1
|
Han Y, Zhao Q, Liu T, Liu L, Ma X, Wang N. Preparation of Ti/RuO 2-IrO 2 electrodes and their application in broad-spectrum electrochemical detection of COD. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124699. [PMID: 40020368 DOI: 10.1016/j.jenvman.2025.124699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
An electrode with RuO2 and IrO2 co-deposited on a Ti surface (Ti/RuO2-IrO2), notable for its high catalytic activity and stability, was developed for the rapid and environmentally friendly electrochemical determination of chemical oxygen demand (COD). This study thoroughly examined factors influencing electrode preparation, COD detection mechanisms, and the factors affecting COD detection, as well as broad-spectrum analysis. Under optimal conditions, which include a deposition time of 53.5 min, a current density of 5.5 mA/cm2, and 2.35 mmol of RuCl3, the electrode achieved a linear correlation coefficient of 0.99 for COD detection. The co-doping of RuO2 and IrO2 significantly enhanced the electrode's specific surface area and charge transfer rate, thereby improving the oxidation of organic compounds. The detection limit for COD was established at 1.8 mg/L, with a range of 0-250 mg/L, using an oxidation potential of 0.90 V and an electrolysis time of 150 s at an initial electrolyte pH of 6 with 0.03 mol/L NaNO3. The electrode effectively oxidized organic compounds across this range and demonstrated tolerance to chloride concentrations up to 800 mg/L. Electrode stability was confirmed through 30 repetitive cycles with no significant performance degradation. The detection results for simulated water samples were in strong agreement with the results obtained from the dichromate colorimetric method, with a linear equation of y = 0.01x+1.11, with an R2 of 0.99. The detection outcomes for six different sources of real water samples indicated consistent correlation between the electrochemical COD detection method using the Ti/RuO2-IrO2 electrode and the dichromate colorimetric method. This research showed the Ti/RuO2-IrO2 electrode has certain potential as COD detection element, leveraging its high charge transfer rate and extensive active area.
Collapse
Affiliation(s)
- Yanhe Han
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Qingpeng Zhao
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Ting Liu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Lina Liu
- Baoding Hualian Top Technology, Hebei 071000, China
| | - Xuejiao Ma
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Nannan Wang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
2
|
Li Y, Sui X, Geng S, Wang H, Duan X. Anodic oxidation using 3D carbon felt/PbO 2 anode: a electron transfer-mediated system for degradation of Rhodamine B. ENVIRONMENTAL TECHNOLOGY 2025:1-18. [PMID: 39893654 DOI: 10.1080/09593330.2025.2451783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/05/2025] [Indexed: 02/04/2025]
Abstract
This study investigates the use of porous structured carbon felt (CF) as a substrate for the preparation a lead dioxide (CF/PbO2) anode for the electrochemical oxidation of Rhodamine B (RhB). Compared to traditional titanium-based lead dioxide (Ti/PbO2) and graphite sheet-based lead dioxide (GS/PbO2) anodes, the CF/PbO2 anode exhibited superior electrocatalytic activity, achieving a RhB degradation efficiency exceeding 99%. After 10 cycles, the electrocatalytic activity of CF/PbO2 anode remained robust, with a degradation efficiency of over 97%. Fluorescence spectroscopy, quenching experiments, and electrochemical tests indicate that the electrochemical oxidation behaviour on CF/PbO2 and GS/PbO2 anodes was governed by direct electron transfer, while indirect oxidation via •HO radicals was pivotal for the Ti/PbO2 anode. LC-MS analysis identified the intermediates of RhB degradation, contributing to the proposed degradation pathway. This study provides an efficient anode for the electrochemical degradation of organic pollutants in water.
