1
|
Hu M, Wang Y, Yin XB. STING-activable immunomodulatory bio-glue for multiple postsurgical management. J Control Release 2025; 382:113714. [PMID: 40210124 DOI: 10.1016/j.jconrel.2025.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
In addition to the robust adhesive properties, there is a pressing demand for ideal adhesives in tumor surgery that possess anti-tumor therapeutic effects. In this study, we introduce BSA-MnO2-GP@Ca-Y (BMGY) bio-glue by integrating bovine serum albumin (BSA)-MnO2, genipin (GP), and Ca-Y zeolite. Ca-Y zeolite exhibits the thrombin activity for hemostasis, while the cross-linking of BSA, GP, and skin tissue induces wound adherence upon laser irradiation for normalized skin structure within nine days. The heat generated during the "photothermal suture" process ablates residual tumor cells and produces antigen fragments, which are internalized by antigen presenting cells. The released Mn ions subsequently activate the cGAS-STING pathway, enhancing immunogenicity. Consequently, tumor-infiltrating p-TBK1 and interferon-β levels are significantly increased, ensuring robust anti-tumor immunity following BMGY treatment. Thus, BMGY bio-glue achieves hemostasis, wound bonding, ablation of residual tumor cells, and tumor recurrence inhibition, simultaneously. Beyond Ca-Y zeolite, BSA-MnO2-GP serves as a versatile platform for loading other drugs or active species to boost therapeutic efficacy. Therefore, we present a successful bio-glue paradigm with significant translational potential for various postsurgical management applications.
Collapse
Affiliation(s)
- Mengzi Hu
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yaqiong Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Xue-Bo Yin
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
2
|
Islam MR, Bhuiyan MA, Ahmed MH, Rahaman M. Hydrothermal synthesis of NiO nanoparticles decorated hierarchical MnO 2 nanowire for supercapacitor electrode with improved electrochemical performance. Heliyon 2024; 10:e26631. [PMID: 38420414 PMCID: PMC10901009 DOI: 10.1016/j.heliyon.2024.e26631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
In this work, MnO2/NiO nanocomposite electrode materials have been synthesized by a cost-effective hydrothermal method. The effect of the concentrations (0, 1, 3, 5, and 7 wt%) of NiO nanoparticles on the surface morphology, structural properties, and electrochemical performance of the nanocomposites was characterized by different characterization techniques. The scanning electron micrographs (SEM) reveal that the as-prepared NiO nanoparticles are well connected and stuck with the MnO2 nanowires. The transmission electron microscopy (TEM) analysis showed an increase in the interplanar spacing due to the incorporation of NiO nanoparticles. The different structural parameters of MnO2/NiO nanocomposites were also found to vary with the concentration of NiO. The MnO2/NiO nanocomposites provide an improved electrochemical performance together with a specific capacitance as high as 343 F/g at 1.25 A/g current density. The electrochemical spectroscopic analysis revealed a reduction in charge transfer resistance due to the introduction of NiO, indicating a rapid carrier transportation between the materials interface. The improved electrochemical performance of MnO2/NiO can be attributed to good interfacial interaction, a large interlayer distance, and low charge transfer resistance. The unique features of MnO2/NiO and the cost-effective hydrothermal method will open up a new route for the fabrication of a promising supercapacitor electrode.
Collapse
Affiliation(s)
- Muhammad Rakibul Islam
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | | | - Md Hasive Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Mizanur Rahaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
3
|
Wang Y, Jiang X, Song X, Cao X, Xu Z, Wang Y, Li J, Wu N, Bai J. Manganese oxide-loaded activated carbon for ammonium removal from wastewater: the roles of adsorption and oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110161-110174. [PMID: 37782364 DOI: 10.1007/s11356-023-30086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
The urgent need to address the severe issue of nitrogen pollution has prompted the search for a functional and easy recycling material. In this study, manganese oxides (MnOx) were loaded on activated carbon (AC), resulting in a composite known as AC-MnOx, for efficient ammonium removal from aqueous solutions. The results indicated a remarkable 15.6-fold increase in ammonium removal efficiency and a fivefold enhancement in removal capacity for AC-MnOx (3.20 mg/g) compared to AC. Under specific conditions (initial NH4+-N concentration of 15 mg/L, adsorbent dose of 2.5 g, pH of 6.5, and temperature of 35 ℃), the highest achieved ammonium removal efficiency reached 94.6%. Furthermore, the study distinguishes the contributions of catalytic oxidation and adsorption in the removal process. The adsorption process was effectively modeled using pseudo-second-order kinetics and Langmuir isotherm models. Interestingly, the amount of oxidation conversion (Ntur) exhibited a linear relationship with the dosage when the initial ammonium concentration was sufficiently high, while the relationship between initial ammonium concentration and the ratio of Ntur to adsorption capacity (Nsur) followed a negative exponential trend. The removal mechanisms involved electrostatic interaction between ammonium and the negatively charged dehydrogenated hydroxyl groups (- OHsur) or cation tunnel in crystal structures of MnOx, ion exchange adsorption, and the oxidation impact of MnOx. This research provides valuable insights into the application of immobilized MnOx media for ammonium removal. Moreover, filling AC-MnOx into constructed wetlands (CW) proved to be an effective method for reducing ammonium pollution, demonstrating its potential in the field of engineering wastewater treatment.
