1
|
Li J, Zheng Y, Yu Z, Kankala RK, Lin Q, Shi J, Chen C, Luo K, Chen A, Zhong Q. Surface-modified titanium and titanium-based alloys for improved osteogenesis: A critical review. Heliyon 2024; 10:e23779. [PMID: 38223705 PMCID: PMC10784177 DOI: 10.1016/j.heliyon.2023.e23779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
As implantable materials, titanium, and its alloys have garnered enormous interest from researchers for dental and orthopedic procedures. Despite their success in wide clinical applications, titanium, and its alloys fail to stimulate osteogenesis, resulting in poor bonding strength with surrounding bone tissue. Optimizing the surface topology and altered compositions of titanium and titanium-based alloys substantially promotes peri-implant bone regeneration. This review summarizes the utilization and importance of various osteogenesis components loaded onto titanium and its alloys. Further, different surface-modification methods and the release efficacy of loaded substances are emphasized. Finally, we summarize the article with prospects. We believe that further investigation studies must focus on identifying novel loading components, exploring various innovative, optimized surface-modification methods, and developing a sustained-release system on implant surfaces to improve peri-implant bone formation.
Collapse
Affiliation(s)
- Jingling Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yaxin Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Zihe Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Qianying Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jingbo Shi
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Chao Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Quan Zhong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| |
Collapse
|
2
|
Zhang Y, Wang X, Li Y, Liang J, Jiang P, Huang Q, Yang Y, Duan H, Dong X, Rui G, Lin C. Cell osteogenic bioactivity mediated precisely by varying scaled micro-pits on ordered micro/nano hierarchical structures of titanium. Regen Biomater 2022; 9:rbac046. [PMID: 35855110 PMCID: PMC9290875 DOI: 10.1093/rb/rbac046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Hierarchical surface structures with micro–nano scale play a crucial role in regulation of cell proliferation and osteogenic differentiation. It has been proven that cells are extremely sensitive to the nanoscaled structure and show multifarious phenotypes. Though a vital function of microstructure on osseointegration has been confirmed, the cell performances response to different microscaled structure is needed to be further dissected and in depth understood. In this work, the ordered micro–nano hierarchical structures with varying micro-scaled pits were precisely fabricated on titanium successfully by the combination of electrochemical, chemical etching and anodization as well. In vitro systematical assessments indicated that the micro–nano multilevel structures on titanium exhibited excellent cells adhesion and spreading ability, as well as steerable proliferation and osteogenic differentiation behaviors. It is shown that smaller micro-pits and lower roughness of the hierarchical structures enabled faster cell propagation. Despite cell growth was delayed on micro–nano titanium with relatively larger cell-match-size micro-pits and roughness, osteogenic-specific genes were significantly elevated. Furthermore, the alkaline phosphatase activity, collagen secretion and extracellular matrix mineralization of MC3T3-E1 on multi-scaled titanium were suppressed by a large margin after adding IWP-2 (an inhibitor of Wnt/β-catenin signal pathway), indicating this pathway played a crucial part in cell osteogenic differentiation modulated by micro–nano structures.
Collapse
Affiliation(s)
- Yanmei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Xiankuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Yaxian Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Jianhe Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Pinliang Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University , Xiamen 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University , Xiamen 361005, China
| | - Hongping Duan
- Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing Medical Implant Engineering Research Center, Beijing Naton Technology Group Co. Ltd , Beijing, China
| | - Xiang Dong
- Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing Medical Implant Engineering Research Center, Beijing Naton Technology Group Co. Ltd , Beijing, China
| | - Gang Rui
- The First Affiliated Hospital of Xiamen University Department of Orthopedics Surgery, , Xiamen, Fujian 361003, China
| | - Changjian Lin
- and College of Chemistry and Chemical Engineering, Xiamen University State Key Laboratory of Physical Chemistry of Solid Surfaces, , Xiamen 361005, China
- Tan Kah Kee Innovation Laboratory, Xiamen , Fujian, 361005 China
| |
Collapse
|
3
|
Fabrication of an ordered micro-/nanotextured titanium surface to improve osseointegration. Colloids Surf B Biointerfaces 2022; 214:112446. [PMID: 35305320 DOI: 10.1016/j.colsurfb.2022.112446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Ordered microscale titanium (Ti) surface topography with homogeneous cell-sized microholes (20 µm in diameter) was fabricated using simple electrochemical etching. The as-prepared surface imposed with uniform titania nanotubes (TNTs, 70 nm in diameter) through electrochemical anodization showed no considerable change in the initial microscale morphology. Bone marrow mesenchymal stem cells (BMSCs) were used in evaluating the bioactivity. Compared with polished Ti and unordered microtextured Ti, the ordered microtextured Ti formed by electrochemical etching remarkably promoted cell attachment, alkaline phosphatase activity, collagen secretion, extracellular matrix mineralization, and osteogenesis-related gene expression but considerably inhibited cell proliferation. After TNTs were introduced to the ordered microtextured Ti, cell attachment and osteogenic differentiation indexes were further enhanced, and cell proliferation recovered over time. The ordered micro-/nanotextured Ti surface was more conducive to the cell attachment, proliferation, and osteogenesis of BMSCs than polished Ti with and without TNTs, unordered microtextured Ti with and without TNTs, and unitary ordered microtextured Ti. Thus, the novel ordered bio-inspired micro-/nanotextured structure composed of cell-sized microholes and TNTs on the Ti surface possessed a favorable interfacial environment that improved osseointegration, potentially optimizing Ti implant surface topography.
