1
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
2
|
Zhang W, Sun X, Liu H, Shang L, Ma R, Li X, Jia L, He S, Li C, Wang H. Self-Powered Photoelectrochemistry Biosensor for Ascorbic Acid Determination in Beverage Samples Based on Perylene Material. Molecules 2024; 29:5254. [PMID: 39598645 PMCID: PMC11596541 DOI: 10.3390/molecules29225254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Ascorbic acid plays an important role in the synthesis and metabolism of the human body. However, it cannot be synthesized by the human body and needs to be supplemented from exogenous food intake. Ascorbic acid is easily degraded during storage and heating, often causing its content in food to change. It is important to develop a sensitive and accurate photoelectrochemistry (PEC) biosensor for detecting ascorbic acid. The shortage of PEC materials with long illumination wavelengths and low bias voltages impedes the development of ascorbic acid biosensors. Herein, a 3,4,9,10-perylenetetracarboxylic dianhydride (PDA) self-assembly rod material was firstly reported to show significant photocurrent increases to ascorbic acid at 630 nm illumination and 0 V vs. Ag/AgCl. Moreover, the PDA self-assembly rod material was used as a PEC platform to detect ascorbic acid. This self-powered PEC biosensor exhibited a linear response for ascorbic acid from 5 μM·L-1 to 400 μM·L-1; the limit of detection was calculated to be 4.1 μM·L-1. Compared with other ascorbic acid biosensors, the proposed self-powered PEC biosensor shows a relatively wide linear range. In addition, the proposed self-powered PEC biosensor exhibits good practicability in beverage samples.
Collapse
Affiliation(s)
- Wei Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Xinyang Sun
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Hong Liu
- Dongying Ecological Environment Agency, Dongying 257000, China
| | - Lei Shang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Rongna Ma
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Xiaojian Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Liping Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| |
Collapse
|
3
|
Yu Z, Li C, Sun J, Sun X, Hu G. Electrochemiluminescence Sensor Based on CTS-MoS 2 and AB@CTS with Functionalized Luminol for Detection of Malathion Pesticide Residues. Foods 2023; 12:4363. [PMID: 38231882 DOI: 10.3390/foods12234363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
The accumulation of pesticide residues poses a significant threat to the health of people and the surrounding ecological systems. However, traditional methods are not only costly but require expertise in analysis. An electrochemiluminescence (ECL) aptasensor was developed using chitosan and molybdenum disulfide (CTS-MoS2), along with acetylene black (AB@CTS) for the rapid detection of malathion residues. Due to the weak interaction force, simple composite may lead to uneven dispersion; MoS2 and AB were dissolved in CTS solution, respectively, and utilized the biocompatibility of CTS to interact with each other on the electrode. The MoS2 nanosheets provided a large specific surface area, enhancing the utilization rate of catalytic materials, while AB exhibited excellent conductivity. Additionally, the dendritic polylysine (PLL) contained numerous amino groups to load abundant luminol to catalyze hydrogen peroxide (H2O2) and generate reactive oxygen species (ROS). The proposed ECL aptasensor obtained a low detection limit of 2.75 × 10-3 ng/mL (S/N = 3) with a good detection range from 1.0 × 10-2 ng/mL to 1.0 × 103 ng/mL, demonstrating excellent specificity, repeatability, and stability. Moreover, the ECL aptasensor was successfully applied for detecting malathion pesticide residues in authentic samples with recovery rates ranging from 94.21% to 99.63% (RSD < 2.52%). This work offers valuable insights for advancing ECL sensor technology in future applications.