Collapse
Affiliation(s)
- Yitong Li
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, People's Republic of China
| | - Xinyu Sui
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, People's Republic of China
| | - Shiyu Geng
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, People's Republic of China
| | - Hailong Wang
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, People's Republic of China
| | - Xiaoyue Duan
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, People's Republic of China
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Jilin Normal University, Changchun, People's Republic of China
| |
Collapse
|
3
|
Fernandes E, Ledo A, Gerhardt GA, Barbosa RM. Amperometric bio-sensing of lactate and oxygen concurrently with local field potentials during status epilepticus. Talanta 2024; 268:125302. [PMID: 37826935 PMCID: PMC11164042 DOI: 10.1016/j.talanta.2023.125302] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Epilepsy is a prevalent neurological disorder with a complex pathogenesis and unpredictable nature, presenting limited treatment options in >30 % of affected individuals. Neurometabolic abnormalities have been observed in epilepsy patients, suggesting a disruption in the coupling between neural activity and energy metabolism in the brain. In this study, we employed amperometric biosensors based on a modified carbon fiber microelectrode platform to directly and continuously measure lactate and oxygen dynamics in the brain extracellular space. These biosensors demonstrated high sensitivity, selectivity, and rapid response time, enabling in vivo measurements with high temporal and spatial resolution. In vivo recordings in the cortex of anaesthetized rats revealed rapid and multiphasic fluctuations in extracellular lactate and oxygen levels following neuronal stimulation with high potassium. Furthermore, real-time measurement of lactate and oxygen concentration dynamics concurrently with network electrical activity during status epilepticus induced by 4-aminopyridine (4-AP) demonstrated phasic changes in lactate levels that correlated with bursts of electrical activity, while tonic levels of lactate remained stable during seizures. This study highlights the complex interplay between lactate dynamics, electrical activity, and oxygen utilization in epileptic seizures.
Collapse
Affiliation(s)
- Eliana Fernandes
- University of Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Ana Ledo
- University of Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Greg A Gerhardt
- Center for Microelectrode Technology (CenMeT), Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, 40536, United States
| | - Rui M Barbosa
- University of Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
4
|
Lin J, Yin J, Gao W, Jin Q. Electrochemical Determination of Chemical Oxygen Demand (COD) in Surface Water Using a Microfabricated Boron-Doped Diamond (BDD) Electrode by Chronoamperometry. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2168686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jian Lin
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China
| | - Jiawen Yin
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China
| | - Wanlei Gao
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qinghui Jin
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Wang X, Wang L, Wu D, Yuan D, Ge H, Wu X. PbO 2 materials for electrochemical environmental engineering: A review on synthesis and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158880. [PMID: 36130629 DOI: 10.1016/j.scitotenv.2022.158880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Lead dioxide (PbO2) materials have been widely employed in various fields such as batteries, electrochemical engineering, and more recently environmental engineering as anode materials, due to their unique physicochemical properties. Key performances of PbO2 electrodes, such as energy efficiency and space-time yield, are influenced by morphological as well as compositional factors. Micro-nano structure regulation and decoration of metal/non-metal on PbO2 is an outstanding technique to revamp its electrocatalytic activities and enhance environmental engineering efficiency. The aim of this review is to comprehensively summarize the recent research progress in the morphology control, the structure constructions, and the element doping of PbO2 materials, further with many environmental application cases evaluated. Concerning electrochemical environmental engineering, the lead dioxide employed in chemical oxygen demand detection, ozone generators, and wastewater treatment has been comprehensively reviewed. In addition, the future research perspectives, challenges and the opportunities on PbO2 materials for environmental applications are proposed.
Collapse
Affiliation(s)
- Xi Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Luyang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dandan Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Du Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
6
|
Zhang R, Li YS, Luo YX, Zhang XY, Wen R, Gao XF. A Carbon-dot Fluorescence Capillary Sensor for the Determination of Chemical Oxygen Demand. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Yang K, Lin H, Jiang J, Ma J, Yang Z. Enhanced electrochemical oxidation of tetracycline and atrazine on SnO2 reactive electrochemical membranes by low-toxic bismuth, cerium doping. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water is the key element that defines and individualizes our planet. Relative to body weight, water represents 70% or more for the majority of all species on Earth. Taking care of water as a whole is equivalent with taking care of the entire biodiversity or the whole of humanity itself. Water quality is becoming an increasingly important component of terrestrial life, hence intensive work is being conducted to develop sensors for detecting contaminants and assessing water quality and characteristics. Our bibliometric analysis is focused on water quality sensors based on carbon nanotubes and highlights the most important objectives and achievements of researchers in recent years. Due to important measurement characteristics such as sensitivity and selectivity, or low detection limit and linearity, up to the ability to measure water properties, including detection of heavy metal content or the presence of persistent organic compounds, carbon nanotube (CNT) sensors, taking advantage of available nanotechnologies, are becoming increasingly attractive. The conducted bibliometric analysis creates a visual, more efficient keystones mapping. CNT sensors can be integrated into an inexpensive real-time monitoring data acquisition system as an alternative for classical expensive and time-consuming offline water quality monitoring. The conducted bibliometric analysis reveals all connections and maps all the results in this water quality CNT sensors research field and gives a perspective on the approached methods on this specific type of sensor. Finally, challenges related to integration of other trends that have been used and proven to be valuable in the field of other sensor types and capable to contribute to the development (and outlook) for future new configurations that will undoubtedly emerge are presented.