Collapse
|
4
|
Constant E, King O, Weems AC. Bioderived 4D Printable Terpene Photopolymers from Limonene and β-Myrcene. Biomacromolecules 2022; 23:2342-2352. [PMID: 35608477 DOI: 10.1021/acs.biomac.2c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Green manufacturing and reducing our cultural dependency on petrochemicals have been topics of growing interest in the past decade, particularly for three-dimensional (3D) printable photopolymers where often toxic solvents and reagents have been required. Here, a simple solvent-free, free-radical polymerization is utilized to homo- and copolymerize limonene and β-myrcene monomers to produce oligomeric photopolymers (Mn < 11 kDa) displaying Newtonian, low viscosities (∼10 Pa × s) suitable for thiol-ene photo-cross-linking, yielding photoset materials in a digital light processing (DLP)-type 3D printer. The resulting photosets display tunable thermomechanical properties (poly(limonene) displays elastic moduli exceeding 1 GPa) compared with previous works focusing on monomeric terpenes as well as four-dimensional (4D) shape memory behavior. The utility of such photopolymers for biomedical applications is briefly considered on the premise of the hydrophilic nature (measured by contact angle) as well as their cytocompatibility upon seeding films with macrophages. These terpene-derived, green 4D photopolymers are shown to have promising physical behaviors suitable for an array of manufacturing and 3D printing applications.
Collapse
Affiliation(s)
- Eric Constant
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Olivia King
- Molecular and Chemical Biology, Ohio University, Athens, Ohio 45701, United States
| | - Andrew C Weems
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States.,Molecular and Chemical Biology, Ohio University, Athens, Ohio 45701, United States.,Department of Mechanical Engineering, Translational Biosciences, Orthopedic and Musculoskeletal Neurological Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
5
|
Workpiece Dependency Exploration & Probabilistic Nonparametric Modelling of Vibration-Assisted Hybrid Micro-EDM Process. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06616-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Huang R, Hao Y, Pan Y, Pan C, Tang X, Huang L, Du C, Yue R, Cui D. Using a two-step method of surface mechanical attrition treatment and calcium ion implantation to promote the osteogenic activity of mesenchymal stem cells as well as biomineralization on a β-titanium surface. RSC Adv 2022; 12:20037-20053. [PMID: 35919615 PMCID: PMC9277716 DOI: 10.1039/d2ra00032f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Combination of the SMAT technique and Ca-ion implantation produced a β-titanium alloy with a bioactive surface layer, which was proved to effectively promote the osteogenic activity of MSCs and Ca–P mineral deposition in vitro.
Collapse
Affiliation(s)
- Run Huang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
- Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Yufei Hao
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yusong Pan
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Chengling Pan
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
| | - Xiaolong Tang
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
- Medical School, Anhui University of Science and Technology, Huainan 232001, China
| | - Lei Huang
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Wuhan 430060, China
| | - Chao Du
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Rui Yue
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Diansheng Cui
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Wuhan 430060, China
| |
Collapse
|
7
|
Dai X, Bai Y, Heng BC, Li Y, Tang Z, Lin C, Liu O, He Y, Zhang X, Deng X. Biomimetic hierarchical implant surface promotes early osseointegration in osteoporosis rats by suppressing macrophage activation and osteoclastogenes. J Mater Chem B 2022; 10:1875-1885. [PMID: 35234787 DOI: 10.1039/d1tb02871e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Successful implant-bone integration remains a formidable challenge in osteoporosis patients, because of excessive inflammatory reaction and osteoclastogenesis around the peri-implant bone tissue. This study designed biomimetic micro/sub-micro hierarchical surfaces on...