Collapse
Affiliation(s)
- Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| | - Chengqiang Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
4
|
Graphene quantum dots: synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Mikrochim Acta 2022; 189:258. [PMID: 35701638 DOI: 10.1007/s00604-022-05353-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
GQDs exhibits exceptional electrochemical activity owing to their active edge sites that make them very attractive for biosensing applications. However, their use in the design of new biosensing devices for application to the detection and quantification of toxins, pathogens, and clinical biomarkers has so far not investigated in detail. In this regard, herein we provide a detailed review on various methodologies employed for the synthesis of GQDs, including bottom-up and top-down approaches, with a special focus on their applications in biosensing via fluorescence, photoluminescence, chemiluminescence, electrochemiluminescence, fluorescence resonance energy transfer, and electrochemical techniques. We believe that this review will shed light on the critical issues and widen the applications of GQDs for the design of biosensors with improved analytical response for future applications. HIGHLIGHTS: • Properties of GQDs play a critical role in biosensing applications. • Synthesis of GQDs using top-down and bottom-up approaches is discussed comprehensively. • Overview of advancements in GQD-based sensors over the last decade. • Methods for the design of selective and sensitive GQD-based sensors. • Challenges and opportunities for future GQD-based sensors.
Collapse
|
5
|
Cheng S, Xu R, Yang F, Huang J, Sun X, Huang X, Li H, Li F, Guo Y, Hasanzadeh M, Zhu Y. Novel sandwich-type electrochemiluminescence aptasensor based on luminol functionalized aptamer as signal probe for kanamycin detection. Bioelectrochemistry 2022; 147:108174. [PMID: 35749886 DOI: 10.1016/j.bioelechem.2022.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
A novel sandwich electrochemiluminescence (ECL) aptasensor was developed for highly sensitive detection of kanamycin using luminol-functionalized aptamer as a signal probe. The aptasensor used polyethyleneimine (PAMAM), molybdenum disulfide, and multi-walled carbon nanotubes as the substrate, which provided enough binding sites for aptamer1 (the aptamer which modified NH2) coupling. We found that kanamycin could be detected using the aptamer1 containing the same base sequence as aptamer2 (the aptamer which modified SH) on the electrode self-assembly. In addition, PAMAM nanocomposites can be used to effectively improve the ECL intensity by loading a high volume of luminol molecules and silver nanoparticles. In the presence of kanamycin, the sandwiched aptasensor was formed between aptamer1 and the probe of aptamer2 connecting silver nanoparticles, luminol, and PAMAM, resulting in a proportional increase of ECL intensity. Since the significantly enhanced loading of luminol by PAMAM accelerated the electron transfer, the sensitive aptasensor exhibited a wide linear range of detection from 1 × 10-3 to 1 × 103 ng/mL and a low detection limit of 0.21 pg/mL (S/N) for kanamycin. The fabricated aptasensor was successfully applied in quantitative analysis of kanamycin in milk samples.
Collapse
Affiliation(s)
- Shuting Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Rui Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Fengzhen Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Xue Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - He Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yelong Zhu
- Ecological Agriculture Development Company Limited, Rongbing Quyang Village, Zhenjiang 212001, Jiangsu Province, China
| |
Collapse
|
6
|
Zhu Q, Du J, Li J, Wang J, Yang R, Li Z, Qu L. Methyl viologen induced fluorescence quenching of CdTe quantum dots for highly sensitive and selective "off-on" sensing of ascorbic acid through redox reaction. J Fluoresc 2022; 32:1405-1412. [PMID: 35438370 DOI: 10.1007/s10895-022-02925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
A turn-on fluorescent sensor based on CdTe quantum dots (QDs) is designed for highly sensitive and selective ascorbic acid (AA) detection. CdTe shows a strong emission centered at 578 nm. When assembled with poly(sodium 4-styrenesulfonate) (PSS) and methyl viologen (Mv2+) through electrostatic interaction, the emission is found to be effectively quenched. In the presence of AA, Mv2+ is reduced to Mv+, making the fluorescence of CdTe QDs restored. Under the optimal conditions, the proposed AA sensing method shows a linear proportional response from 0.8 µM to 20 µM, with the detecting limit as low as 50 nM. The developed method was successfully applied in the analysis of AA in human serum samples and cell lysates with satisfactory results.
