1
|
Hamdi F, Roushani M, Ghalkhani M, Mohammadi F. Novel electrochemical sensor based on zirconium phosphate phosphidation for detection of Asulam. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024; 18:8078-8087. [DOI: 10.1007/s11694-024-02788-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 01/06/2025]
|
2
|
Ma L, Song H, Gong X, Chen L, Gong J, Chen Z, Shen J, Gu M. A High-Methanol-Permeation Resistivity Polyamide-Based Proton Exchange Membrane Fabricated via a Hyperbranching Design. Polymers (Basel) 2024; 16:2480. [PMID: 39274112 PMCID: PMC11397882 DOI: 10.3390/polym16172480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Four non-fluorinated sulfonimide polyamides (s-PAs) were successfully synthesized and a series of membranes were prepared by blending s-PA with polyvinylidene fluoride (PVDF) to achieve high-methanol-permeation resistivity for direct methanol fuel cell (DMFC) applications. Four membranes were fabricated by blending 50 wt% PVDF with s-PA, named BPD-101, BPD-102, BPD-111 and BPD-211, respectively. The s-PA/PVDF membranes exhibit high methanol resistivity, especially for the BPD-111 membrane with methanol resistivity of 8.13 × 10-7 cm2/s, which is one order of magnitude smaller than that of the Nafion 117 membrane. The tensile strength of the BPD-111 membrane is 15 MPa, comparable to that of the Nafion 117 membrane. Moreover, the four membranes also show good thermal stability up to 230 °C. The BPD-x membrane exhibits good oxidative stability, and the measured residual weights of the BPD-111 membrane are 97% and 93% after treating in Fenton's reagent (80 °C) for 1 h and 24 h, respectively. By considering the mechanical, thermal and dimensional properties, the polyamide proton-exchange membrane exhibits promising application potential for direct methanol fuel cells.
Collapse
Affiliation(s)
- Liying Ma
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Hongxia Song
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Xiaofei Gong
- Kaili No. 8 Middle School, 70 Qingjiang Road, Kaili 556000, China
| | - Lu Chen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Jiangning Gong
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Zhijiao Chen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Jing Shen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Manqi Gu
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| |
Collapse
|
3
|
Ponomar M, Ruleva V, Sarapulova V, Pismenskaya N, Nikonenko V, Maryasevskaya A, Anokhin D, Ivanov D, Sharma J, Kulshrestha V, Améduri B. Structural Characterization and Physicochemical Properties of Functionally Porous Proton-Exchange Membrane Based on PVDF-SPA Graft Copolymers. Int J Mol Sci 2024; 25:598. [PMID: 38203772 PMCID: PMC10779367 DOI: 10.3390/ijms25010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Fluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) and wide-angle X-ray scattering (WAXS), SEM, and DSC. It was found that the crystallinity degree is 17% for PEM-RCF (co-polymer with SPA) and 16% for PEM-RCF-2 (copolymer with SPA and PFH). The designed membranes possess crystallite grains of 5-6 nm in diameter. SEM images reveal a structure with open pores on the surface of diameters from 20 to 140 nm. Their transport and electrochemical characterization shows that the lowest membrane area resistance (0.9 Ωcm2) is comparable to perfluorosulfonic acid PEMs (such as Nafion®) and polyvinylidene fluoride (PVDF) based CJMC cation-exchange membranes (ChemJoy Polymer Materials, China). Key transport and physicochemical properties of new and commercial membranes were compared. The PEM-RCF permeability to NaCl diffusion is rather high, which is due to a relatively low concentration of fixed sulfonate groups. Voltammetry confers that the electrochemical behavior of new PEM correlates to that of commercial cation-exchange membranes, while the ionic conductivity reveals an impact of the extended pores, as in track-etched membranes.
Collapse
Affiliation(s)
- Maria Ponomar
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Valentina Ruleva
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Department of Physical Chemistry, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
| | - Alina Maryasevskaya
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Denis Anokhin
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dimitri Ivanov
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, 68057 Mulhouse, France
| | - Jeet Sharma
- Institute Charles Gerhardt, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34000 Montpellier, France;
- Membrane Science and Separation Technology Division, Council of Scientific and Industrial Research, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaibhav Kulshrestha
- Membrane Science and Separation Technology Division, Council of Scientific and Industrial Research, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bruno Améduri
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia (B.A.)