Collapse
|
9
|
Research on Micro-Quantitative Detection Technology of Simulated Waterbody COD Based on the Ozone Chemiluminescence Method. WATER 2022. [DOI: 10.3390/w14030328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chemical oxygen demand (COD), reflecting the degree of waterbody contaminated by reduction substances, is an important parameter for water quality monitoring. The existing measurement method of waterbody COD takes time and is a complex system, which cannot meet the real-time monitoring requirements of river pollution indicators. We developed the vortex t-structure microfluidic detection chip with the help of microfluidic technology and designed the COD detection system with a high integration degree based on the principle of ozone chemiluminescence, and we have also carried out research on a waterbody COD quantitative detection test. The test results show that the detection chip can generate quantitative and controllable ozone-based bubbles; it also shows the advantages of a simple system and short test time without environmental pollution, which provides some technical support for the online real-time monitoring of river water quality.
Collapse
|
10
|
Wang C, Zhang T, Yin L, Ni C, Ni J, Hou LA. Enhanced perfluorooctane acid mineralization by electrochemical oxidation using Ti 3+ self-doping TiO 2 nanotube arrays anode. CHEMOSPHERE 2022; 286:131804. [PMID: 34365167 DOI: 10.1016/j.chemosphere.2021.131804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) is of increasing concern due to its worldwide application and extremely environmental persistence. Herein, we demonstrated the electrochemical degradation of PFOA with high efficiency using the Ti3+ self-doping TiO2 nanotube arrays (Ti3+/TiO2-NTA) anode. The fabricated Ti3+/TiO2-NTA anode exhibited vertically aligned uniform nanotubes structure, and was demonstrated good performance on the electrochemical degradation of PFOA in water. The degradation rate, total organic carbon (TOC) removal rate and defluorination rate of PFOA reached 98.1 %, 93.3 % and 74.8 %, respectively, after electrolysis for 90 min at low current density of 2 mA cm-2. The energy consumption (7.6 Wh L-1) of this electrochemical oxidation system using Ti3+/TiO2-NTA anode for PFOA degradation was about 1 order of magnitude lower than using traditional PbO2 anodes. Cathodic polarization could effectively prolong the electrocatalytic activity of the anode by regenerating Ti3+ sites. PFOA molecular was underwent a rapidly mineralization to CO2 and F-, with only low concentration of short-chain perflfluorocarboxylic acids (PFCAs) intermediates identified. A possible electrochemical degradation mechanism of PFOA was proposed, in which the initial direct electron transfer (DET) on the anode to yield PFOA free radicals (C7F15COO•) and hydroxyl radicals (•OH) oxidation were greatly enhanced. This presented study provides a novel approach for the purification of the recalcitrant PFOA from wastewaters.
Collapse
Affiliation(s)
- Chong Wang
- College of Resources Adironment, Southwest University, Chongqing, 400716, China.
| | - Tianai Zhang
- College of Resources Adironment, Southwest University, Chongqing, 400716, China
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chengsheng Ni
- College of Resources Adironment, Southwest University, Chongqing, 400716, China
| | - JiuPai Ni
- College of Resources Adironment, Southwest University, Chongqing, 400716, China
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Xi'an High-Tech Institute, Xi'an, 710025, China
| |
Collapse
|
11
|
Chen B, Yu Q, Chen Z, Zhu W, Li S, You H, Lv Z, Liu Y, Hu Q, Zheng Z, Farhana Y. Polystyrene microsphere assisted synthesis of a Co/PEG comodified PbO2 anode and its electrocatalytic oxidation performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Zhao L, Lv B, Wang Z, Tang D, Cui J, Mao X. Affordable PbO2 anode on conductive polymer‑carbon composite substrates for non-heavy duty use. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Modification of Graphite Felt with Lead (II) Formate and Acetate—An Approach for Preparation of Lightweight Electrodes for a Lead-Acid Battery. Processes (Basel) 2020. [DOI: 10.3390/pr8101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lead-acid battery (LAB) weight is a major downside stopping it from being adapted to electric/hybrid vehicles. Lead grids constitute up to 50% of LAB electrode’s weight and it only ensures electric connection to electrochemically active material and provides structural integrity. Using graphite felt (GF) as a current collector can reduce the electrode’s weight while increasing the surface area. Modification of GF with lead (II) oxide using impregnation and calcination techniques and lead (II) formate and acetate as precursors was conducted to produce composite electrodes. It was found that lead (II) formate is not a viable material for this purpose, whereas multiple impregnation in lead (II) acetate saturated solution and calcination in air leads to thermal destruction GF. However, impregnation and calcination under nitrogen atmosphere in three cycles produced a sample of good quality with a mass loading of lead (II) oxide that was 17.18 g g−1 GF. This equates to only 5.5% of the total mass of composite electrode to be GF, which is immensely lower than lead grid mass in traditional electrodes. This result shows that a possible lightweight alternative of LAB electrode can be produced using the proposed modification method.
