1
|
Kumar A, Barbhuiya NH, Nair AM, Jashrapuria K, Dixit N, Singh SP. In-situ fabrication of titanium suboxide-laser induced graphene composites: Removal of organic pollutants and MS2 Bacteriophage. CHEMOSPHERE 2023:138988. [PMID: 37247678 DOI: 10.1016/j.chemosphere.2023.138988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Titanium suboxides (TSO) are identified as a series of compounds showing excellent electro- and photochemical properties. TSO composites with carbon-based materials such as graphene have further improved water splitting and pollutant removal performance. However, their expensive and multi-step synthesis limits their wide-scale use. Furthermore, recently discovered laser-induced graphene (LIG) is a single-step and low-cost fabrication of graphene-based composites. Moreover, LIG's highly electrically conductive surface aids in tremendous environmental applications, including bacterial inactivation, anti-biofouling, and pollutant sensing. Here, we demonstrate the single-step in-situ fabrication of TSO-LIG composite by directly scribing the TiO2 mixed poly(ether) sulfone sheets using a CO2 infrared laser. In contrast, earlier composites were derived from either commercial-grade TSO or synthesized TSO with graphene. The characteristic Ti3+ peaks in XPS confirmed the conversion of TiO2 into its sub-stoichiometric form, enhancing the electro-catalytical properties of the LIG-TiOx composite surface. Electrochemical characterization, including impedance spectroscopy, validated the surface's enhanced electrochemical activity and electrode stability. Furthermore, the LIG-TiOx composite surfaces were tested for anti-biofouling action and electrochemical application as electrodes and filters. The composite electrodes exhibit enhanced degradation performance for removing emerging pollutant antibiotics ciprofloxacin and methylene blue due to the in-situ hydroxyl radical generation. Additionally, the LIG-TiOx conductive filters showed the complete 6-log killing of mixed bacterial culture and MS2 phage virus in flow-through filtration mode at 2.5 V, which is ∼2.5-log more killing compared to non-composited LIG filers at 500 Lm-2h-1. Nevertheless, these cost-effective LIG-TiOx composites have excellent electrical properties and can be effectively utilized for energy and environmental applications.
Collapse
Affiliation(s)
- Ashish Kumar
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Najmul H Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Akhila M Nair
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Kritika Jashrapuria
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Nandini Dixit
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
2
|
One Step Synthesis of Oxygen Defective Bi@Ba2TiO4/BaBi4Ti4O15 Microsheet with Efficient Photocatalytic Activity for NO Removal. Catalysts 2022. [DOI: 10.3390/catal12111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Photocatalysis is an effective technology for NO removal even at low concentrations in the ambient atmosphere. However, the low efficiency of this advanced process and the tendency of producing toxic byproducts hinder the practical application of photocatalysis. To overcome these problems, the Bi@Ba2TiO4/BaBi4Ti4O15 photocatalytic composites were successfully prepared by a one-step hydrothermal method. The as-synthesized photocatalysts exhibited an efficient photocatalytic performance and generated low amounts of toxic byproducts. X-ray diffraction studies show that Bi3+ is successfully reduced on the surface of Ba2TiO4/BaBi4Ti4O15 (BT/BBT). After L-Ascorbic acid (AA) modification, the photocatalytic NO removal efficiency of Bi@Ba2TiO4/BaBi4Ti4O15 is increased from 25.55% to 67.88%, while the production of the toxic byproduct NO2 is reduced by 92.02%, where the initial concentration of NO is diluted to ca. 800 ppb by the gas stream and the flow rate is controlled at 301.98 mL·min−1 in a 150 mL cylindrical reactor. Furthermore, ambient humidity has little effect on the photocatalytic performance of theBi@Ba2TiO4/BaBi4Ti4O15, and the photocatalyst exhibits excellent reusability after repeated cleaning with deionized water. The improved photocatalytic effect is attributed to the addition of AA in BT/BBT being able to reduce Bi3+ ions to form Bi nanoparticles giving surface plasmon effect (SPR) and generate oxygen vacancies (OVs) at the same time, thereby improving the separation efficiency of photogenerated carriers, enhancing the light absorption, and increasing the specific surface areas. The present work could provide new insights into the design of high-performance photocatalysts and their potential applications in air purification, especially for NO removal.