- Institute Charles Gerhardt, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34000 Montpellier, France;
| |
Collapse
|
4
|
Simari C. NMR Investigation of Water Molecular Dynamics in Sulfonated Polysulfone/Layered Double Hydroxide Composite Membranes for Proton Exchange Membrane Fuel Cells. MEMBRANES 2023; 13:684. [PMID: 37505050 PMCID: PMC10384311 DOI: 10.3390/membranes13070684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
The development of nanocomposite membranes based on hydrocarbon polymers is emerging as one of the most promising strategies for overcoming the performance, cost, and safety limitations of Nafion, which is the current benchmark in proton exchange membranes for fuel cell applications. Among the various nanocomposite membranes, those based on sulfonated polysulfone (sPSU) and Layered Double Hydroxides (LDHs) hold promise regarding their successful utilization in practical applications due to their interesting electrochemical performance. This study aims to elucidate the effect of LDH introduction on the internal arrangement of water molecules in the hydrophilic clusters of sPSU and on its proton transport properties. Swelling tests, NMR characterization, and Electrochemical Impedance Spectroscopy (EIS) investigation allowed us to demonstrate that LDH platelets act as physical crosslinkers between -SO3H groups of adjacent polymer chains. This increases dimensional stability while simultaneously creating continuous paths for proton conduction. This feature, combined with its impressive water retention capability, allows sPSU to yield a proton conductivity of ca. 4 mS cm-1 at 90 °C and 20% RH.
Collapse
Affiliation(s)
- Cataldo Simari
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- National Reference Centre for Electrochemical Energy Storage (GISEL)-INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
5
|
Young Ryu G, Jin An S, Yu S, Jung Kim K, Jae H, Roh D, Seok Chi W. Dual-sulfonated MOF/Polysulfone Composite Membranes Boosting Performance for Proton Exchange Membrane Fuel Cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Vinodh R, Atchudan R, Kim HJ, Yi M. Recent Advancements in Polysulfone Based Membranes for Fuel Cell (PEMFCs, DMFCs and AMFCs) Applications: A Critical Review. Polymers (Basel) 2022; 14:300. [PMID: 35054706 PMCID: PMC8777856 DOI: 10.3390/polym14020300] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/12/2023] Open
Abstract
In recent years, ion electrolyte membranes (IEMs) preparation and properties have attracted fabulous attention in fuel cell usages owing to its high ionic conductivity and chemical resistance. Currently, perfluorinatedsulfonicacid (PFSA) membrane has been widely employed in the membrane industry in polymer electrolyte membrane fuel cells (PEMFCs); however, NafionTM suffers reduced proton conductivity at a higher temperature, requiring noble metal catalyst (Pt, Ru, and Pt-Ru), and catalyst poisoning by CO. Non-fluorinated polymers are a promising substitute. Polysulfone (PSU) is an aromatic polymer with excellent characteristics that have attracted membrane scientists in recent years. The present review provides an up-to-date development of PSU based electrolyte membranes and its composites for PEMFCs, alkaline membrane fuel cells (AMFCs), and direct methanol fuel cells (DMFCs) application. Various fillers encapsulated in the PEM/AEM moiety are appraised according to their preliminary characteristics and their plausible outcome on PEMFC/DMFC/AMFC. The key issues associated with enhancing the ionic conductivity and chemical stability have been elucidated as well. Furthermore, this review addresses the current tasks, and forthcoming directions are briefly summarized of PEM/AEMs for PEMFCs, DMFCs, AMFCs.