Collapse
|
14
|
Li X, Lin D, Lu K, Chen X, Yin S, Li Y, Zhang Z, Tang M, Chen G. Graphene oxide orientated by a magnetic field and application in sensitive detection of chemical oxygen demand. Anal Chim Acta 2020; 1122:31-38. [DOI: 10.1016/j.aca.2020.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
|
15
|
Alves NA, Olean-Oliveira A, Cardoso CX, Teixeira MFS. Photochemiresistor Sensor Development Based on a Bismuth Vanadate Type Semiconductor for Determination of Chemical Oxygen Demand. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18723-18729. [PMID: 32239904 DOI: 10.1021/acsami.0c04259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The present paper describes the development of a novel photochemiresistor sensor for the determination of chemical oxygen demand (COD). A chemiresistive device was produced by a thin film of the monoclinic phase of bismuth vanadate deposited on an FTO glass surface. The resistive properties of the photosensor were carried out by electrochemical impedance spectroscopy (EIS). The electrical resistance of the platform was dependent on the presence of organic material in aqueous solution and the incidence of light. The decrease in resistance can be explained by considering that by increasing the amount of organic material, the amount of charge transferred to BiVO4 increases, as does the amount of the photogenerated conduction band on the film. This behavior is not observed when carrying out the same measurements in the absence of light. Under the optimal experimental conditions, the linear response of the chemiresistor sensor is between 0.20 and 19.9 mg L-1 COD at a fixed AC frequency of 0.1 Hz. There is a good correlation between the charge transfer resistance and COD concentration in the electrolyte solution. Quantification of COD in waste and lake waters was successfully performed using the novel photochemiresistor sensor. The results achieved in the analysis with the sensor are in accordance with the conventional method.
Collapse
Affiliation(s)
- Nayara A Alves
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Rua Roberto Simonsen, 305 CEP Presidente Prudente, São Paulo 19060-900, Brazil
| | - André Olean-Oliveira
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Rua Roberto Simonsen, 305 CEP Presidente Prudente, São Paulo 19060-900, Brazil
| | - Celso X Cardoso
- Department of Physics, School of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, São Paulo 19060-900, Brazil
| | - Marcos F S Teixeira
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Rua Roberto Simonsen, 305 CEP Presidente Prudente, São Paulo 19060-900, Brazil
| |
Collapse
|
16
|
Direct determination of chemical oxygen demand by anodic oxidative degradation of organics at a composite 3-D electrode. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Fabrication of Ga2O3–PbO2 electrode and its performance in electrochemical advanced oxidation processes. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4082-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.098] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Zhang B, Huang L, Tang M, Hunter KW, Feng Y, Sun Q, Wang J, Chen G. A nickel nanoparticle/nafion-graphene oxide modified screen-printed electrode for amperometric determination of chemical oxygen demand. Mikrochim Acta 2018; 185:385. [PMID: 30043240 DOI: 10.1007/s00604-018-2917-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/13/2018] [Indexed: 12/01/2022]
Abstract
A nickel nanoparticle/nafion-graphene oxide (NiNP/Nf-GO) modified screen-printed electrode (SPE) was developed for rapid and environmentally friendly electrochemical determination of chemical oxygen demand (COD). The morphology and the electrochemical performance of the SPEs with different surface modifications were investigated by scanning electron microscopy, electrochemical impedance spectroscopy, amperometry, and cyclic voltammetry, respectively. Interestingly, incorporation of graphene oxide as supporting materials to the NiNP/Nf-GO modified SPE enables high catalyst loading and electrode contact, leading to excellent electrocatalytic oxidation ability. A flow detection system was constructed based the newly designed NiNP/Nf-GO modified SPE with USB connection, a 3D-printed thin-layer flow cell (TLFC), and a peristaltic pump. The flow detection system showed an excellent performance for COD analysis with a linear detection range of 0.1~400 mg L-1 and a lower detection limit of 0.05 mg L-1 with an oxidation potential of 0.45 V. The system was further applied to determine the COD in surface water samples. The results were consistent with those obtained by using the standard method (ISO 6060). Graphical abstract A novel nickel nanoparticle/nafion-graphene oxide (NiNP/Nf-GO) modified screen-printed electrode (SPE) with excellent electrocatalytic oxidation ability was designed and fabricated. This electrode with USB connection was applied in a flow detection system equipped with a 3D-printed thin-layer flow cell and a peristaltic pump for environmentally friendly electrochemical determination of chemical oxygen demand.