Collapse
|
3
|
Hefnawy MA, Fadlallah SA, El-Sherif RM, Medany SS. Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction. SYNTHETIC METALS 2021; 282:116959. [DOI: 10.1016/j.synthmet.2021.116959] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
|
4
|
Shu J, Li R, Lian Z, Zhang W, Jin R, Yang H, Li S. In-situ oxidation of Palladium-Iridium nanoalloy anchored on Nitrogen-doped graphene as an efficient catalyst for methanol electrooxidation. J Colloid Interface Sci 2021; 605:44-53. [PMID: 34303923 DOI: 10.1016/j.jcis.2021.07.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023]
Abstract
Palladium (Pd)-based materials have been widely used as catalysts for the methanol oxidation reaction (MOR). Unfortunately, the catalytic activity was limited by structure, carbon monoxide intermediates (COads) tolerance and stability. It was currently difficult to be used in large-scale commercial production. Herein, to further improve their electrocatalytic activity, a facile oxidation method to achieve in-situ oxidation of palladium-iridium (PdIr) alloy on nitrogen-doped graphene (NGS) is used, which is named as Pd-Ir-O/NGS. The new catalyst exhibits remarkable MOR activity (1374.8 mA mg-1), COads tolerance (the onset oxidation potential reach 0.725 V) and stability (the current density retention rate after 500 cycles of cyclic voltammetry is 44.9%). As a catalyst for MOR, the Pd-Ir-O/NGS has more outstanding electrocatalytic performance compared with commercial Pd/C and other counterparts. The mechanism study shows that the excellent catalytic performance is attributed to (1) the synergistic electronic effect of Pd-Ir-O due to the introduction of Ir and O, (2) the insertion of O into PdIr alloy that kinetically accelerated the oxidation of poisoning methoxy intermediates and (3) the vital roles of unique three-dimensional (3D) structure of NGS with abundant nitrogen atoms. Our findings herald a new paradigm for the modification of palladium-based materials for MOR and provide an alternative design principle for novel 3D carbon-based material for various application.
Collapse
Affiliation(s)
- Junhao Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruxia Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhuoming Lian
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruifa Jin
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, China
| | - Honglei Yang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Shuwen Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Wala M, Simka W. Effect of Anode Material on Electrochemical Oxidation of Low Molecular Weight Alcohols-A Review. Molecules 2021; 26:2144. [PMID: 33918545 PMCID: PMC8070219 DOI: 10.3390/molecules26082144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The growing climate crisis inspires one of the greatest challenges of the 21st century-developing novel power sources. One of the concepts that offer clean, non-fossil electricity production is fuel cells, especially when the role of fuel is played by simple organic molecules, such as low molecular weight alcohols. The greatest drawback of this technology is the lack of electrocatalytic materials that would enhance reaction kinetics and good stability under process conditions. Currently, electrodes for direct alcohol fuel cells (DAFCs) are mainly based on platinum, which not only provides a poor reaction rate but also readily deactivates because of poisoning by reaction products. Because of these disadvantages, many researchers have focused on developing novel electrode materials with electrocatalytic properties towards the oxidation of simple alcohols, such as methanol, ethanol, ethylene glycol or propanol. This paper presents the development of electrode materials and addresses future challenges that still need to be overcome before direct alcohol fuel cells can be commercialized.
Collapse
Affiliation(s)
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Str. 6, 44-100 Gliwice, Poland;
| |
Collapse
|
6
|
Qi L, Guo X, Zheng X, Wang Y, Zhao Y, Wang X. Enhanced electrocatalytic activity of urchin-like Nb2O5 microspheres by synergistic effects with Pd toward electrooxidation of ethylene glycol in an alkaline medium. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Facile synthesis of porous iridium-palladium-plumbum wire-like nanonetworks with boosted catalytic performance for hydrogen evolution reaction. J Colloid Interface Sci 2020; 580:99-107. [DOI: 10.1016/j.jcis.2020.06.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022]
|
8
|
Zhang RL, Feng JJ, Zhang L, Shi CG, Wang AJ. Ultrathin PdFePb nanowires: One-pot aqueous synthesis and efficient electrocatalysis for polyhydric alcohol oxidation reaction. J Colloid Interface Sci 2019; 555:276-283. [PMID: 31386996 DOI: 10.1016/j.jcis.2019.07.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022]
Abstract
Synthesis of high-efficiency catalysts for alcohol oxidation reaction caused great interest in direct alcohol fuel cells (DAFCs). Ultrathin PdFePb nanowires (NWs) with an average diameter of 2.3 nm were synthesized by a simple and fast one-pot aqueous synthesis, using octylphenoxypolyethoxyethanol (NP-40) as the structure-directing agent. The as-prepared PdFePb NWs displayed an increscent electrochemically active surface area (ECSA, 121.18 m2 g-1 Pd). For ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR), PdFePb NWs exhibited much higher activity and superior stability, outperforming those of homemade PdFe NWs, PdPb NWs, commercial Pd black and Pd/C (20 wt%). These results reveal dramatically high catalytic activity and durability of ultrathin PdFePb NWs in enhancing polyols electrooxidation.