Collapse
Affiliation(s)
- Yifei Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xingyi Jiang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xin Cao
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhongshuo Xu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuhui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianfeng Li
- State Environmental Protection Key Laboratory of Efficient Resource Utilization Techniques of Coal Waste, Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-Added Utilization of Coal-Related Wastes, Shanxi University, Taiyuan, 030006, China
| | - Nan Wu
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Luo L, Peng H, Sun H, Peng T, Yuan M. Research on Three-Dimensional Porous Composite Nano-Assembled α-MnO 2/Reduced Graphene Oxides and Their Super-Capacitive Performance. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8406. [PMID: 36499902 PMCID: PMC9735457 DOI: 10.3390/ma15238406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
A series of three-dimensional porous composite α-MnO2/reduced graphene oxides (α-MnO2/RGO) were prepared by nano-assembly in a hydrothermal environment at pH 9.0-13.0 using graphene oxide as the precursor, KMnO4 and MnCl2 as the manganese sources and F- as the control agent of the α-MnO2 crystal form. The α-MnO2/RGO composites prepared at different hydrothermal pH levels presented porous network structures but there were significant differences in these structures. The special pore structure promoted the migration of ions in the electrolyte in the electrode material, and the larger specific surface area promoted the contact between the electrode material and the electrolyte ions. The introduction of graphene solved the problem of poor conductivity of MnO2, facilitated the rapid transfer of electrons, and significantly improved the electrochemical performance of materials. When the pH was 12.0, the specific surface area of the 3D porous composite material αMGs-12.0 was 264 m2·g-1, and it displayed the best super-capacitive performance; in Na2SO4 solution with 1.0 mol·L-1 electrolyte, the specific capacitance was 504 F·g-1 when the current density was 0.5 A·g-1 and the specific capacitance retention rate after 5000 cycles was 88.27%, showing that the composite had excellent electrochemical performance.
Collapse
Affiliation(s)
- Liming Luo
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
- Institute of Mineral Materials & Application, Southwest University of Science and Technology, Mianyang 621010, China
- School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Huiyun Peng
- Institute of Mineral Materials & Application, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hongjuan Sun
- Institute of Mineral Materials & Application, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tongjiang Peng
- Institute of Mineral Materials & Application, Southwest University of Science and Technology, Mianyang 621010, China
| | - Mingliang Yuan
- School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Li M, Zhu K, Zhao H, Meng Z, Wang C, Chu PK. Construction of α-MnO 2 on Carbon Fibers Modified with Carbon Nanotubes for Ultrafast Flexible Supercapacitors in Ionic Liquid Electrolytes with Wide Voltage Windows. NANOMATERIALS 2022; 12:nano12122020. [PMID: 35745359 PMCID: PMC9228112 DOI: 10.3390/nano12122020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023]
Abstract
In this study, α-MnO2 and Fe2O3 nanomaterials are prepared on a carbon fiber modified with carbon nanotubes to produce the nonbinder core–shell positive (α-MnO2@CNTs/CC) and negative (Fe2O3@CNTs/CC) electrodes that can be operated in a wide voltage window in ultrafast asymmetrical flexible supercapacitors. MnO2 and Fe2O3 have attracted wide research interests as electrode materials in energy storage applications because of the abundant natural resources, high theoretical specific capacities, environmental friendliness, and low cost. The electrochemical performance of each electrode is assessed in 1 M Na2SO4 and the energy storage properties of the supercapacitors consisting of the two composite electrodes are determined in Na2SO4 and EMImBF4 electrolytes in the 2 V and 4 V windows. The 2 V supercapacitor can withstand a large scanning rate of 5000 mV S−1 without obvious changes in the cyclic voltammetry (CV) curves, besides showing a maximum energy density of 57.29 Wh kg−1 at a power density of 833.35 W kg−1. Furthermore, the supercapacitor retains 87.06% of the capacity after 20,000 galvanostatic charging and discharging (GCD) cycles. The 4 V flexible supercapacitor shows a discharging time of 1260 s and specific capacitance of 124.8 F g−1 at a current of 0.5 mA and retains 87.77% of the initial specific capacitance after 5000 GCD cycles. The mechanical robustness and practicality are demonstrated by physical bending and the powering of LED arrays. In addition, the contributions of the active materials to the capacitive properties and the underlying mechanisms are explored and discussed
Collapse
Affiliation(s)
- Mai Li
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
- Correspondence: (M.L.); (Z.M.)
| | - Kailan Zhu
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
| | - Hanxue Zhao
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science, Donghua University, Shanghai 201620, China
- Correspondence: (M.L.); (Z.M.)