Collapse
Affiliation(s)
- Rajangam Vinodh
- Department of Electronics Engineering, Pusan National University, Busan 46241, Korea;
| | - Raji Atchudan
- Department of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hee-Je Kim
- Department of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea
| | - Moonsuk Yi
- Department of Electronics Engineering, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
7
|
Organic-Inorganic Novel Green Cation Exchange Membranes for Direct Methanol Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14154686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Commercializing direct methanol fuel cells (DMFC) demands cost-effective cation exchange membranes. Herein, a polymeric blend is prepared from low-cost and eco-friendly polymers (i.e., iota carrageenan (IC) and polyvinyl alcohol (PVA)). Zirconium phosphate (ZrPO4) was prepared from the impregnation–calcination method and characterized by energy dispersive X-ray analysis (EDX map), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM), then incorporated as a bonding and doping agent into the polymer blend with different concentrations. The new fabricated membranes were characterized by SEM, FTIR, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and XRD. The results revealed that the membranes’ physicochemical properties (oxidative stability, tensile strength) are enhanced with increasing doping addition, and they realized higher results than Nafion 117 because of increasing numbers of hydrogen bonds fabricated between the polymers and zirconium phosphate. Additionally, the methanol permeability was decreased in the membranes with increasing zirconium phosphate content. The optimum membrane with IC/SPVA/ZrPO4-7.5 provided higher selectivity than Nafion 117. Therefore, it can be an effective cation exchange membrane for DMFCs applications.
Collapse
|
8
|
Gouda MH, Elessawy NA, Toghan A. Development of effectively costed and performant novel cation exchange ceramic nanocomposite membrane based sulfonated PVA for direct borohydride fuel cells. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Zhang M, Wang G, Li F, He Z, Zhang J, Chen J, Wang R. High conductivity membrane containing polyphosphazene derivatives for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Sulfonated Polysulfone/TiO 2(B) Nanowires Composite Membranes as Polymer Electrolytes in Fuel Cells. Polymers (Basel) 2021; 13:polym13122030. [PMID: 34205824 PMCID: PMC8234381 DOI: 10.3390/polym13122030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
New proton conducting membranes based on sulfonated polysulfone (sPSU) reinforced with TiO2(B) nanowires (1, 2, 5 and 10 wt.%) were synthesized and characterized. TiO2(B) nanowires were synthesized by means of a hydrothermal method by mixing TiO2 precursor in aqueous solution of NaOH as solvent. The presence of the TiO2(B) nanowires into the polymer were confirmed by means of Field Emission Scanning Electron Microscopy, Fourier transform infrared and X-ray diffraction. The thermal study showed an increase of almost 20 °C in the maximum temperature of sPSU backbone decomposition due to the presence of 10 wt.% TiO2(B) nanowires. Water uptake also is improved with the presence of hydrophilic TiO2(B) nanowires. Proton conductivity of sPSU with 10 wt.% TiO2(B) nanowires was 21 mS cm−1 (at 85 °C and 100% RH). Under these experimental conditions the power density was 350 mW cm−2 similar to the value obtained for Nafion 117. Considering all these obtained results, the composite membrane doped with 10 wt.% TiO2(B) nanowires is a promising candidate as proton exchange electrolyte in fuel cells (PEMFCs), especially those operating at high temperatures.
Collapse
|
11
|
Optimization of the Relative Humidity of Reactant Gases in Hydrogen Fuel Cells Using Dynamic Impedance Measurements. ENERGIES 2021. [DOI: 10.3390/en14113038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water management is a key factor affecting the efficiency of proton exchange membrane fuel cells (PEMFCs). The currently used monitoring methods of PEMFCs provide limited information about which processes or components that humidity has a significant impact upon. Herein, we propose the use of a novel approach of impedance measurements using a multi-sinusoidal perturbation signal, which enables impedance measurements under dynamic operating conditions. The manuscript presents the effect of the relative humidity (RH) of the reactants on the instantaneous impedance of the middle cell in the PEMFC stack as a function of the current load. Analysis of changes in the values of equivalent circuit elements was carried out to determine which process determines the stack’s performance depending on the load range of the fuel cell during operation. Comprehensive impedance analysis showed that to ensure optimal cell operation, the humidity of the reactants should be adjusted depending on the load level. The results showed that at low-current loads, the humidity of gases should be at least 50%, while at high-current loads, the cell should operate optimally at a gas humidity of 30% or lower. The presented methodology provides an important tool for optimizing and monitoring the operation of fuel cells.
