KS, Rinawati M, Wu TH, Yeh MH, Lin JY. Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172970. [PMID: 36080007 PMCID: PMC9457967 DOI: 10.3390/nano12172970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 05/27/2023]
Abstract
Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the "hydrogen energy economy" involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated.
Collapse
Affiliation(s)
| | - Mia Rinawati
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Tzu-Ho Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Min-Hsin Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jeng-Yu Lin
- Department of Chemical and Materials Engineering, Tunghai University, Taichung City 40704, Taiwan
| |
Collapse
|
49
|
El-Said WA, Alsulmi A, Alshitari W. Hydrothermal synthesis of Mn3O4 nanorods modified indium tin oxide electrode as an efficient nanocatalyst towards direct urea electrooxidation. PLoS One 2022; 17:e0272586. [PMID: 35925927 PMCID: PMC9352088 DOI: 10.1371/journal.pone.0272586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
Control fabrication of metal-oxide nanocatalysts for electrochemical reactions has received considerable research attention. Here, manganese oxide (Mn3O4) nanorods modified indium tin oxide (ITO) electrodes were prepared based on the in-situ one-step hydrothermal methods. The nanorods were well characterized using field emission scanning electron microscopy, Fourier transform infrared, and X-ray diffraction spectroscopy. The results showed the formation of pure crystalline Mn3O4 nanorods with a length of approximately 1.4 μm and a thickness of approximately 100 ± 30 nm. The Mn3O4 nanorod-modified ITO electrodes were used for accelerating urea electrochemical oxidation at room temperature using cyclic and square wave voltammetry techniques. The results indicated that the modified electrode demonstrated excellent electrocatalytic performance toward urea electrooxidation in an alkaline medium over concentrations ranging from 0.2 to 4 mol/L. The modified electrode showed high durability, attaining more than 88% of its baseline performance after 150 cycles; furthermore, the chronoamperometry technique demonstrated high stability. Thus, the Mn3O4 nanorod-modified ITO electrode is a promising anode for direct urea fuel cell applications.
Collapse
Affiliation(s)
- Waleed A. El-Said
- Department of Chemistry, University of Jeddah, College of Science, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
- * E-mail:
| | - Ahmad Alsulmi
- Department of Chemistry, University of Jeddah, College of Science, Jeddah, Saudi Arabia
| | - Wael Alshitari
- Department of Chemistry, University of Jeddah, College of Science, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Ge J, Liu Z, Guan M, Kuang J, Xiao Y, Yang Y, Tsang CH, Lu X, Yang C. Investigation of the electrocatalytic mechanisms of urea oxidation reaction on the surface of transition metal oxides. J Colloid Interface Sci 2022; 620:442-453. [DOI: 10.1016/j.jcis.2022.03.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|