| | - Chunrui Wang
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
| | - Paul K. Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China;
| |
Collapse
|
6
|
Sharma M, Adalati R, Kumar A, Mehta M, Chandra R. Composite Assembling of Oxide-Based Optically Transparent Electrodes for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26791-26802. [PMID: 35656926 DOI: 10.1021/acsami.2c05189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Simultaneously achieving a transparent and high-energy density supercapacitor is a major challenge because of the trade-off between energy storage capacity and optical transparency of active electrode materials. Herein, we demonstrate a novel approach to construct an optically transparent asymmetric supercapacitor (Trans-ASC) by assembling positive (ZnO-SnO2) and negative (TiO2-SnO2) composite thin-film electrodes on a conductive indium-doped tin oxide substrate via reactive DC magnetron cosputtering. The optical transmittance for both composite thin films is found to be 68% (ZnO-SnO2) and 64% (TiO2-SnO2). Furthermore, electrochemical kinematics of the primed transparent electrodes are scrutinized in 0.5 M KOH electrolyte without affecting the transparency of active electrodes. The structural reliability of the electrodes aids the superb electrochemical performance to construct a Trans-ASC, TiO2-SnO2//ZnO-SnO2, which works at a voltage of +1.2 V and attains a higher areal capacitance of 44.6 mF cm-2 at 2 mA cm-2. The assembled Trans-ASC delivers a maximum areal energy density of 8.75 μW h cm-2 with an optimal areal power density of 570 μW cm-2. Additionally, the capacitance retention of 81.6% and transparency of both electrodes remain almost the same (up to 60% for ZnO-SnO2 and 62% for TiO2-SnO2) even after 10,000 charging-discharging cycles. These remarkable electrochemical properties and outstanding cycling stability of the designed Trans-ASC device make it a potential candidate for storing energy and for further use in transparent electronic devices.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravikant Adalati
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ashwani Kumar
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Manan Mehta
- Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Ramesh Chandra
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
7
|
Kumar Y, Uke SJ, Kumar A, Merdikar SP, Gupta M, Thakur AK, Bocchetta P, Gupta A, Kumar V, Kumar Y. Triethanolamine–ethoxylate (TEA-EO) assisted hydrothermal synthesis of hierarchical β-MnO2 nanorods: effect of surface morphology on capacitive performance. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abef21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
In this study we are presenting the synthesis of MnO2 nanorods using hydrothermal method assisted by facile tri-ethanolamine-ethoxylate. Structural (x-ray diffraction, Rietveld refinement), functional (Fourier Transform Infrared spectroscopy and x-ray Photoelectron Spectroscopy) and morphological (Field emission scanning electron microscope, Transmission electron microscopy) characterization conform the β-MnO2 nanostructure with a rod-like morphology and uniform thickness. The morphological variations of the nanorod thickness can be easily controlled by simply monitoring the reaction temperature. Comparative investigations of β-MnO2 samples synthesized at two different reaction temperatures (viz. 100 °C and 120 °C) used as a supercapacitive electrode material have been performed with the aid of different electrochemical techniques. With different electrolytes (Li2SO4 and Na2SO4), supercapacitor device is tested using Cyclic voltammetry, impedance spectroscopy and galvanostatic charge discharge. Interestingly, the low temperature synthesized β-MnO2 nanorods sample exhibit superior electrochemical performance in 1 mol l−1 Li2SO4 electrolyte in terms of high specific capacitance (462 Fg−1 at10 mVs−1), energy density (9.72 WhKg−1), and outstanding cyclic stability (90.26% over 2000 cycles).
Collapse
|
8
|
In situ polymerization of PEDOT:PSS films based on EMI-TFSI and the analysis of electrochromic performance. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this report, PEDOT composite films were prepared by in situ electrochemical polymerization. 1-Ethyl-3-methylimidazole bis(trifluoromethylsulfonyl)imide (EMI-TFSI) was used as an ionic liquid dopant for PEDOT:PSS films. Subsequently, these PEDOT:PSS/EMI-TFSI films were compared with PEDOT:PSS films based on their morphology, structure, electrochromic properties, and optical properties at different deposition voltages and deposition times. It was observed that the addition of EMI-TFSI enhanced all the aforementioned properties of the films. PEDOT:PSS/EMI-TFSI films were seen to have a larger ion diffusion coefficient (1.38 × 10−20 cm2·s−1), a wider color change range (43.48%), a shorter response time (coloring response time = 1.2 s; fade response time = 2 s), and a higher coloring efficiency (189.86 cm2·C−1) when compared with normal PEDOT:PSS films. The introduction of EMI-TFSI in the films ultimately resulted in superior electrochemical and optical properties along with higher stability.