Collapse
|
12
|
Abstract
This paper provides a comprehensive review of the temperature control in proton exchange membrane fuel cells. Proton exchange membrane (PEM) fuel cells inevitably emit a certain amount of heat while generating electricity, and the fuel cell can only exert its best performance in the appropriate temperature range. At the same time, the heat generated cannot spontaneously keep its temperature uniform and stable, and temperature control is required. This part of thermal energy can be classified into two groups. On the one hand, the reaction heat is affected by the reaction process; on the other hand, due to the impedance of the battery itself to the current, the ohmic polarization loss is caused to the battery. The thermal effect of current generates Joule heat, which is manifested by an increase in temperature and a decrease in battery performance. Therefore, it is necessary to design and optimize the battery material structure to improve battery performance and adopt a suitable cooling system for heat dissipation. To make the PEM fuel cell (PEMFC) universal, some extreme situations need to be considered, and a cold start of the battery is included in the analysis. In this paper, the previous studies related to three important aspects of temperature control in proton exchange membrane fuel cells have been reviewed and analyzed to better guide thermal management of the proton exchange membrane fuel cell (PEMFC).
Collapse
|
13
|
Zhang D, Xu Z, Zhang X, Zhao L, Zhao Y, Wang S, Liu W, Che X, Yang J, Liu J, Yan C. Oriented Proton-Conductive Nanochannels Boosting a Highly Conductive Proton-Exchange Membrane for a Vanadium Redox Flow Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4051-4061. [PMID: 33434002 DOI: 10.1021/acsami.0c20847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we propose a sulfonated poly (ether ether ketone) (SPEEK) composite proton-conductive membrane based on a 3-(1-hydro-imidazolium-3-yl)-propane-1-sulfonate (Him-pS) additive to break through the trade-off between conductivity and selectivity of a vanadium redox flow battery (VRFB). Specifically, Him-pS enables an oriented distribution of the SPEEK matrix to construct highly conductive proton nanochannels throughout the membrane arising from the noncovalent interaction. Moreover, the "acid-base pair" effect from an imidazolium group and a sulfonic group further facilitates the proton transport through the nanochannels. Meanwhile, the structure of the acid-base pair is further confirmed based on density functional theory calculations. Material and electrochemical characterizations indicate that the nanochannels with a size of 16.5 nm are vertically distributed across the membrane, which not only accelerate proton conductivity (31.54 mS cm-1) but also enhance the vanadium-ion selectivity (39.9 × 103 S min cm-3). Benefiting from such oriented proton-conductive nanochannels in the membrane, the cell delivers an excellent Coulombic efficiency (CE, ≈ 98.8%) and energy efficiency (EE, ≈ 78.5%) at 300 mA cm-2. More significantly, the cell maintains a stable energy efficiency over 600 charge-discharge cycles with only a 5.18% decay. Accordingly, this work provides a promising fabrication strategy for a high-performance membrane of VRFB.
Collapse
Affiliation(s)
- Denghua Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zeyu Xu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Xihao Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Lina Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yingying Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shaoliang Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Weihua Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuefu Che
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jingshuai Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jianguo Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chuanwei Yan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
14
|
Sulfonated poly(ether ether ketone)/amine-functionalized graphene oxide hybrid membrane with various chain lengths for vanadium redox flow battery: A comparative study. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118232] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Beydaghi H, Bagheri A, Salarizadeh P, Kashefi S, Hooshyari K, Amoozadeh A, Shamsi T, Bonaccorso F, Pellegrini V. Enhancing the Performance of Poly(phthalazinone ether ketone)-Based Membranes Using a New Type of Functionalized TiO 2 with Superior Proton Conductivity. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hossein Beydaghi
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Ahmad Bagheri
- Department of Chemistry, Amirkabir University of Technology, 1599637111 Tehran, Iran
| | - Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Sepideh Kashefi
- Department of Chemical Engineering, Semnan University, 3513119111 Semnan, Iran
| | - Khadijeh Hooshyari
- Department of Applied Chemistry, Faculty of Chemistry, Urmia University, 5756151818 Urmia, Iran
| | - Ali Amoozadeh
- Department of Chemistry, Semnan University, 3513119111 Semnan, Iran
| | - Taiebeh Shamsi
- Department of Chemistry, Semnan University, 3513119111 Semnan, Iran
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BeDimensional SpA, Via Albisola 121, 16163 Genova, Italy
| | - Vittorio Pellegrini