Collapse
Affiliation(s)
- Baojian Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Liming Huang
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| | - Meihua Tang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Kenneth W Hunter
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Yan Feng
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Qianwen Sun
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Jikui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Guosong Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|
20
|
Li J, Luo G, He L, Xu J, Lyu J. Analytical Approaches for Determining Chemical Oxygen Demand in Water Bodies: A Review. Crit Rev Anal Chem 2017; 48:47-65. [DOI: 10.1080/10408347.2017.1370670] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ji Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Guobing Luo
- Wuxi City Water Supply and Drainage Monitoring Station, Wuxi, China
| | - LingJun He
- Department of Housing and Urban Rural Development of Jiangsu Province, Nanjing, China
| | - Jing Xu
- Wuxi City Water Supply and Drainage Monitoring Station, Wuxi, China
| | - Jinze Lyu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Duan X, Zhao C, Liu W, Zhao X, Chang L. Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.114] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Xu Z, Liu H, Niu J, Zhou Y, Wang C, Wang Y. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO 2 anode for removal of pyridine from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:144-152. [PMID: 28064142 DOI: 10.1016/j.jhazmat.2016.12.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/04/2016] [Accepted: 12/28/2016] [Indexed: 05/24/2023]
Abstract
We prepared a hydroxyl multi-wall carbon nanotube-modified nanocrystalline PbO2 anode (MWCNTs-OH-PbO2) featuring high oxygen evolution potential, large effective area, and excellent electrocatalytic performance. The oxygen evolution potential and effective area of the MWCNTs-OH-PbO2 electrode were 1.5 and 3.7-fold higher than the traditional PbO2 electrode. Electrochemical degradation of pyridine in aqueous solution was investigated by using the MWCNTs-OH-PbO2 anode. Based on pyridine decay rate (93.8%), total organic carbon reduction (84.6%), and energy consumption (78.8WhL-1order-1) under the optimal conditions, the MWCNTs-OH-PbO2 electrode modified with MWCNTs-OH concentration of 1.0gL-1 exhibited higher electrochemical oxidation ability than the traditional PbO2 electrode. The intermediate, hydroxypyridine, was found at the first stage of electrolysis. The primary mineralization product, NO3-, was detected in aqueous solution after electrolysis. A possible electrochemical mineralization mechanism including two potential routes, i.e., via formation of small organic molecules by ring cleavage reaction and direct mineralization to CO2 and NO3-, was proposed. The results demonstrated that the MWCNTs-OH-PbO2 electrode exhibited high efficiency for pyridine mineralization in aqueous solution under mild conditions.
Collapse
Affiliation(s)
- Zesheng Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Han Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China.
| | - Yijing Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Chong Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yue Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| |
Collapse
|
23
|
Saaidia S, Delimi R, Benredjem Z, Mehellou A, Djemel A, Barbari K. Use of a PbO2 electrode of a lead-acid battery for the electrochemical degradation of methylene blue. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1291681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Zarei E, Ojani R. Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3385-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Performance improvement in chemical oxygen demand determination using carbon fiber felt/CeO2-β-PbO2 electrode deposited by cyclic voltammetry method. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3207-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Chen S, Jiang F, Xie X, Zhou Y, Hu X. Synthesis and application of lead dioxide nanowires for a PEM ozone generator. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|