Collapse
|
9
|
Iftikhar T, Xu Y, Aziz A, Ashraf G, Li G, Asif M, Xiao F, Liu H. Tuning Electrocatalytic Aptitude by Incorporating α-MnO 2 Nanorods in Cu-MOF/rGO/CuO Hybrids: Electrochemical Sensing of Resorcinol for Practical Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31462-31473. [PMID: 34196524 DOI: 10.1021/acsami.1c07067] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, Cu-MOF/rGO/CuO/α-MnO2 nanocomposites have been fabricated by a one-step hydrothermal method and used in the voltammetric detection of resorcinol (RS). The poor conductivity of MOFs in the field of electrochemical sensing is still a major challenge. A series of Cu-MOF/rGO/CuO/α-MnO2 nanocomposites have been synthesized with varying fractions of rGO and with a fixed amount of α-MnO2 via a facile method. These nanocomposites are well characterized using some sophisticated characterization techniques. The as-prepared nanohybrids have strongly promoted the redox reactions at the electrode surface due to their synergistic effects of improved conductivity, high electrocatalytic activity, an enlarged specific surface area, and a plethora of nanoscale level interfacial collaborations. The electrode modified with Cu-MOF/rGO/CuO/α-MnO2 has revealed superior electrochemical properties demonstrating linear differential pulse voltammetry (DPV) responses from a 0.2 to 22 μM RS concentration range (R2 = 0.999). The overall results of this sensing podium have shown excellent stability, good recovery, and a low detection limit of 0.2 μM. With excellent sensing performance achieved, the practicability of the sensor has been evaluated to detect RS in commercial hair color samples as well as in tap water and river water samples. Therefore, we envision that our hybrid nanostructures synthesized by the structural integration strategy will open new horizons in material synthesis and biosensing platforms.
Collapse
Affiliation(s)
- Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ayesha Aziz
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Ghazala Ashraf
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Muhammad Asif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
10
|
|
11
|
Rawal S, Mandal UK, Kumar A, Kumar Y, Joshi B. Enhanced electrochemical performance of hierarchical porous carbon/polyaniline composite for supercapacitor applications. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abdd88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
In this work, activated carbon/polyaniline (AC/PANi) composites were synthesized by low temperature in situ polymerization and their electrochemical performance was investigated. Microstructure and morphology examination of the samples confirmed a uniform coating of polyaniline on AC surfaces without any change in the structure. The electrochemical studies of the samples confirmed the improvement in the electrochemical performance of AC/PANi composites. Despite a decrease in the specific surface area a substantial increase in electrochemical performance is recorded for the AC/PANi composites due to the synergistic effect between the pseudocapacitance and double layer capacitance. The highest specific capacitance of 1021 F g−1 was calculated for the APA-29.4 composite in neutral aqueous electrolyte (1 M Na2SO4) which is many times greater than the specific capacitance values for AC (253 F g−1) and PANi (389 F g−1). The enhancement in the electrochemical performance of AC after polymerization with PANi in composites favours its use as a favourable electrode material for the energy storage devices.
Collapse
|
12
|
Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137412] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Shao F, Li S, Xu Y, Jiao Y, Chen J. Molten salt strategy and plasma technology induced MnO 2 with oxygen vacancy for high performance Zn-ion batteries. NEW J CHEM 2021. [DOI: 10.1039/d1nj03934b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygen vacancy-rich MnO2 was synthesized by the molten salt method and the plasma etching strategy. The amorphous layer increased the active sites and the oxygen vacancies on the surface of MnO2 that promoted the rapid transfer of charges.
Collapse
Affiliation(s)
- Fuqiang Shao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shuke Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yang Jiao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
14
|
Huang ZN, Liu GC, Zou J, Jiang XY, Liu YP, Yu JG. A hybrid composite of recycled popcorn-shaped MnO2 microsphere and Ox-MWCNTs as a sensitive non-enzymatic amperometric H2O2 sensor. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Hung CM, Huang CP, Chen CW, Wu CH, Lin YL, Dong CD. Activation of percarbonate by water treatment sludge-derived biochar for the remediation of PAH-contaminated sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114914. [PMID: 32806443 DOI: 10.1016/j.envpol.2020.114914] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Sludge from a groundwater treatment plant was used to prepare biochar by pyrolysis. The Fe-Mn rich biochar was used to activate percarbonate for the remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated aquatic sediments. Results showed that the sludge-derived biochar (SBC) produced at a pyrolysis temperature of 700 °C was the most effective in activating percarbonate, which exhibited significant oxidative removal of PAHs. PAHs degradation took place via a Fenton-like oxidation manners, contributed from the Fe3+/Fe2+ and Mn3+/Mn2+ redox pairs, and achieved the highest degradation efficiency of 87% at pH0 6.0. Reactions between oxygenated functional groups of biochar and H2O2 generated of O2•- and HO• radicals in abundance under neutral and alkaline pH was responsible for the catalytic degradation of PAHs. Our results provided new insights into the environmental applications of SBC for the green sustainable remediation of organics-contaminated sediments and aided in reduction of associated environmental and health risk.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chung-Hsin Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
16
|
Zhang M, Bu T, Bai F, Zhao S, Tian Y, He K, Zhao Y, Zheng X, Wang L. Gold nanoparticles-functionalized three-dimensional flower-like manganese dioxide: A high-sensitivity thermal analysis immunochromatographic sensor. Food Chem 2020; 341:128231. [PMID: 33011476 DOI: 10.1016/j.foodchem.2020.128231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
A sensitive photothermal immunochromatographic test strip (PITS) for the detection of deoxynivalenol (DON) was developed using flower-like gold nanoparticle-deposited manganese dioxide nanocarrier (FMD-G NC) labeled antibodies (Abs) as the photothermal-sensing probe. FMD was used as a template to deposit small gold nanoparticles (GNPs) to synthesize FMD-G NC with large specific surface area and significant photothermal conversion property. The FMD-G-Ab probe was competitively captured by DON target and antigen coated on test line (T-line), forming colorimetric signals under naked eyes and photothermal signals under an 808 nm laser. Under optimal conditions, the PITS exhibited sensitive and specific detection of DON from 0.19 ng mL-1 to 12 ng mL-1 with detection limits of 0.013 ng mL-1, which were over 15-fold and 58-fold more sensitive than visual FMD-G-ITS and traditional GNPs-ITS. In addition, the novel FMD-G-PITS possessed a universal applicability, which could be well applied in green bean, corn, and millet.
