1
|
Wang KW, Yan T, Meng LC, Pan WG. Preparation, thermal storage properties and application of sodium acetate trihydrate/expanded graphite composite phase change materials. Dalton Trans 2023; 52:14537-14548. [PMID: 37781877 DOI: 10.1039/d3dt02785f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The development of energy storage technology is beneficial for the efficient use of energy and sustainable development. As an effectual approach for storing and transporting thermal energy, latent heat storage using phase change materials (PCMs) has attracted tremendous attention. However, low thermal conductivity, poor stability, and leakages are considerable challenges to the widespread application of solid-liquid PCMs. Composite phase change materials (CPCMs) were prepared by combining expanded graphite (EG) and sodium acetate trihydrate (CH3COONa·3H2O, SAT). EG as a supporting material plays a crucial part in both enhancing the thermal conductivity and preventing the melted PCMs from leakage. The chemical structure, micromorphology, thermal stability, thermal conductivity, phase change behavior and heat storage performance of SAT/EG CPCMs have been extensively investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal conductivity analysis, differential scanning calorimetry (DSC), and cycling stability measurement. The results of SEM indicate that EG with a loose and porous layered structure has a good molding effect and can adsorb SAT well. XRD and FTIR results show that only a simple physical combination between EG and SAT exists, and no new substances have been produced. Compared with pure SAT, thermal conductivity and supercooling tests show that the supercooling degree of the CPCMs was decreased and the thermal conductivity was increased by 205.1%. In addition, the addition of 2 wt% of disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O, DHPD) as a nucleating agent and 0.5 wt% of gelatin as a thickening agent to SAT could reduce the supercooling degree and inhibit the phase separation well. Based on SAT/EG-8% CPCMs, an oven with phase change energy storage was designed and the heat storage/release performance of the oven was investigated under different operating conditions.
Collapse
Affiliation(s)
- K W Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China.
- Key Laboratory of Clean Power Generation and Environmental Protection Technology in Mechanical Industry, Shanghai 200090, China
| | - Ting Yan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China.
- Key Laboratory of Clean Power Generation and Environmental Protection Technology in Mechanical Industry, Shanghai 200090, China
| | - L C Meng
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China.
- Key Laboratory of Clean Power Generation and Environmental Protection Technology in Mechanical Industry, Shanghai 200090, China
| | - W G Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China.
- Key Laboratory of Clean Power Generation and Environmental Protection Technology in Mechanical Industry, Shanghai 200090, China
| |
Collapse
|
2
|
Yang G, Li Y, Wang X, Zhang Z, Huang J, Zhang J, Liang X, Su J, Ouyang L, Huang J. Rational Construction of C@Sn/NSGr Composites as Enhanced Performance Anodes for Lithium Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:271. [PMID: 36678024 PMCID: PMC9861279 DOI: 10.3390/nano13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
As a potential anode material for lithium-ion batteries (LIBs), metal tin shows a high specific capacity. However, its inherent "volume effect" may easily turn tin-based electrode materials into powder and make them fall off in the cycle process, eventually leading to the reduction of the specific capacity, rate and cycle performance of the batteries. Considering the "volume effect" of tin, this study proposes to construct a carbon coating and three-dimensional graphene network to obtain a "double confinement" of metal tin, so as to improve the cycle and rate performance of the composite. This excellent construction can stabilize the tin and prevent its agglomeration during heat treatment and its pulverization during cycling, improving the electrochemical properties of tin-based composites. When the optimized composite material of C@Sn/NSGr-7.5 was used as an anode material in LIB, it maintained a specific capacity of about 667 mAh g-1 after 150 cycles at the current density of 0.1 A g-1 and exhibited a good cycle performance. It also displayed a good rate performance with a capability of 663 mAh g-1, 516 mAh g-1, 389 mAh g-1, 290 mAh g-1, 209 mAh g-1 and 141 mAh g-1 at 0.1 A g-1, 0.2 A g-1, 0.5 A g-1, 1 A g-1, 2 A g-1 and 5 A g-1, respectively. Furthermore, it delivered certain capacitance characteristics, which could improve the specific capacity of the battery. The above results showed that this is an effective method to obtain high-performance tin-based anode materials, which is of great significance for the development of new anode materials for LIBs.