Collapse
Affiliation(s)
- Xiaohan Dai
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Yiping Li
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
| | - Zhangui Tang
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
| | - Changjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ousheng Liu
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| |
Collapse
|
8
|
Alipal J, Lee T, Koshy P, Abdullah H, Idris M. Evolution of anodised titanium for implant applications. Heliyon 2021; 7:e07408. [PMID: 34296002 PMCID: PMC8281482 DOI: 10.1016/j.heliyon.2021.e07408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022] Open
Abstract
Anodised titanium has a long history as a coating structure for implants due to its bioactive and ossified surface, which promotes rapid bone integration. In response to the growing literature on anodised titanium, this article is the first to revisit the evolution of anodised titanium as an implant coating. The review reports the process and mechanisms for the engineering of distinctive anodised titanium structures, the significant factors influencing the mechanisms of its formation, bioactivity, as well as recent pre- and post-surface treatments proposed to improve the performance of anodised titanium. The review then broadens the discussion to include future functional trends of anodised titanium, ranging from the provision of higher surface energy interactions in the design of biocomposite coatings (template stencil interface for mechanical interlock) to techniques for measuring the bone-to-implant contact (BIC), each with their own challenges. Overall, this paper provides up-to-date information on the impacts of the structure and function of anodised titanium as an implant coating in vitro and in/ex vivo tests, as well as the four key future challenges that are important for its clinical translations, namely (i) techniques to enhance the mechanical stability and (ii) testing techniques to measure the mechanical stability of anodised titanium, (iii) real-time/in-situ detection methods for surface reactions, and (iv) cost-effectiveness for anodised titanium and its safety as a bone implant coating.
Collapse
Affiliation(s)
- J. Alipal
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, 84600 Muar, Johor, Malaysia
| | - T.C. Lee
- Department of Production and Operation Management, Faculty of Technology Management and Business, UTHM Parit Raja 86400, Batu Pahat, Johor, Malaysia
| | - P. Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - H.Z. Abdullah
- Department of Manufacturing Engineering, Faculty of Mechanical and Manufacturing Engineering, UTHM Parit Raja 86400, Batu Pahat, Johor, Malaysia
| | - M.I. Idris
- Department of Manufacturing Engineering, Faculty of Mechanical and Manufacturing Engineering, UTHM Parit Raja 86400, Batu Pahat, Johor, Malaysia
| |
Collapse
|
9
|
Wang F, Cong H, Xing J, Wang S, Shen Y, Yu B. Novel antifouling polymer with self-cleaning efficiency as surface coating for protein analysis by electrophoresis. Talanta 2020; 221:121493. [PMID: 33076098 DOI: 10.1016/j.talanta.2020.121493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
The non-specific adsorption of protein has caused many problems in the application of materials. In this paper, a tri-block copolymer PEO-PNIPAAm-PSPMAP with double effects were obtained via atom transfer radical copolymerization (ATRP). The double-effect copolymer is covalently bonded to the hydrophobic material through a photosensitizer to achieve surface modification and applied to analytical chemistry. Sufficient hydratable groups (for instance, ether bonds, amide groups, and sulfonic acid groups) in the copolymer provides a basis for the anti-protein adsorption. At the same time, the interaction of the hydrophilic group and isopropyl group with temperature changes provides the possibility of elastic self-cleaning of the material, which is instrumental in extending the circulate lifetime of materials. Therefore, it is an environmentally friendly coating material. Besides, the effective antifouling performance and elastic self-cleaning function of the coating have been confirmed by the dynamic adsorption experiment of a fluorescent protein. The coating is used in capillary electrophoresis (CE), and its excellent protein separation spectrum verifies the practicality of the coating.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibres and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Jie Xing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Centre for Bio Nanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibres and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
10
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
11
|
Zhang X, Wan Y, Ren B, Wang H, Yu M, Liu A, Liu Z. Preparation of Superhydrophobic Surface on Titanium Alloy via Micro-milling, Anodic Oxidation and Fluorination. MICROMACHINES 2020; 11:E316. [PMID: 32192180 PMCID: PMC7143463 DOI: 10.3390/mi11030316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/13/2022]
Abstract
The superhydrophobic surface has a great advantage of self-cleaning, inhibiting bacterial adhesion, and enhancing anticoagulant properties in the field of biomedical materials. In this paper, a superhydrophobic surface was successfully prepared on titanium alloy via high-speed micro-milling, anodic oxidation and fluoroalkylsilane modification. The surface morphology was investigated by scanning electron microscope and a laser scanning microscope. The surface wettability was investigated through the sessile-drop method. Firstly, regular microgrooves were constructed by micro-milling. Then, nanotube arrays were fabricated by anodic oxidation. Afterwards, fluoroalkylsilane was used to self-assemble a monolayer on the surface with a composite micro/nanostructure. Compared to polished titanium samples, the modified samples exhibited superhydrophobic properties with the water contact angle (CA) of 153.7° and the contact angle hysteresis of 2.1°. The proposed method will provide a new idea for the construction of superhydrophobic titanium surgical instruments and implants in the future.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (X.Z.)