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BeDimensional SpA, Via Albisola 121, 16163 Genova, Italy
| |
Collapse
|
16
|
Parthiban V, Sahu AK. Performance enhancement of direct methanol fuel cells using a methanol barrier boron nitride–Nafion hybrid membrane. NEW J CHEM 2020. [DOI: 10.1039/d0nj00433b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sulfonated hexagonal boron nitride is explored as a potential filler to prepare Nafion hybrid membranes for direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- V. Parthiban
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| | - A. K. Sahu
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| |
Collapse
|
17
|
Liu B, Zhang Y, Jiang Y, Qian P, Shi H. High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117332] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Esmaeili N, Gray EM, Webb CJ. Non-Fluorinated Polymer Composite Proton Exchange Membranes for Fuel Cell Applications - A Review. Chemphyschem 2019; 20:2016-2053. [PMID: 31334917 DOI: 10.1002/cphc.201900191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/05/2019] [Indexed: 11/11/2022]
Abstract
The critical component of a proton exchange membrane fuel cell (PEMFC) system is the proton exchange membrane (PEM). Perfluorosulfonic acid membranes such as Nafion are currently used for PEMFCs in industry, despite suffering from reduced proton conductivity due to dehydration at higher temperatures. However, operating at temperatures below 100 °C leads to cathode flooding, catalyst poisoning by CO, and complex system design with higher cost. Research has concentrated on the membrane material and on preparation methods to achieve high proton conductivity, thermal, mechanical and chemical stability, low fuel crossover and lower cost at high temperatures. Non-fluorinated polymers are a promising alternative. However, improving the efficiency at higher temperatures has necessitated modifications and the inclusion of inorganic materials in a polymer matrix to form a composite membrane can be an approach to reach the target performance, while still reducing costs. This review focuses on recent research in composite PEMs based on non-fluorinated polymers. Various inorganic fillers incorporated in the PEM structure are reviewed in terms of their properties and the effect on PEM fuel cell performance. The most reliable polymers and fillers with potential for high temperature proton exchange membranes (HTPEMs) are also discussed.
Collapse
Affiliation(s)
- Nazila Esmaeili
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Brisbane, Australia
| | - Evan MacA Gray
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Brisbane, Australia
| | - Colin J Webb
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Brisbane, Australia
| |
Collapse
|
19
|
Imran MA, He G, Wu X, Yan X, Li T, Khan A. Fabrication and characterization of sulfonated polybenzimidazole/sulfonated imidized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cells. J Appl Polym Sci 2019. [DOI: 10.1002/app.47892] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Muhammad Asif Imran
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Tiantian Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Abdul‐Sammed Khan
- School of PhysicsDalian University of Technology Dalian 116024 China
| |
Collapse
|
20
|
A novel membrane electrode assembly design for proton exchange membrane fuel cells: Characterization and performance evaluation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Ruiz‐Colón E, Pérez‐Pérez M, Suleiman D. Transport properties of blended sulfonated poly(styrene‐isobutylene‐styrene) and isopropyl phosphate membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eduardo Ruiz‐Colón
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| | - Maritza Pérez‐Pérez
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| | - David Suleiman
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| |
Collapse
|
22
|
Xiao H, Zhang J, Zhao M, Hu T, Jia J, Wu H. Hydrogenated graphene as support of Pd nanoparticles with improved electrocatalytic activity for ethanol oxidation reaction in alkaline media. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Munavalli BB, Kariduraganavar MY. Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Darowicki K, Janicka E, Mielniczek M, Zielinski A, Gawel L, Mitzel J, Hunger J. Implementation of DEIS for reliable fault monitoring and detection in PEMFC single cells and stacks. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Han J, Wu Y, Pan J, Peng Y, Wang Y, Chen C, Pan Q, Xie B, Zhao N, Wang Y, Lu J, Xiao L, Zhuang L. Highly conductive and stable hybrid ionic cross-linked sulfonated PEEK for fuel cell. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Ru C, Li Z, Zhao C, Duan Y, Zhuang Z, Bu F, Na H. Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino-Sulfo Bifunctionalized Metal-Organic Framework for Direct Methanol Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7963-7973. [PMID: 29439561 DOI: 10.1021/acsami.7b17299] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH2 of MNS and -SO3H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm-1, which was much higher than those of the pristine membrane (0.145 S·cm-1) and recast Nafion (0.134 S·cm-1) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.
Collapse
|