Collapse
Affiliation(s)
- Guanhua Yang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yihong Li
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xu Wang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Zhiguo Zhang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Jiayu Huang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Jie Zhang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xinghua Liang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Jian Su
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Linhui Ouyang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Jianling Huang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
| |
Collapse
|
3
|
Wei L, Ren X, Hou S, Li JH, Shen W, Kang F, Lv R, Ma L, Huang ZH. SnO2/Sn particles anchored in moderately exfoliated graphite as the anode of lithium-ion battery. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Wei L, Yu Q, Yang X, Li JH, Shen W, Kang F, Lv R, Ma L, Huang ZH. A facile assembly of SnO2 nanoparticles and moderately exfoliated graphite for advanced lithium-ion battery anode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
High performance of nitrite electrochemical sensing based on Au-poly(thionine)-tin oxide/graphene nanosheets nanocomposites. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Dong W, Wang W, Shen D, Sun W, Zhao M, Meng L, Yang S, Zhu X, Chi H, Dong L. Structure and Low‐temperature Performance of Waste Graphite Used in Lithium‐ion Battery Anode. ChemistrySelect 2022. [DOI: 10.1002/slct.202104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Dong
- College of Material Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Wenbo Wang
- College of Material Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Ding Shen
- College of Material Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Wen Sun
- College of Material Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Mingyuan Zhao
- Xi'an Research Institute Co. Ltd. China Coal Technology & Engineering Group Corp Xi'an 710054 China
| | - Lingqiang Meng
- College of Material Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Shaobin Yang
- College of Material Science and Engineering Liaoning Technical University Fuxin 123000 China
- Institute of Mineral material and clean transformation Liaoning Technical University Fuxin 123000 Liaoning China
| | - Xuanyi Zhu
- College of Material Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Hailong Chi
- Donghai County Science and Technology Information Research Institute Lianyungang Jiangsu China
| | - Liang Dong
- State Power Investment Company Dong Fang New Energy Corporation Shijiazhuang 050031 Hebei China
| |
Collapse
|
7
|
Murugan P, Nagarajan RD, Shetty BH, Govindasamy M, Sundramoorthy AK. Recent trends in the applications of thermally expanded graphite for energy storage and sensors - a review. NANOSCALE ADVANCES 2021; 3:6294-6309. [PMID: 36133482 PMCID: PMC9418569 DOI: 10.1039/d1na00109d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/10/2021] [Indexed: 05/09/2023]
Abstract
Carbon nanomaterials such as carbon dots (0D), carbon nanotubes (1D), graphene (2D), and graphite (3D) have been exploited as electrode materials for various applications because of their high active surface area, thermal conductivity, high chemical stability and easy availability. In addition, due to the strong affinity between carbon nanomaterials and various catalysts, they can easily form metal carbides (examples: ionic, covalent, interstitial and intermediate transition metal carbides) and also help in the stable dispersion of catalysts on the surface of carbon nanomaterials. Thermally expanded graphite (TEG) is a vermicular-structured carbon material that can be prepared by heating expandable graphite up to 1150 °C using a muffle or tubular furnace. At high temperatures, the thermal expansion of graphite occurred by the intercalation of ions (examples: SO4 2-, NO3 -, Li+, Na+, K+, etc.) and oxidizing agents (examples: ammonium persulfate, H2O2, potassium nitrate, potassium dichromate, potassium permanganate, etc.) which helped in the exfoliation process. Finally, the obtained TEG, an intumescent form of graphite, has been used in the preparation of composite materials with various conducting polymers (examples: epoxy, poly(styrene-co-acrylonitrile), polyaniline, etc.) and metal chlorides (examples: FeCl3, CuCl2, and ZnCl2) for hydrogen storage, thermal energy storage, fuel cells, batteries, supercapacitors, sensors, etc. The main features of TEG include a highly porous structure, very lightweight with an apparent density (0.002-0.02 g cm-3), high mechanical properties (10 MPa), thermal conductivity (25-470 W m-1 K-1), high electrical conductivity (106-108 S cm-1) and low-cost. The porosity and expansion ratio of graphite layers could be customized by controlling the temperature and selection of intercalation ions according to the demand. Recently, TEG based composites prepared with metal oxides, chlorides and polymers have been demonstrated for their use in energy production, energy storage, and electrochemical (bio-) sensors (examples: urea, organic pollutants, Cd2+, Pb2+, etc.). In this review, we have highlighted and summarized the recent developments in TEG-based composites and their potential applications in energy storage, fuel cells and sensors with hand-picked examples.