Collapse
Affiliation(s)
- Ru-Lan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chuan-Guo Shi
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; Nantong Reform Petrochemical Company Limited, Nantong 226007, China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
9
|
Sun R, Ren F, Wang D, Yao Y, Fei Z, Wang H, Liu Z, Xing R, Du Y. Polydopamine functionalized multi-walled carbon nanotubes supported PdAu nanoparticles as advanced catalysts for ethylene glycol oxidation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Li Z, Gu B, Jiang Z, Zhao X, Zhu W, Zhang Y, Li T, Du X, Wu J. Three-dimensional flower-like Pd3Pb nanocrystals enable efficient ethylene glycol electrocatalytic oxidation. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Xu H, Song P, Fernandez C, Wang J, Zhu M, Shiraishi Y, Du Y. Sophisticated Construction of Binary PdPb Alloy Nanocubes as Robust Electrocatalysts toward Ethylene Glycol and Glycerol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12659-12665. [PMID: 29589908 DOI: 10.1021/acsami.8b00532] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The design of nanocatalysts by controlling pore size and particle characteristics is crucial to enhance the selectivity and activity of the catalysts. Thus, we have successfully demonstrated the synthesis of binary PdPb alloy nanocubes (PdPb NCs) by controlling pore size and particle characteristics. In addition, the as-obtained binary PdPb NCs exhibited superior electrocatalytic activity of 4.06 A mg-1 and 16.8 mA cm-2 toward ethylene glycol oxidation reaction and 2.22 A mg-1 and 9.2 mA cm-2 toward glycerol oxidation reaction when compared to the commercial Pd/C. These astonishing characteristics are attributed to the attractive nanocube structures as well as the large number of exposed active areas. Furthermore, the bifunctional effects originated from Pd and Pb interactions help to display high endurance with less activity decay after 500 cycles, showing a great potential in fuel cell applications.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Pingping Song
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences Robert Gordon University , Aberdeen AB10 7GJ , U.K
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 510632 , P. R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi , Sanyo-Onoda-shi , Yamaguchi 756-0884 , Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
- Tokyo University of Science Yamaguchi , Sanyo-Onoda-shi , Yamaguchi 756-0884 , Japan
| |
Collapse
|
12
|
Superior ethylene glycol electrocatalysis enabled by Au-decorated PdRu nanopopcorns. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Zhang K, Xu H, Yan B, Wang J, Du Y, Liu Q. Superior ethylene glycol oxidation electrocatalysis enabled by hollow PdNi nanospheres. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Du Y, Yang P. Sub-5nm monodispersed PdCu nanosphere with enhanced catalytic activity towards ethylene glycol electrooxidation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Shiraishi Y, Du Y, Yang P. Facile fabrication of novel PdRu nanoflowers as highly active catalysts for the electrooxidation of methanol. J Colloid Interface Sci 2017; 505:1-8. [DOI: 10.1016/j.jcis.2017.05.067] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 11/26/2022]
|
16
|
Rapid fabrication of support-free trimetallic Pt53Ru39Ni8 nanosponges with enhanced electrocatalytic activity for hydrogen evolution and hydrazine oxidation reactions. J Colloid Interface Sci 2017; 505:14-22. [DOI: 10.1016/j.jcis.2017.05.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 11/22/2022]
|
17
|
Li S, Xu H, Yan B, Zhang K, Wang J, Wang C, Guo J, Du Y, Yang P. Facile construction of satellite-like PtAu nanocrystals with dendritic shell as highly efficient electrocatalysts toward ethylene glycol oxidation. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Shahrokhian S, Rezaee S. Fabrication of Trimetallic Pt−Pd−Co Porous Nanostructures on Reduced Graphene Oxide by Galvanic Replacement: Application to Electrocatalytic Oxidation of Ethylene Glycol. ELECTROANAL 2017. [DOI: 10.1002/elan.201700355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saeed Shahrokhian
- Department of Chemistry; Sharif University of Technology; Tehran 11155-9516 Iran
- Institute for Nanoscience and Technology; Sharif University of Technology; Tehran Iran
| | - Sharifeh Rezaee
- Department of Chemistry; Sharif University of Technology; Tehran 11155-9516 Iran
| |
Collapse
|
19
|
Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Shiraishi Y, Du Y, Yang P. Ultrasonic-assisted synthesis of N-doped graphene-supported binary PdAu nanoflowers for enhanced electro-oxidation of ethylene glycol and glycerol. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.146] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Xiong Z, Shiraishi Y, Du Y. Self-Supported Worm-like PdAg Nanoflowers as Efficient Electrocatalysts towards Ethylene Glycol Oxidation. ChemElectroChem 2017. [DOI: 10.1002/celc.201700611] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Bo Yan
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Ke Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Shumin Li
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Caiqin Wang
- Department of Chemistry University of Toronto; Toronto M5S3H4 Canada
| | - Zhiping Xiong
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi; Sanyo-Onoda-shi Yamaguchi 756-0884 Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
- Tokyo University of Science Yamaguchi; Sanyo-Onoda-shi Yamaguchi 756-0884 Japan
| |
Collapse
|
21
|
Newly Designed Ternary Metallic PtPdBi Hollow Catalyst with High Performance for Methanol and Ethanol Oxidation. Catalysts 2017. [DOI: 10.3390/catal7070208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This paper reported the fabrication of ternary metallic PtPdBi hollow nanocatalyst through a facile, one-pot, wet-chemical method by adopting sodium borohydride and polyvinylpyrrolidone as reducing agent and surfactant directing agent, respectively. The hollow structure offers novel morphology and large surface areas, which are conducive to enhancing the electrocatalytic activity. The electrocatalytic properties of hollow PtPdBi nanocatalyst were investigated systematically in alkaline media through cyclic voltammetry and the as-prepared PtPdBi nanocatalyst displays greatly enhanced electrocatalytic activities towards methanol and ethanol oxidation. The calculated mass activities of PtPdBi electrocatalyst are 2.133 A mgPtPd−1 for methanol oxidation reaction and 5.256 A mgPtPd−1 for ethanol oxidation reaction, which are much better than that of commercial Pt/C and commercial Pd/C. The as-prepared hollow nanocatalyst may be a potential promising electrocatalyst in fuel cells and also may be extended to the applications of other desirable functions.