Collapse
Affiliation(s)
- Meng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongming Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yijian Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaohan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
17
|
Gupta SP, Gosavi SW, Late DJ, Qiao Q, Walke PS. Temperature driven high-performance pseudocapacitor of carbon nano-onions supported urchin like structures of α-MnO2 nanorods. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Iqbal MZ, Zakar S, Haider SS. Role of aqueous electrolytes on the performance of electrochemical energy storage device. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113793] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Selvaraj AR, Kim HJ, Senthil K, Prabakar K. Cation intercalated one-dimensional manganese hydroxide nanorods and hierarchical mesoporous activated carbon nanosheets with ultrahigh capacitance retention asymmetric supercapacitors. J Colloid Interface Sci 2020; 566:485-494. [PMID: 32035353 DOI: 10.1016/j.jcis.2020.01.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 11/30/2022]
Abstract
We have reported the electrochemical performance of K+ ion doped Mn(OH)4 and MnO2 nanorods as a positive electrode and a highly porous activated carbon nanosheet (AC) made from Prosopis Juliflora as negative electrode asymmetric supercapacitor (ASC) with high rate capability and capacity retention. The cation K+ doped Mn(OH)4 and MnO2 nanorods with large tunnel sizes allow the electrolyte to penetrate through a well-defined pathway and hence benefits from the intercalation pseudocapacitance and surface redox reactions. As a result, they exhibit good electrochemical performance in neutral aqueous electrolytes. More specifically, the K+-Mn(OH)4 nanorods exhibit higher capacitance values than K+-MnO2 nanorods due to the homogenous distribution of 1D nanorods and optimum amount of OH bonds. The fabricated K+-Mn(OH)4 symmetric electrochemical Pseudocapacitor shows very high energy density of 10.11 Wh/kg and high-power density of 51.04 W/kg over the range of 1.0 V in aqueous electrolyte. The energy density of AC||K+-Mn(OH)4 ASC is improved significantly compared to those of symmetric supercapacitors. The fabricated ASC exhibits a wide working voltage window (1.6 V), high power (143.37 W/kg) and energy densities (41.38 Wh/kg) at 0.2 A g-1, and excellent cycling behavior with 107.3% capacitance retention after 6000 cycles at 2 A g-1 indicating the promising practical applications in electrochemical supercapacitors.
Collapse
Affiliation(s)
- Aravindha Raja Selvaraj
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hee-Je Kim
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Karuppanan Senthil
- Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu, India
| | - Kandasamy Prabakar
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
20
|
Li W, Wu M, Shi P, Li T, Yue H, Dong Z, Gao Y, Lou X. Enhanced energy storage performance of advanced hybrid supercapacitors derived from ultrafine Ni–P@Ni nanotubes with novel three-dimensional porous network synthesized via reaction temperatures regulation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Gurusamy L, Anandan S, Liu N, Wu JJ. Synthesis of a novel hybrid anode nanoarchitecture of Bi2O3/porous-RGO nanosheets for high-performance asymmetric supercapacitor. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Holland AW, Cruden A, Zerey A, Hector A, Wills RGA. Electrochemical study of TiO2 in aqueous AlCl3 electrolyte via vacuum impregnation for superior high-rate electrode performance. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42500-019-0010-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractThis communication elucidates the charge storage mechanism of a TiO2 electrode in 1 mol dm− 3 AlCl3 for use in aqueous-ion batteries. Cyclic voltammetry studies suggest a surface contribution to charge storage and that cycle life can be improved by limiting the potential ≥ − 1.0 V vs SCE. In order to enhance this surface contribution, a simple vacuum impregnation technique was employed to improve electrode-electrolyte contact. This resulted in a significant improvement in the high rate performance of TiO2, where a capacity of 15 mA h g− 1 was maintained at the very high specific current of 40 A g− 1, a decrease of only 25% from when the electrode was cycled at 1 A g− 1. The vacuum impregnation process was also applied to copper-hexacyanoferrate, envisaged as a possible positive electrode, again resulting in significant improvements to high-rate performance. This demonstrates the potential for using this simple technique for improving electrode performance in other aqueous electrolyte battery systems.