Collapse
Affiliation(s)
- Preethika Murugan
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India
| | - Ramila D Nagarajan
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India
| | - Brahmari H Shetty
- Department of Physics & Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India
| | - Mani Govindasamy
- Department of Materials Science and Engineering, National Taipei University of Technology (Taipei Tech) Taiwan
| | - Ashok K Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India
| |
Collapse
|
8
|
Amorphous SnO2 nanoparticles embedded into a three-dimensional porous carbon matrix as high-performance anodes for lithium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Kurc B, Pigłowska M, Rymaniak Ł, Fuć P. Modern Nanocomposites and Hybrids as Electrode Materials Used in Energy Carriers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:538. [PMID: 33669863 PMCID: PMC7923237 DOI: 10.3390/nano11020538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Over the past decades, the application of new hybrid materials in energy storage systems has seen significant development. The efforts have been made to improve electrochemical performance, cyclic stability, and cell life. To achieve this, attempts have been made to modify existing electrode materials. This was achieved by using nano-scale materials. A reduction of size enabled an obtainment of changes of conductivity, efficient energy storage and/or conversion (better kinetics), emergence of superparamagnetism, and the enhancement of optical properties, resulting in better electrochemical performance. The design of hybrid heterostructures enabled taking full advantage of each component, synergistic effect, and interaction between components, resulting in better cycle stability and conductivity. Nowadays, nanocomposite has ended up one of the foremost prevalent materials with potential applications in batteries, flexible cells, fuel cells, photovoltaic cells, and photocatalysis. The main goal of this review is to highlight a new progress of different hybrid materials, nanocomposites (also polymeric) used in lithium-ion (LIBs) and sodium-ion (NIBs) cells, solar cells, supercapacitors, and fuel cells and their electrochemical performance.
Collapse
Affiliation(s)
- Beata Kurc
- Institute of Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland;
| | - Marita Pigłowska
- Institute of Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland;
| | - Łukasz Rymaniak
- Institute of Combustion Engines and Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland; (Ł.R.); (P.F.)
| | - Paweł Fuć
- Institute of Combustion Engines and Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland; (Ł.R.); (P.F.)
| |
Collapse
|
10
|
Li Z, Gong L. Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion. MATERIALS 2020; 13:ma13030548. [PMID: 31979286 PMCID: PMC7040733 DOI: 10.3390/ma13030548] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022]
Abstract
Conducting polyaniline (PANI) with high conductivity, ease of synthesis, high flexibility, low cost, environmental friendliness and unique redox properties has been extensively applied in electrochemical energy storage and conversion technologies including supercapacitors, rechargeable batteries and fuel cells. Pure PANI exhibits inferior stability as supercapacitive electrode, and can not meet the ever-increasing demand for more stable molecular structure, higher power/energy density and more N-active sites. The combination of PANI and other active materials like carbon materials, metal compounds and other conducting polymers (CPs) can make up for these disadvantages as supercapacitive electrode. As for rechargeable batteries and fuel cells, recent research related to PANI mainly focus on PANI modified composite electrodes and supported composite electrocatalysts respectively. In various PANI based composite structures, PANI usually acts as a conductive layer and network, and the resultant PANI based composites with various unique structures have demonstrated superior electrochemical performance in supercapacitors, rechargeable batteries and fuel cells due to the synergistic effect. Additionally, PANI derived N-doped carbon materials also have been widely used as metal-free electrocatalysts for fuel cells, which is also involved in this review. In the end, we give a brief outline of future advances and research directions on PANI.