Collapse
Affiliation(s)
- Qianqian Zhu
- College of Chemistry, Green catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Jingjing Du
- College of Chemistry, Green catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Jianjun Li
- College of Chemistry, Green catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Jizhong Wang
- Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Hunan division of GRG Metrology and Test, 410000, Changsha, China
| | - Ran Yang
- College of Chemistry, Green catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China.
| | - Zhaohui Li
- College of Chemistry, Green catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Lingbo Qu
- College of Chemistry, Green catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan, Education Ministry of P.R. China, Henan, China
| |
Collapse
|
7
|
A Highly Sensitive Electrochemiluminescence Spermine Biosensor Based on Au−Ag Bimetallic Nanoclusters. ELECTROANAL 2021. [DOI: 10.1002/elan.202100169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Abstract
Boron nitride quantum dots (BNQDs) have gained increasing attention for their versatile fluorescent, optoelectronic, chemical, and biochemical properties. During the past few years, significant progress has been demonstrated, started from theoretical modeling to actual application. Many interesting properties and applications have been reported, such as excitation-dependent emission (and, in some cases, non-excitation dependent), chemical functionalization, bioimaging, phototherapy, photocatalysis, chemical, and biological sensing. An overview of this early-stage research development of BNQDs is presented in this article. We have prepared un-bias assessments on various synthesis methods, property analysis, and applications of BNQDs here, and provided our perspective on the development of these emerging nanomaterials for years to come.
Collapse
|
9
|
Liu P, Meng H, Han Q, Zhang G, Wang C, Song L, Fu Y. Determination of ascorbic acid using electrochemiluminescence sensor based on nitrogen and sulfur doping graphene quantum dots with luminol as internal standard. Mikrochim Acta 2021; 188:120. [PMID: 33694007 DOI: 10.1007/s00604-021-04761-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
A novel internal standard electrochemiluminescence (ECL) sensor has been designed for the detection of ascorbic acid (AA). The adopted dual-emission luminophore (NSGQDs-PEI-luminol-Pt) is composed of nitrogen and sulfur double-doped graphene quantum dots (NSGQDs, as the main luminophore), luminol (as the auxiliary luminophore and internal standard), platinum nanoparticles (Pt NPs, as the co-reaction accelerator), and polyetherimide (PEI, as the linker of NSGQDs and luminol). The results suggest obviously enhanced ECL intensities by the Förster resonance energy transfer (FRET) between luminol (donor) and NSGQDs (acceptor). In this sensing system, the cathodic ECL intensities of NSGQDs (ECL-1, -1.8 V vs. Ag/AgCl) gradually decrease with increasing concentration of AA, while the anodic ECL intensities of luminol (ECL-2, 0.3 V vs. Ag/AgCl) almost remain essentially constant at a potential window from -2.0 to 0.4 V. The natural logarithm of the ratio between ECL-1 and ECL-2 (ln I (ECL-1/ECL-2)) shows a good linear relationship with AA concentration ranging from 10 to 360 nM. The regression equation is ln I (ECL-1/ECL-2) = - 0.0059 cAA + 3.55 (R2 = 0.992) with a limit of detection of 3.3 nM. Such sensor has also been applied for monitoring AA in human serum. The recovery range was 96.5-105.3% and the relative standard deviation was 1.3-3.3%.