Collapse
|
23
|
Sun M, Fang LM, Liu JQ, Zhang F, Zhai LF. Electro-activation of O 2 on MnO 2/graphite felt for efficient oxidation of water contaminants under room condition. CHEMOSPHERE 2019; 234:269-276. [PMID: 31220660 DOI: 10.1016/j.chemosphere.2019.06.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/25/2019] [Accepted: 06/11/2019] [Indexed: 05/12/2023]
Abstract
The activation of oxygen (O2) under room condition is highly desirable for oxidative removal of organic pollutants in water. Herein, we report a graphite felt (GF)-supported α-MnO2 catalyst which is active for activating O2 with assistance of an anodic electric field. The electro-assisted catalytic wet air oxidation (ECWAO) process on MnO2/GF is able to rapidly degrade a variety of dyes, pharmaceutics and personal care products (PPCPs) under room condition. The congo red, basic fuchsin, neutral red and methylene blue are completely mineralized in 160 min, and the bisphenol A, triclosan and ciprofloxacin are mineralized by 89.9%, 81.5% and 65.4%, respectively, in 300 min. Mechanistic study indicates a surface-catalyzed non-free radical pathway for the oxidation of organic pollutants by O2 in the ECWAO process. The oxygen vacancies on MnO2 are identified as the catalytically active sites, at which oxygen atom is transferred from O2 to organic molecule through chemisorbed oxygen species. The anodic electric field assists such an oxygen transfer pathway by activating the complex of chemisorbed oxygen species and organic molecule through electro-oxidation reaction. The ECWAO process on MnO2/GF electrode exhibits a great potential for practical wastewater treatment under room condition.
Collapse
Affiliation(s)
- Min Sun
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li-Ming Fang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jia-Qin Liu
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei, 230009, China
| | - Feng Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lin-Feng Zhai
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
24
|
Facile Electrodeposition of Poly(3,4-ethylenedioxythiophene) on Poly(vinyl alcohol) Nanofibers as the Positive Electrode for High-Performance Asymmetric Supercapacitor. ENERGIES 2019. [DOI: 10.3390/en12173382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(vinyl alcohol)/poly(3,4-ethylenedioxythiophene) (PVA/PEDOT) nanofibers were synthesized as a positive electrode for high-performance asymmetric supercapacitor (ASC). PVA/PEDOT nanofibers were prepared through electrospinning and electrodeposition meanwhile reduced graphene oxide (rGO) was obtained by electrochemical reduction. The PVA/PEDOT nanofibers demonstrated cauliflower-like morphology showing that PEDOT was uniformly coated on the smooth cross-linking structure of PVA nanofibers. In addition, the ASC showed a remarkable energy output efficiency by delivering specific energy of 21.45 Wh·kg−1 at a specific power of 335.50 W·kg−1 with good cyclability performance (83% capacitance retained) after 5000 CV cycles. The outstanding supercapacitive performance is contributed from the synergistic effects of both PVA/PEDOT//rGO, which gives promising materials for designing high-performance supercapacitor applications.
Collapse
|
25
|
Edison TNJI, Atchudan R, Karthik N, Xiong D, Lee YR. Direct electro-synthesis of MnO2 nanoparticles over nickel foam from spent alkaline battery cathode and its supercapacitor performance. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Background, fundamental understanding and progress in electrochemical capacitors. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-018-4160-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Barreca D, Gri F, Gasparotto A, Carraro G, Bigiani L, Altantzis T, Žener B, LavrenčičŠtangar U, Alessi B, Padmanaban DB, Mariotti D, Maccato C. Multi-functional MnO 2 nanomaterials for photo-activated applications by a plasma-assisted fabrication route. NANOSCALE 2018; 11:98-108. [PMID: 30303201 DOI: 10.1039/c8nr06468g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Supported MnO2-based nanomaterials were fabricated on fluorine-doped tin oxide substrates using plasma enhanced-chemical vapor deposition (PE-CVD) between 100 °C and 400 °C, starting from a fluorinated Mn(ii) diamine diketonate precursor. Growth experiments yielded β-MnO2 with a hierarchical morphology tuneable from dendritic structures to quasi-1D nanosystems as a function of growth temperature, whose variation also enabled a concomitant tailoring of the system fluorine content, and of the optical absorption and band gap. Preliminary photocatalytic tests were aimed at the investigation of photoinduced hydrophilic (PH) and solid phase photocatalytic (PC) performances of the present nanomaterials, as well as at the photodegradation of Plasmocorinth B azo-dye aqueous solutions. The obtained findings highlighted an attractive system photoactivity even under visible light, finely tailored by fluorine content, morphological organization and optical properties of the prepared nanostructures. The results indicate that the synthesized MnO2 nanosystems have potential applications as advanced smart materials for anti-fogging/self-cleaning end uses and water purification.