Collapse
Affiliation(s)
- Zhihua Li
- Correspondence: ; Tel.: +138-7312-0818
| | | |
Collapse
|
11
|
Lin X, Wang Y, Chai W, Liu T, Mou J, Liu J, Huang J, Liu M. Solvothermal alcoholysis synthesis of hierarchically porous TiO2-carbon tubular composites as high-performance anodes for lithium-ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Li H, Zhang B, Wang X, Zhang J, An T, Ding Z, Yu W, Tong H. Heterostructured SnO 2-SnS 2@C Embedded in Nitrogen-Doped Graphene as a Robust Anode Material for Lithium-Ion Batteries. Front Chem 2019; 7:339. [PMID: 31139622 PMCID: PMC6527815 DOI: 10.3389/fchem.2019.00339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/25/2019] [Indexed: 11/28/2022] Open
Abstract
Tin-based anode materials with high capacity attract wide attention of researchers and become a strong competitor for the next generation of lithium-ion battery anode materials. However, the poor electrical conductivity and severe volume expansion retard the commercialization of tin-based anode materials. Here, SnO2-SnS2@C nanoparticles with heterostructure embedded in a carbon matrix of nitrogen-doped graphene (SnO2-SnS2@C/NG) is ingeniously designed in this work. The composite was synthesized by a two-step method. Firstly, the SnO2@C/rGO with a nano-layer structure was synthesized by hydrothermal method as the precursor, and then the SnO2-SnS2@C/NG composite was obtained by further vulcanizing the above precursor. It should be noted that a carbon matrix with nitrogen-doped graphene can inhibit the volume expansion of SnO2-SnS2 nanoparticles and promote the transport of lithium ions during continuous cycling. Benefiting from the synergistic effect between nanoparticles and carbon matrix with nitrogen-doped graphene, the heterostructured SnO2-SnS2@C/NG further fundamentally confer improved structural stability and reaction kinetics for lithium storage. As expected, the SnO2-SnS2@C/NG composite exhibited high reversible capacity (1201.2 mA h g−1 at the current rate of 0.1 A g−1), superior rate capability and exceptional long-life stability (944.3 mAh g−1 after 950 cycles at the current rate of 1.0 A g−1). The results demonstrate that the SnO2-SnS2@C/NG composite is a highly competitive anode material for LIBs.
Collapse
Affiliation(s)
- Hui Li
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Bao Zhang
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Xu Wang
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Jie Zhang
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Tianhui An
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Zhiying Ding
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Wanjing Yu
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Hui Tong
- School of Metallurgy and Environment, Central South University, Changsha, China
| |
Collapse
|
13
|
Luo Y, Guo R, Li T, Li F, Liu Z, Zheng M, Wang B, Yang Z, Luo H, Wan Y. Application of Polyaniline for Li-Ion Batteries, Lithium-Sulfur Batteries, and Supercapacitors. CHEMSUSCHEM 2019; 12:1591-1611. [PMID: 30376216 DOI: 10.1002/cssc.201802186] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Conducting polyaniline (PANI) exhibits interesting properties, such as high conductivity, reversible convertibility between redox states, and advantageous structural feature. It therefore receives ever-increasing attention for various applications. This Minireview evaluates recent studies on application of PANI for Li-ion batteries (LIBs), Li-S batteries (LSBs) and supercapacitors (SCPs). The flexible PANI is crucial for cyclability, especially for buffering the volumetric changes of electrode materials, in addition to enhancing the electron/ion transport. Furthermore, PANI can be directly used as an electroactive component in electrode materials for LIBs or SCPs and can be widely applied in LSBs due to its physically and chemically strong affinity for S and polysulfides. The evaluation of studies herein reveals significant improvements of electrochemical performance by physical/chemical modification and incorporation of PANI.