- National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yi Wan
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (X.Z.)
- National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Bing Ren
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (X.Z.)
- National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Hongwei Wang
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (X.Z.)
- National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Mingzhi Yu
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (X.Z.)
- National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Anqi Liu
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (X.Z.)
- National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhanqiang Liu
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (X.Z.)
- National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
12
|
Hu J, Zhang Y, Fan L, Yang Y, Hu R, Huang Q, Rui G, Lin C. Optimized Cytocompatibility and Antimicrobial Activity of Octacalcium Phosphate/ε-Polylysine Composite Coating Electrochemically Codeposited on Medical Titanium. ACS APPLIED BIO MATERIALS 2019; 3:335-345. [DOI: 10.1021/acsabm.9b00844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiejie Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanmei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Beijing Medical Implant Engineering Research Center, Naton Technology Group Co. Ltd, Beijing 100082, China
| | - Lili Fan
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Yun Yang
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiaoling Huang
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Gang Rui
- Department of Orthopedics Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Changjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Beijing Medical Implant Engineering Research Center, Naton Technology Group Co. Ltd, Beijing 100082, China
| |
Collapse
|
13
|
Xie C. Bio‐inspired nanofunctionalisation of biomaterial surfaces: a review. BIOSURFACE AND BIOTRIBOLOGY 2019. [DOI: 10.1049/bsbt.2019.0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Chaoming Xie
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031People's Republic of China
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduSichuan610031People's Republic of China
| |
Collapse
|
14
|
Wang G, Wan Y, Liu Z. Construction of Complex Structures Containing Micro-Pits and Nano-Pits on the Surface of Titanium for Cytocompatibility Improvement. MATERIALS 2019; 12:ma12172820. [PMID: 31480689 PMCID: PMC6747959 DOI: 10.3390/ma12172820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022]
Abstract
The surface topography of medical implants plays an important role in the regulation of cellular responses. Microstructure and nanostructure surfaces have been proved to enhance cell spreading and proliferation with respect to smooth surfaces. In this study, we fabricated a new structure including micro-pits and nano-pits on the surface of titanium via sandblasting, acid etching and chemical oxidation to investigate the influence of composite structures on cell behavior. Meanwhile, the surface properties and corrosion resistance of treated samples were also tested. The micro/nanostructured titanium surface comprising of micro-pits and nano-pits presented enhanced roughness and hydrophilicity. In addition, the corrosion resistance of the titanium substrate with micro-pits and nano-pits was significantly improved compared to that of polished titanium. More importantly, the micro/nanostructured titanium surface proved a good interfacial environment to promote osteoblast functions such as cell adhesion and spreading. Taken together, these results showed that the construction of micro/nanostructure on the titanium surface is an effective modification strategy to improve osteoblast cell responses.
Collapse
Affiliation(s)
- Guisen Wang
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipment and Control, Tsinghua University, Beijing 100084, China
| | - Yi Wan
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Zhanqiang Liu
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| |
Collapse
|
15
|
Electrochemical Strategies for Titanium Implant Polymeric Coatings: The Why and How. COATINGS 2019. [DOI: 10.3390/coatings9040268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Among the several strategies aimed at polymeric coatings deposition on titanium (Ti) and its alloys, metals commonly used in orthopaedic and orthodontic prosthesis, electrochemical approaches have gained growing interest, thanks to their high versatility. In this review, we will present two main electrochemical procedures to obtain stable, low cost and reliable polymeric coatings: electrochemical polymerization and electrophoretic deposition. Distinction should be made between bioinert films—having mainly the purpose of hindering corrosive processes of the underlying metal—and bioactive films—capable of improving biological compatibility, avoiding inflammation or implant-associated infection processes, and so forth. However, very often, these two objectives have been pursued and achieved contemporaneously. Indeed, the ideal coating is a system in which anti-corrosion, anti-infection and osseointegration can be obtained simultaneously. The ultimate goal of all these coatings is the better control of properties and processes occurring at the titanium interface, with a special emphasis on the cell-coating interactions. Finally, advantages and drawbacks of these electrochemical strategies have been highlighted in the concluding remarks.