Collapse
Affiliation(s)
- Pingkun Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hui Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qian Han
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Gui Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Cun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Li Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Adel R, Ebrahim S, Shokry A, Soliman M, Khalil M. Nanocomposite of CuInS/ZnS and Nitrogen-Doped Graphene Quantum Dots for Cholesterol Sensing. ACS OMEGA 2021; 6:2167-2176. [PMID: 33521456 PMCID: PMC7841935 DOI: 10.1021/acsomega.0c05416] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 05/05/2023]
Abstract
In this paper, nitrogen graphene quantum dots (N-GQDs) and copper indium sulfide/zinc sulfide (CIS/ZnS) QDs were synthesized via facile hydrothermal and aqueous solution routes, respectively. Herein, a fluorescent nanocomposite has been synthesized between N-GQDs and CIS/ZnS QDs in an aqueous phase. This nanocomposite was characterized by photoluminescence, Raman, and ultraviolet-visible (UV-vis) spectroscopies, high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). This fluorescent nanocomposite was developed as a highly sensitive, selective nonenzymatic cholesterol optical biosensor in 0.312-5 mM cholesterol. HRTEM micrographs confirmed the preparation of CIS/ZnS QDs and N-GQDs with average diameters of 3 and 5 nm, respectively. The as-prepared NG/CIS/ZnS QD nanocomposite had a high sensitivity for cholesterol with a wide linear range of concentration of 0.312-5 mM with an excellent correlation coefficient (R 2) of 0.9688 and limit of detection (LOD) of 0.222 mM.
Collapse
Affiliation(s)
- Rania Adel
- Materials
Science Department, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Shaker Ebrahim
- Materials
Science Department, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Azza Shokry
- Department
of Environmental Studies, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Moataz Soliman
- Materials
Science Department, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Marwa Khalil
- Nanotechnology
and Composite Materials Department, Institute
of New Materials and Advanced Technology, City of Scientific Research
and Technological Applications (SRTA-City), New Borg El Arab City, P.O. Box, 21934 Alexandria, Egypt
| |
Collapse
|
11
|
Qin Y, Wang Z, Xu J, Han F, Zhao X, Han D, Liu Y, Kang Z, Niu L. Carbon Nitride Quantum Dots Enhancing the Anodic Electrochemiluminescence of Ruthenium(II) Tris(2,2′-bipyridyl) via Inhibiting the Oxygen Evolution Reaction. Anal Chem 2020; 92:15352-15360. [DOI: 10.1021/acs.analchem.0c02568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yunlong Qin
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zeqian Wang
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Jianan Xu
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fangjie Han
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xin Zhao
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dongxue Han
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
- Center for Advanced Analytical Science, C/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yang Liu
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Li Niu
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Center for Advanced Analytical Science, C/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
12
|
Li M, Wang C, Chen L, Liu D. A novel electrochemiluminescence sensor based on resonance energy transfer system between nitrogen doped graphene quantum dots and boron nitride quantum dots for sensitive detection of folic acid. Anal Chim Acta 2019; 1090:57-63. [DOI: 10.1016/j.aca.2019.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/02/2023]
|
13
|
Zhu R, Zhang Y, Wang J, Yue C, Fang W, Dang J, Zhao H, Li Z. A novel anodic electrochemiluminescence behavior of sulfur-doped carbon nitride nanosheets in the presence of nitrogen-doped carbon dots and its application for detecting folic acid. Anal Bioanal Chem 2019; 411:7137-7146. [DOI: 10.1007/s00216-019-02088-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
|
14
|
Wang H, Na X, Liu S, Liu H, Zhang L, Xie M, Jiang Z, Han F, Li Y, Cheng S, Tan M. A novel “turn-on” fluorometric and magnetic bi-functional strategy for ascorbic acid sensing and in vivo imaging via carbon dots-MnO2 nanosheet nanoprobe. Talanta 2019; 201:388-396. [DOI: 10.1016/j.talanta.2019.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 11/17/2022]
|
15
|
Chen L, Lin M, Yang P. Reproducible mesoporous silica-coated gold@silver nanoprobes for the bright colorimetric sensing of ascorbic acid. NEW J CHEM 2019. [DOI: 10.1039/c9nj02310k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, a colorimetric approach for the detection of ascorbic acid (AA) was developed by controlling the surface chemistry of silica-coated gold nanorod@silver nanoparticles (AuNR@Ag@mSiO2).