Collapse
Affiliation(s)
- Yani Luo
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Ruisong Guo
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Tingting Li
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Fuyun Li
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Zhichao Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Mei Zheng
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Baoyu Wang
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Zhiwei Yang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, P.R. China
| | - Honglin Luo
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, P.R. China
| | - Yizao Wan
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, P.R. China
| |
Collapse
|
14
|
Li H, Zhang B, Ou X, Zhou Q, Wang C, Peng C, Zhang J. Core‐Shell Structure of SnO
2
@C/PEDOT : PSS Microspheres with Dual Protection Layers for Enhanced Lithium Storage Performance. ChemElectroChem 2019. [DOI: 10.1002/celc.201801774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Li
- School of Metallurgy and EnvironmentCentral South University Changsha 410083 PR China
| | - Bao Zhang
- School of Metallurgy and EnvironmentCentral South University Changsha 410083 PR China
| | - Xing Ou
- School of Metallurgy and EnvironmentCentral South University Changsha 410083 PR China
| | - Qijie Zhou
- School of Metallurgy and EnvironmentCentral South University Changsha 410083 PR China
| | - Chunhui Wang
- School of Metallurgy and EnvironmentCentral South University Changsha 410083 PR China
| | - Chunli Peng
- School of Energy Science and EngineeringCentral South University Changsha 410083 PR China
| | - Jiafeng Zhang
- School of Metallurgy and EnvironmentCentral South University Changsha 410083 PR China
| |
Collapse
|
15
|
Zhang Y, Liu Z, Deng H, Xie J, Xia J, Nie S, Liu W, Liu L, Wang X. Rectangular Tunnel‐Structured Na
0.4
MnO
2
as a Promising Cathode Material Withstanding a High Cutoff Voltage for Na‐Ion Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201801705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Zhang
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 China
| | - Zhixiao Liu
- College of Materials Science and Engineering Hunan University Changsha 410082 China
| | - Huiqiu Deng
- College of Physics and Electronic ScienceHunan University Changsha 410082 China
| | - Jianjun Xie
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 China
| | - Jing Xia
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 China
| | - Su Nie
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 China
| | - Wen Liu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 China
| | - Li Liu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai University Tianjin 300071 China
| | - Xianyou Wang
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 China
| |
Collapse
|
16
|
Tran HH, Nguyen PH, Cao VH, Nguyen LT, Tran VM, Phung Le ML, Kim SJ, Vo V. SnO2 nanosheets/graphite oxide/g-C3N4 composite as enhanced performance anode material for lithium ion batteries. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.11.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Ma B, Lu B, Luo J, Deng X, Wu Z, Wang X. The hollow mesoporous silicon nanobox dually encapsulated by SnO2/C as anode material of lithium ion battery. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.074] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Rusen E, Diacon A, Damian C, Gavrila R, Dinescu A, Dumitrescu A, Zecheru T. Electroconductive materials based on carbon nanofibers and polyaniline. J Appl Polym Sci 2018. [DOI: 10.1002/app.46873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- E. Rusen
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science; 1-7 Gh. Polizu Street, 011061, Bucharest Romania
| | - A. Diacon
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science; 1-7 Gh. Polizu Street, 011061, Bucharest Romania
| | - C. Damian
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science; 1-7 Gh. Polizu Street, 011061, Bucharest Romania
| | - R. Gavrila
- National Institute for Research and Development in Microtechnologies (IMT-Bucharest); 126 A, Erou Iancu Nicolae Street, P.O. Box 38-160, 023573, Bucharest Romania
| | - A. Dinescu
- National Institute for Research and Development in Microtechnologies (IMT-Bucharest); 126 A, Erou Iancu Nicolae Street, P.O. Box 38-160, 023573, Bucharest Romania
| | - A. Dumitrescu
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science; 1-7 Gh. Polizu Street, 011061, Bucharest Romania
| | - T. Zecheru