Collapse
|
22
|
Sun L, Liao B, Ren X, Li Y, Zhang P, Deng L, Gao Y. Ternary PdNi-based nanocrystals supported on nitrogen-doped reduced graphene oxide as highly active electrocatalysts for the oxygen reduction reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.159] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Ren X, Liao B, Li Y, Zhang P, Deng L, Gao Y. Facile synthesis of PdSnCo/nitrogen-doped reduced graphene as a highly active catalyst for lithium-air batteries. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Sharma G, Kumar D, Kumar A, Al-Muhtaseb AH, Pathania D, Naushad M, Mola GT. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1216-1230. [DOI: 10.1016/j.msec.2016.11.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/18/2016] [Accepted: 11/02/2016] [Indexed: 01/02/2023]
|
25
|
Babu SP, Elumalai P. Tunable compositions of Pd100−xCux catalysts towards the electrooxidation of ethanol and ethylene glycol. NEW J CHEM 2017. [DOI: 10.1039/c7nj02737k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tunable compositions of Pd100−xCux towards the electrooxidation of ethanol and ethylene glycol have been examined. The Pd70Cu30 exhibited the highest activity and stability.
Collapse
Affiliation(s)
- Sreejith P. Babu
- Electrochemical Energy and Sensors Lab
- Department of Green Energy Technology
- Madanjeet School of Green Energy Technologies
- Pondicherry University
- Pondicherry – 605014
| | - Perumal Elumalai
- Electrochemical Energy and Sensors Lab
- Department of Green Energy Technology
- Madanjeet School of Green Energy Technologies
- Pondicherry University
- Pondicherry – 605014
| |
Collapse
|
26
|
Xu H, Zhang K, Yan B, Zhong J, Li S, Du Y. Facile synthesis of Pd-decorated Pt/Ru networks with highly improved activity for methanol electrooxidation in alkaline media. NEW J CHEM 2017. [DOI: 10.1039/c6nj03773a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic activity toward methanol oxidation is greatly enhanced after partial replacement of Ru with Pd in Pt/Ru/Pd networks.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Ke Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Bo Yan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Jiatai Zhong
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Shumin Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Yukou Du
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| |
Collapse
|
27
|
Liu P, Cheng Z, Ma L, Zhang M, Qiu Y, Chen M, Cheng F. Cuprous oxide template synthesis of hollow-cubic Cu2O@PdxRuynanoparticles for ethanol electrooxidation in alkaline media. RSC Adv 2016. [DOI: 10.1039/c6ra14439j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surfactant-free and low Pd loading Cu2O@PdxRuyhollow-cubes were facilely prepared and their electrocatalytic performance for ethanol electrooxidation were investigated.
Collapse
Affiliation(s)
- Peng Liu
- College of Chemistry and Environmental Engineering
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Guangdong 523808
- P. R. China
| | - Zhiyu Cheng
- College of Chemistry and Environmental Engineering
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Guangdong 523808
- P. R. China
| | - Le Ma
- College of Chemistry and Environmental Engineering
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Guangdong 523808
- P. R. China
| | - Min Zhang
- College of Chemistry and Environmental Engineering
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Guangdong 523808
- P. R. China
| | - Yongfu Qiu
- College of Chemistry and Environmental Engineering
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Guangdong 523808
- P. R. China
| | - Meiqiong Chen
- College of Chemistry and Environmental Engineering
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Guangdong 523808
- P. R. China
| | - Faliang Cheng
- College of Chemistry and Environmental Engineering
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Guangdong 523808
- P. R. China
| |
Collapse
|