Collapse
Affiliation(s)
- Ling Chen
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Meng Lin
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Ping Yang
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
16
|
Chen H, Liu X, Li W, Peng Y, Nie Z. Silver coordination complex amplified electrochemiluminescence sensor for sensitive detection of coenzyme A and histone acetyltransferase activity. Biosens Bioelectron 2018; 126:535-542. [PMID: 30481667 DOI: 10.1016/j.bios.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 11/17/2022]
Abstract
A kind of coenzyme A (CoA)-silver coordination complex (CoA-Ag) was in-situ developed and verified to accelerate the electron transferring and electrochemical catalysis of H2O2 decomposition to enhance the cathode ECL intensity of CdTe@CdS QDs. Afterward, a convenient label-free signal-on ECL approach was constructed for CoA detection with excellent specificity. In addition, the unique ECL enhancing phenomenon was also proposed to assay the enzymatic activity of histone acetyltransferases (HAT) and screen relevant inhibitors, exhibiting a promising potential in the practical application of biochemical research, disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- Hongjun Chen
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiu Liu
- Key Laboratory of Pesticide Harmless Application, Collaborative Innovation Center for Field Weeds Control (CICFWC) of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi 417000, PR China
| | - Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Yan Peng
- College of Economics and Management, Hengyang Normal University, Hengyang 421008, PR China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
17
|
Cao JT, Liu FR, Hou F, Peng J, Ren SW, Liu YM. Cathodic electrochemiluminescence behaviour of MoS 2 quantum dots and its biosensing of microRNA-21. Analyst 2018; 143:3702-3707. [PMID: 29979462 DOI: 10.1039/c8an00951a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cathodic electrochemiluminescence (ECL) behaviour of nontoxic MoS2 quantum dots (QDs) was studied for the first time using potassium peroxydisulfate as the co-reactant. Ag-PAMAM NCs, serving as difunctional tags for quenching and enhancing ECL of MoS2-reduced graphene oxide composites, were introduced into the ECL detection system for signal amplification. By modulating the interparticle distance between MoS2 QDs and Ag-PAMAM NCs, the ECL quenching from resonance energy transfer and the ECL enhancement from surface plasma resonance were realized. Coupling the good ECL performance of MoS2 QDs with the excellent ECL quenching and enhancement effects of Ag-PAMAM NCs, a novel MoS2 QDs-based ECL biosensing platform for sensitive detection of microRNA-21 was achieved with a detection limit of 0.20 fmol L-1 (S/N = 3). This method was successfully applied to the determination of microRNA-21 in human serum samples with recoveries of 90.0-110.0%, suggesting great potential for its applications in biological and chemical analysis.
Collapse
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China.
| | | | | | | | | | | |
Collapse
|
18
|
Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A, Palomba F, Marcaccio M, Paolucci F, Prodi L. Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Xu Y, Wang X, Zhang WL, Lv F, Guo S. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev 2018; 47:586-625. [DOI: 10.1039/c7cs00500h] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review critically summarizes recent progress in the categories, synthetic routes, properties, functionalization and applications of 2D materials-based quantum dots (QDs).