- Scientific Research Center for CBRN Defense and Ecology; 225 Oltenitei Sos, 041309, Bucharest Romania
| |
Collapse
|
19
|
Wang S, Shi Y, Fan C, Liu J, Li Y, Wu XL, Xie H, Zhang J, Sun H. Layered g-C 3N 4@Reduced Graphene Oxide Composites as Anodes with Improved Rate Performance for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30330-30336. [PMID: 30117734 DOI: 10.1021/acsami.8b09219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As important anodes in lithium-ion batteries, graphene is always faced with the aggregation problem that makes most of the active sites lose their function at high current densities, resulting in low Li-ion intercalation capacity and poor rate performance. To address this issue, a layered g-C3N4@reduced graphene oxide composite (g-C3N4@RGO) was prepared via a scalable and easy strategy. The resultant g-C3N4@RGO composite possesses large interlayer distances, rich N-active sites, and a microporous structure, which largely improves Li storage performance. It shows excellent cycle stability (899.3 mA h g-1 after 350 cycles under 500 mA g-1) and remarkable rate performance (595.1 mA h g-1 after 1000 cycles under 1000 mA g-1). Moreover, the g-C3N4@RGO electrode exhibits desired capacity retention and relatively high initial Coulombic efficiency of 58.8%. Impressively, this result is better than that of RGO (29.1%) and most of RGO-based anode materials reported in the literature. Especially, the g-C3N4@RGO-based electrode is enough to power two tandem red-light-emitting diodes and run a digital watch. Interestingly, the electronic watch can work continuously for more than 20 days. This novel strategy shows the great potential of g-C3N4@RGO composites as energy-storage materials.
Collapse
Affiliation(s)
- Shuguang Wang
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries , Northeast Normal University , No. 5268 Renmin Street , Changchun 130024 , China
| | - Yanhong Shi
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries , Northeast Normal University , No. 5268 Renmin Street , Changchun 130024 , China
| | - Chaoying Fan
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries , Northeast Normal University , No. 5268 Renmin Street , Changchun 130024 , China
| | - Jinhua Liu
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries , Northeast Normal University , No. 5268 Renmin Street , Changchun 130024 , China
| | - Yanfei Li
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries , Northeast Normal University , No. 5268 Renmin Street , Changchun 130024 , China
| | - Xing-Long Wu
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries , Northeast Normal University , No. 5268 Renmin Street , Changchun 130024 , China
| | - Haiming Xie
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries , Northeast Normal University , No. 5268 Renmin Street , Changchun 130024 , China
| | - Jingping Zhang
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries , Northeast Normal University , No. 5268 Renmin Street , Changchun 130024 , China
| | - Haizhu Sun
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries , Northeast Normal University , No. 5268 Renmin Street , Changchun 130024 , China
| |
Collapse
|
20
|
Layer-by-layered SnS2/graphene hybrid nanosheets via ball-milling as promising anode materials for lithium ion batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Nie S, Liu L, Liu J, Xie J, Zhang Y, Xia J, Yan H, Yuan Y, Wang X. Nitrogen-Doped TiO 2-C Composite Nanofibers with High-Capacity and Long-Cycle Life as Anode Materials for Sodium-Ion Batteries. NANO-MICRO LETTERS 2018. [PMID: 30393719 DOI: 10.1016/j.jallcom.2018.09.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nitrogen-doped TiO2-C composite nanofibers (TiO2/N-C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO2/N-C NFs exhibit a large specific surface area (213.04 m2 g-1) and a suitable nitrogen content (5.37 wt%). The large specific surface area can increase the contribution of the extrinsic pseudocapacitance, which greatly enhances the rate capability. Further, the diffusion coefficient of sodium ions (D Na+) could be greatly improved by the incorporation of nitrogen atoms. Thus, the TiO2/N-C NFs display excellent electrochemical properties in Na-ion batteries. A TiO2/N-C NF anode delivers a high reversible discharge capacity of 265.8 mAh g-1 at 0.05 A g-1 and an outstanding long cycling performance even at a high current density (118.1 mAh g-1) with almost no capacity decay at 5 A g-1 over 2000 cycles. Therefore, this work sheds light on the application of TiO2-based materials in sodium-ion batteries.