Collapse
Affiliation(s)
- Davide Barreca
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Unique porous Mn2O3/C cube decorated by Co3O4 nanoparticle: Low-cost and high-performance electrode materials for asymmetric supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Ma Q, Yang M, Xia X, Chen H, Yang L, Liu H. Amorphous hierarchical porous manganese oxides for supercapacitors with excellent cycle performance and rate capability. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Ahmed S, Rafat M, Singh MK, Hashmi SA. A free-standing, flexible PEDOT:PSS film and its nanocomposites with graphene nanoplatelets as electrodes for quasi-solid-state supercapacitors. NANOTECHNOLOGY 2018; 29:395401. [PMID: 29968570 DOI: 10.1088/1361-6528/aad0b8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Research and development on all-solid-state, flexible supercapacitors is the prime concern of the scientific community these days due to their various advantages including their easy transportability, miniaturization, and compactness in different appliances. We report the novel configuration of all-solid symmetrical supercapacitors employing free-standing, flexible films of poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) (PEDOT:PSS) and its nanocomposite electrodes with graphene nanoplatelets (GNPs), separated by ionic liquid (IL) (1-ethyl 3-methylimidazolium trifluoromethanesulfonate (EMITf))-based gel polymer electrolyte (GPE) films. The free-standing and flexible form of PEDOT:PSS/GNP nanocomposite films have been prepared via simple mixing of the two counterparts. Scanning electron microscopy, x-ray diffraction, Raman analysis, and thermal and mechanical characterizations have been performed to ascertain the suitability of pristine and nanocomposite PEDOT:PSS films as potential supercapacitor electrodes. The GPE film, comprising of a solution of NH4CF3SO3 (NH4-triflate or NH4Tf) in IL, entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP), is a promising electrolyte due to its high ionic conductivity and sufficient electrochemical stability window. The supercapacitor with a PEDOT:PSS nanocomposite containing ∼3.8 wt.% of GNP has been found to give an optimum specific capacitance of ∼106 F g-1 (evaluated from electrochemical impedance spectroscopy), and specific energy and power of ∼6.95 Wh kg-1 and 2.58 kW kg-1, respectively (evaluated from galvanostatic charge-discharge). More importantly, the capacitors demonstrate stable performance for more than 2000 charge-discharge cycles, with only ∼10% initial fading in capacitance. Interestingly, the PEDOT:PSS/GNP nanocomposite-based solid-state supercapacitors with the IL-incorporated GPE have shown comparable (even better) performance than other reported PEDOT:PSS-based supercapacitors.
Collapse
Affiliation(s)
- Sultan Ahmed
- Department of Applied Sciences & Humanities, Jamia Millia Islamia, New Delhi-110025, India
| | | | | | | |
Collapse
|
31
|
Deshmukh P, Sohn Y, Shin WG. Electrochemical performance of facile developed aqueous asymmetric (Fe,Cr)2O3//MnO2 supercapacitor. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.197] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Malaie K, Ganjali MR, Alizadeh T, Norouzi P. Electrochemical investigation of magnetite-carbon nanocomposite in situ grown on nickel foam as a high-performance binderless pseudocapacitor. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3976-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Xu Z, Sun S, Cui W, Lv J, Geng Y, Li H, Deng J. Interconnected network of ultrafine MnO2 nanowires on carbon cloth with weed-like morphology for high-performance supercapacitor electrodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.138] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Mallakpour S, Abdolmaleki A, Tabebordbar H. Employment of ultrasonic irradiation for production of poly(vinyl pyrrolidone)/modified alpha manganese dioxide nanocomposites: Morphology, thermal and optical characterization. ULTRASONICS SONOCHEMISTRY 2018; 41:163-171. [PMID: 29137739 DOI: 10.1016/j.ultsonch.2017.09.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
This work explains the production, morphology, and features of novel nanocomposite (NC) established on poly(vinyl pyrrolidone) (PVP) as polymer background and modified alpha manganese dioxide (α-MnO2) nanorod (NR) asan efficient filler. At first, one-dimensional α-MnO2 nanorods (NRs) were produced by a hydrothermal technique and then they were amended with stearic acid (SA) by a solvothermal process. In following, the NCs were made by adding different volumes of α-MnO2-SA NR (1, 3 and 5wt%) in the PVP matrix through ultrasonic irradiation as a green, low-cost, fast, and useful technique. Structural and morphological descriptions confirm crystallinity of α-MnO2-SA NRs and showed that NRs have been separately dispersed in PVP matrix with rod-like morphology and diameter of about 40-60nm. The use of modifier and ultrasonic waves is accountable for good homogeneities of NRs. Thermogravimetric analysis revealed that thermal permanency of the obtained NCs has grown with increasing the α-MnO2-SA content. Also, the UV-vis absorption of NCs was enhanced with the incorporation of the modified α-MnO2 NR in PVP matrix. The substantial perfections in NCs properties are associated to compatible intermolecular relations between the surface modifying groups of the α-MnO2-SA and PVP chain.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Amir Abdolmaleki
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Hashem Tabebordbar
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
35
|
Wei C, Yu J, Yang X, Zhang G. Activated Carbon Fibers with Hierarchical Nanostructure Derived from Waste Cotton Gloves as High-Performance Electrodes for Supercapacitors. NANOSCALE RESEARCH LETTERS 2017; 12:379. [PMID: 28582960 PMCID: PMC5457387 DOI: 10.1186/s11671-017-2151-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/23/2017] [Indexed: 05/03/2023]
Abstract
One of the most challenging issues that restrict the biomass/waste-based nanocarbons in supercapacitor application is the poor structural inheritability during the activating process. Herein, we prepare a class of activated carbon fibers by carefully selecting waste cotton glove (CG) as the precursor, which mainly consists of cellulose fibers that can be transformed to carbon along with good inheritability of their fiber morphology upon activation. As prepared, the CG-based activated carbon fiber (CGACF) demonstrates a surface area of 1435 m2 g-1 contributed by micropores of 1.3 nm and small mesopores of 2.7 nm, while the fiber morphology can be well inherited from the CG with 3D interconnected frameworks created on the fiber surface. This hierarchically porous structure and well-retained fiber-like skeleton can simultaneously minimize the diffusion/transfer resistance of the electrolyte and electron, respectively, and maximize the surface area utilization for charge accumulation. Consequently, CGACF presents a higher specific capacitance of 218 F g-1 and an excellent high-rate performance as compared to commercial activated carbon.