Collapse
Affiliation(s)
- Yuanhong Xu
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Xiaoxia Wang
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Wen Ling Zhang
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Fan Lv
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Shaojun Guo
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
20
|
Wang M, Jiao Y, Cheng C, Hua J, Yang Y. Nitrogen-doped carbon quantum dots as a fluorescence probe combined with magnetic solid-phase extraction purification for analysis of folic acid in human serum. Anal Bioanal Chem 2017; 409:7063-7075. [DOI: 10.1007/s00216-017-0665-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/24/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022]
|
21
|
Song HY, Kang TF, Jiang MF, Zhang JJ, Cheng SY. A novel strategy based on DNAzyme for electrochemiluminescence detection of Pb(II) with P-GO@QDs for signal amplification. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Gao T, Wang X, Yang LY, He H, Ba XX, Zhao J, Jiang FL, Liu Y. Red, Yellow, and Blue Luminescence by Graphene Quantum Dots: Syntheses, Mechanism, and Cellular Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24846-24856. [PMID: 28675929 DOI: 10.1021/acsami.7b05569] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Owing to their excellent photoluminescence (PL) properties, good biocompatibility, and low toxicity, graphene quantum dots (GQDs) are widely applied in bioimaging, biosensing, and so forth. However, further development of GQDs is limited by their synthetic methodology and unclear PL mechanism. Therefore, it is urgent to find efficient and universal methods for the synthesis of GQDs with high stability, controllable surface properties, and tunable PL emission wavelength. By coating with polyethyleneimine (PEI) of different molecular weights, blue-, yellow-, and red-emitting GQDs were successfully prepared. By transmission electron microscopy, atomic force microscopy, and dynamic light scattering, the characterization of size and morphology revealed that blue-emitting PEI1800 GQDs were monocoated, like jelly beans, and red-emitting PEI600 GQDs were multicoated, like capsules. The amidation reaction between carboxyl and amide functional groups played an important role in the coating process, as evidenced by IR spectroscopy and theoretical calculation with density functional theory B3LYP/6-31G*. The PL-tunable GQDs exhibited an excellent chemical stability and extremely low cytotoxicity, and they had been shown to be feasible for bioimaging, making these GQDs highly attractive for a wide variety of applications, including multicolor imaging and bioanalysis.
Collapse
Affiliation(s)
- Tian Gao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Xi Wang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Li-Yun Yang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Huan He
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Xiao-Xu Ba
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Jie Zhao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology , Wuhan 430081, P. R. China
- College of Chemistry and Material Science, Guangxi Teachers Education University , Nanning 530001, P. R. China
| |
Collapse
|
23
|
A facile carbon dots based fluorescent probe for ultrasensitive detection of ascorbic acid in biological fluids via non-oxidation reduction strategy. Talanta 2017; 165:677-684. [DOI: 10.1016/j.talanta.2017.01.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/25/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022]
|
24
|
Zheng R, Zhong J, Zhao C, Lang X, Hu Z, Luo J. An ultrasensitive electrochemiluminescent sensor based on a pencil graphite electrode modified with CdS nanorods for detection of chlorogenic acid in honeysuckle. LUMINESCENCE 2016; 32:806-811. [PMID: 27995761 DOI: 10.1002/bio.3255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/31/2016] [Accepted: 10/19/2016] [Indexed: 12/26/2022]
Abstract
In this paper, a novel and ultrasensitive electrochemiluminescent sensor employing a solvothermal-synthesized CdS nanorod-modified pencil graphite electrode (CdS/PGE) for the determination of chlorogenic acid (CA) is fabricated. In the first step, the PGE surface is modified using CdS nanorods. In the next step, the developed electrode is used to detect CA using a electrochemiluminescent (ECL) technique, in which potassium persulfate (K2 S2 O8 ) served as a co-reactant. The possible ECL mechanism is investigated, and the influences of pH and cyclic voltammetric scanning rate on the signal response are studied. The ECL intensity decreases quantitatively in relation to the concentration of the target molecule. Under optimized conditions, the linear correlation between the quenched ECL intensity and the logarithm of CA concentration is observed in the range from 2 × 10-9 to 8 × 10-7 mol L-1 with a limit of detection of 1 × 10-9 mol L-1 . This proposed method is applied to the analysis of CA in honeysuckle flower, giving recoveries of 99-107%. The experimental results demonstrate that this ECL sensor shows good stability and reproducibility.