Collapse
|
16
|
Liu J, Yang W, Tao B, Shen T, He Y, Shen X, Cai K. Preparing and immobilizing antimicrobial osteogenic growth peptide on titanium substrate surface. J Biomed Mater Res A 2018; 106:3021-3033. [DOI: 10.1002/jbm.a.36491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Ju Liu
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| | - Tingting Shen
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
- School of Life Science; Chongqing University; Chongqing, 400044 People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| |
Collapse
|
17
|
The role played by modified bioinspired surfaces in interfacial properties of biomaterials. Biophys Rev 2017; 9:683-698. [PMID: 28831703 DOI: 10.1007/s12551-017-0306-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023] Open
Abstract
The success of a biomaterial relies on an appropriate interaction between the surface of that biomaterial and the surrounding environment; more specifically, the success of a biomaterial depends on how fluids, proteins, and cells interact with the foreign material. For this reason, the surface properties of biomaterial, such as composition, charge, wettability, and roughness, must be optimized for a desired application to be achieved. In this review we highlight different bioinspired approaches that are used to manipulate and fine-tune the interfacial properties of biomaterials. Inspired by noteworthy natural processes, researchers have developed materials with a functional anatomy that range from hierarchical hybrid structures to self-cleaning interfaces. In this review we focus on (1) the creation of particles and modified surfaces inspired by the structure and composition of biogenic mineralized tissues, (2) the development of biofunctional coatings, (3) materials inspired by biomembranes and proteins, and (4) the design of superwettable materials. Our intention is to point out different bioinspired methodologies that have been used to design materials for biomedical applications and to discuss how interfacial properties modified by manipulation of these materials determine their final biological response. Our objective is to present future research directions and to highlight the potential of bioinspired materials. We hope this review will provide an understanding of the interplay between interfacial properties and biological response so that successful biomaterials can be achieved.
Collapse
|
18
|
Yang Y, Zhang Y, Hu R, Huang Q, Wu K, Zhang L, Tang P, Lin C. Antibacterial and cytocompatible AgNPs constructed with the assistance of Mefp-1 for orthopaedic implants. RSC Adv 2017. [DOI: 10.1039/c7ra06449g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For the first time, Mefp-1 coating has been used in surface antibacterial and biocompatible modifications based on its multifunctionality.
Collapse
Affiliation(s)
- Yun Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Yanmei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Qiaoling Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Ke Wu
- Department of Cardiology
- The Affiliated Dongnan Hospital of Xiamen University
- Zhangzhou
- China
| | - Lihai Zhang
- Department of Orthopaedics
- General Hospital of Chinese PLA
- Beijing
- China
| | - Peifu Tang
- Department of Orthopaedics
- General Hospital of Chinese PLA
- Beijing
- China
| | - Changjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| |
Collapse
|
19
|
Wang G, Wan Y, Wang T, Liu Z. Corrosion Behavior of Titanium Implant with different Surface Morphologies. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.promfg.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res 2016; 20:10. [PMID: 27148455 PMCID: PMC4855474 DOI: 10.1186/s40824-016-0057-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/07/2016] [Indexed: 11/13/2022] Open
Abstract
This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.
Collapse
Affiliation(s)
- Cen Chen
- />Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
| | - Sumi Bang
- />Seoul National University of Science and Technology, 232 Gongneung-roNowongu, Seoul, 11811 Republic of Korea
| | - Younghak Cho
- />Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 11811 Republic of Korea
| | - Sahnghoon Lee
- />Department of Orthopaedic Surgery, Seoul National University College of Medicine/Seoul National University Hospital, Seoul, 110-799 Republic of Korea
| | - Inseop Lee
- />Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
- />Institute of Natural Sciences, Yonsei University, Seoul, 03722 Korea
| | - ShengMin Zhang
- />Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Insup Noh
- />Seoul National University of Science and Technology, 232 Gongneung-roNowongu, Seoul, 11811 Republic of Korea
- />Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811 Republic of Korea
| |
Collapse
|