Collapse
Affiliation(s)
- Chao Wei
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jianlin Yu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiaoqing Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Guoqing Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
36
|
Lv H, Gao X, Xu Q, Liu H, Wang YG, Xia Y. Carbon Quantum Dot-Induced MnO 2 Nanowire Formation and Construction of a Binder-Free Flexible Membrane with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40394-40403. [PMID: 29072448 DOI: 10.1021/acsami.7b14761] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Manganese oxides (MnO2) are regarded as typical and promising electrode materials for supercapacitors. However, the practical electrochemical performance of MnO2 is far from its theoretical value. Nowadays, numerous efforts are being devoted to the design and preparation of nanostructured MnO2 with the aim of improving its electrochemical properties. In this work, ultralong MnO2 nanowires were fabricated in a process induced by carbon quantum dots (CQDs); subsequently, a binder-free flexible electrode membrane was easily obtained by vacuum filtration of the MnO2 nanowires. The effects of the CQDs not only induced the formation of one-dimensional nanostructured MnO2, but also significantly improved the wettability between electrode and electrolyte. In other words, the MnO2 membrane demonstrated a superhydrophilic character in aqueous solution, indicating the sufficient and abundant contact probability between electrode and electrolyte. The binder-free flexible MnO2 electrode exhibited a preeminent specific capacitance of 340 F g-1 at 1 A g-1; even when the current density reached 20 A g-1, it still maintained 260 F g-1 (76% retention rate compared to that at 1 A g-1). Moreover, it also showed good cycling stability with 80.1% capacity retention over 10 000 cycles at 1 A g-1. Furthermore, an asymmetric supercapacitor was constructed using the MnO2 membrane and active carbon as the positive and negative electrodes, respectively, which exhibited a high energy density of 33.6 Wh kg-1 at 1.0 kW kg-1, and a high power density of 10 kW kg-1 at 12.5 Wh kg-1.
Collapse
Affiliation(s)
- Haipeng Lv
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power , Shanghai 200090, China
| | - Xiujiao Gao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power , Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power , Shanghai 200090, China
| | - Haimei Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power , Shanghai 200090, China
| | - Yong-Gang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University , Shanghai 200433, China
| | - Yongyao Xia
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University , Shanghai 200433, China
| |
Collapse
|
37
|
Li Y, Guan B, Maclennan A, Hu Y, Li D, Zhao J, Wang Y, Zhang H. Porous waxberry-like MnO 2 /La 2 O 3 microspheres for high performance asymmetric supercapacitor. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.175] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Guo W, Li Y, Tang Y, Chen S, Liu Z, Wang L, Zhao Y, Gao F. TiO 2 Nanowire Arrays on Titanium Substrate as a Novel Binder-free Negative Electrode for Asymmetric Supercapacitor. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.135] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Revathi C, Kumar RR. Electro Catalytic Properties of α, β, γ, ϵ - MnO2and γ - MnOOH Nanoparticles: Role of Polymorphs on Enzyme Free H2O2Sensing. ELECTROANAL 2017. [DOI: 10.1002/elan.201600608] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- C. Revathi
- Advanced Materials and Devices Laboratory (AMDL); Department of Physics, Bharathiar University; Coimbatore India
| | - R.T. Rajendra Kumar
- Department of NanoScience and Technology; Bharathiar University; Coimbatore India
- DRDO-BU Centre for Life Sciences; Bharathiar University; Coimbatore
| |
Collapse
|
40
|
Supercapacitive performances of MnO 2 nanostructures grown on hierarchical Cu nano leaves via electrodeposition. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|