Collapse
Affiliation(s)
- Ruijuan Zheng
- College of Chemistry and Materials Science, Longyan University, Longyan, China
| | - Jianhai Zhong
- Longyan Entry-Exit Inspection and Quarantine Bureau, Longyan, China
| | - Chenhao Zhao
- College of Chemistry and Materials Science, Longyan University, Longyan, China
| | - Xiaoling Lang
- College of Chemistry and Materials Science, Longyan University, Longyan, China
| | - Zhibiao Hu
- College of Chemistry and Materials Science, Longyan University, Longyan, China
| | - Jiangshui Luo
- Lab of Proton conductors, Longyan University, Longyan, Fujian, 364012, China
| |
Collapse
|
25
|
Li N, He Y, Ge Y, Song G. “Turn-Off-On” Fluorescence Switching of Ascorbic Acid-Reductive Silver Nanoclusters: a Sensor for Ascorbic Acid and Arginine in Biological Fluids. J Fluoresc 2016; 27:293-302. [DOI: 10.1007/s10895-016-1957-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/19/2016] [Indexed: 01/05/2023]
|
26
|
Chen H, Li W, Wang Q, Jin X, Nie Z, Yao S. Nitrogen doped graphene quantum dots based single-luminophor generated dual-potential electrochemiluminescence system for ratiometric sensing of Co2+ ion. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
The Sensitive Turn-On Fluorescence Detection of Ascorbic Acid Based on Iron(III)-Modulated Nitrogen-Doped Graphene Quantum Dots. J Fluoresc 2016; 26:1755-62. [DOI: 10.1007/s10895-016-1867-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
|
28
|
Liang X, Liu J, Zeng D, Li C, Chen S, Li H. Hydrogen generation promoted by photocatalytic oxidation of ascorbate and glucose at a cadmium sulfide electrode. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Yue P, Tricard S, He S, Wang N, Zhao J, Fang J, Shen W. Prussian Blue and Chitosan Modified Carbon Cloth Electrode as a High Performance Sensor of Ascorbic Acid. ELECTROANAL 2016. [DOI: 10.1002/elan.201501036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Liu J, Chen Y, Wang W, Feng J, Liang M, Ma S, Chen X. "Switch-On" Fluorescent Sensing of Ascorbic Acid in Food Samples Based on Carbon Quantum Dots-MnO2 Probe. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:371-80. [PMID: 26652202 DOI: 10.1021/acs.jafc.5b05726] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This work describes a "switch-on" fluorescence approach for sensing of ascorbic acid (AA) in food samples. In the present method, the fluorescence intensity (FL) of carbon quantum dots (CQDs) was first quenched by addition of MnO2 nanosheets through an inner filter effect to form a CQDs-MnO2 probe. When reductive AA was introduced into the quenched CQDs solution, the added MnO2 was destroyed due to the redox reaction between AA and MnO2 nanosheets, and the FL of the system was recovered. Under the optimal conditions, the limit of detection for AA was 42 nM, with a wide concentration linear range of 0.18-90 μM. Furthermore, the as-fabricated fluorescent sensing system was successfully applied to the analysis of AA in fresh fruits, vegetables, and commercial fruit juices samples with satisfactory results.
Collapse
Affiliation(s)
- Juanjuan Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University , Lanzhou 730000, China
| | - Yonglei Chen
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University , Lanzhou 730000, China
| | - Weifeng Wang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University , Lanzhou 730000, China
| | - Jie Feng
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University , Lanzhou 730000, China
| | - Meijuan Liang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University , Lanzhou 730000, China
| | - Sudai Ma
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University , Lanzhou 730000, China
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University , Lanzhou 730000, China
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University , Lanzhou 730000, China
| |
Collapse
|
31
|
Jia FF, Zhong H, Li XR, Zhu FX, Liu GQ, Cheng ZP, Zhang LL, Yin JZ, Sheng ZH, Guo LP. Research on novel nonenzymatic ECL sensor using Au-HS/SO3H-PMO (Et) nanocomposites for glucose detection. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Wang J, Xu Y, Liu M, Niu F, Liu J. Facile Fabrication of Solid-state Electrochemiluminescence Sensor via Non-covalent π-π Stacking and Covalent Bonding on Graphite Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|