Collapse
Affiliation(s)
- Su Nie
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Li Liu
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, People's Republic of China.
| | - Junfang Liu
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jianjun Xie
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yue Zhang
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jing Xia
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Hanxiao Yan
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yiting Yuan
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xianyou Wang
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| |
Collapse
|
22
|
Nie S, Liu L, Liu J, Xie J, Zhang Y, Xia J, Yan H, Yuan Y, Wang X. Nitrogen-Doped TiO 2-C Composite Nanofibers with High-Capacity and Long-Cycle Life as Anode Materials for Sodium-Ion Batteries. NANO-MICRO LETTERS 2018; 10:71. [PMID: 30393719 PMCID: PMC6199118 DOI: 10.1007/s40820-018-0225-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/20/2018] [Indexed: 05/05/2023]
Abstract
Nitrogen-doped TiO2-C composite nanofibers (TiO2/N-C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO2/N-C NFs exhibit a large specific surface area (213.04 m2 g-1) and a suitable nitrogen content (5.37 wt%). The large specific surface area can increase the contribution of the extrinsic pseudocapacitance, which greatly enhances the rate capability. Further, the diffusion coefficient of sodium ions (D Na+) could be greatly improved by the incorporation of nitrogen atoms. Thus, the TiO2/N-C NFs display excellent electrochemical properties in Na-ion batteries. A TiO2/N-C NF anode delivers a high reversible discharge capacity of 265.8 mAh g-1 at 0.05 A g-1 and an outstanding long cycling performance even at a high current density (118.1 mAh g-1) with almost no capacity decay at 5 A g-1 over 2000 cycles. Therefore, this work sheds light on the application of TiO2-based materials in sodium-ion batteries.
Collapse
Affiliation(s)
- Su Nie
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Li Liu
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, People's Republic of China.
| | - Junfang Liu
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jianjun Xie
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yue Zhang
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jing Xia
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Hanxiao Yan
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yiting Yuan
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xianyou Wang
- National Base for International Science and Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| |
Collapse
|
23
|
Qu L, Hou X, Huang X, Liang Q, Ru Q, Wu B, Lam KH. Self-Assembled Porous NiFe2
O4
Floral Microspheres Inlaid on Ultrathin Flake Graphite as Anode Materials for Lithium Ion Batteries. ChemElectroChem 2017. [DOI: 10.1002/celc.201700862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lina Qu
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials; South China Normal University; Guangzhou 510006 China
- Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering; South China Normal University; Guangzhou 510006 China
| | - Xianhua Hou
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials; South China Normal University; Guangzhou 510006 China
- Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering; South China Normal University; Guangzhou 510006 China
| | - Xiyan Huang
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials; South China Normal University; Guangzhou 510006 China
- Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering; South China Normal University; Guangzhou 510006 China
| | - Qian Liang
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials; South China Normal University; Guangzhou 510006 China
- Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering; South China Normal University; Guangzhou 510006 China
| | - Qiang Ru
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials; South China Normal University; Guangzhou 510006 China
- Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering; South China Normal University; Guangzhou 510006 China
| | - Bo Wu
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology; College of Materials Science and Engineering, Fuzhou University; Fuzhou 350100 China
| | - Kwok-ho Lam
- Department of Electrical Engineering; The Hong Kong Polytechnic University; Hunghom Kowloon 999077 Hong Kong
| |
Collapse
|