1
|
Safronova EY, Lysova AA, Voropaeva DY, Yaroslavtsev AB. Approaches to the Modification of Perfluorosulfonic Acid Membranes. MEMBRANES 2023; 13:721. [PMID: 37623782 PMCID: PMC10456953 DOI: 10.3390/membranes13080721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Polymer ion-exchange membranes are featured in a variety of modern technologies including separation, concentration and purification of gases and liquids, chemical and electrochemical synthesis, and hydrogen power generation. In addition to transport properties, the strength, elasticity, and chemical stability of such materials are important characteristics for practical applications. Perfluorosulfonic acid (PFSA) membranes are characterized by an optimal combination of these properties. Today, one of the most well-known practical applications of PFSA membranes is the development of fuel cells. Some disadvantages of PFSA membranes, such as low conductivity at low humidity and high temperature limit their application. The approaches to optimization of properties are modification of commercial PFSA membranes and polymers by incorporation of different additive or pretreatment. This review summarizes the approaches to their modification, which will allow the creation of materials with a different set of functional properties, differing in ion transport (first of all proton conductivity) and selectivity, based on commercially available samples. These approaches include the use of different treatment techniques as well as the creation of hybrid materials containing dopant nanoparticles. Modification of the intrapore space of the membrane was shown to be a way of targeting the key functional properties of the membranes.
Collapse
Affiliation(s)
- Ekaterina Yu. Safronova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Avenue, 31, 119991 Moscow, Russia; (A.A.L.); (D.Y.V.); (A.B.Y.)
| | | | | | | |
Collapse
|
2
|
Min K, Al Munsur AZ, Paek SY, Jeon S, Lee SY, Kim TH. Development of High-Performance Polymer Electrolyte Membranes through the Application of Quantum Dot Coatings to Nafion Membranes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15616-15624. [PMID: 36926797 DOI: 10.1021/acsami.3c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proton exchange membrane water electrolysis (PEMWE) generates oxygen and hydrogen at the anode and cathode, respectively, by conducting protons generated at the anode to the cathode through a proton exchange membrane (PEM). The performance of PEMWE can be improved with faster catalytic reactions at each electrode; thus, the development of a PEM with excellent ionic conductivity and physicochemical stability is essential. Nafion, a type of perfluoro-sulfonic acid polymer, is the most widely used PEM material. However, despite its excellent conductivity and chemical stability, it exhibits high hydrogen permeability due to its structural characteristics. Quantum dots (QDs) have a hydrophilic functional group that can act as an ion conductor and are extremely compatible with the hydrophilic cluster of Nafion due to their characteristic nanosized structure. In this study, various compositions of N-doped carbon quantum dots (CQDs) containing hydrophilic functional groups were coated on a Nafion-212 membrane. The resulting series of CQD-coated Nafion membranes exhibited improvements in morphology and ionic conductivity as well as reductions in hydrogen permeability. In particular, the Nafion membrane coated with 0.75 wt % of N-doped CQD (CQD-cNafion-0.75) exhibited improved mechanical properties and higher oxidation stability compared to Nafion-212. It also displayed higher ionic conductivity of 240.3 mS cm-1 at 80 °C and reduced hydrogen permeability (about 10% reduction) compared to Nafion-212. In addition, the performance of single-cell PEMWE using the CQD-cNafion-0.75 membrane was found to be approximately 1.2 times higher than Nafion-212.
Collapse
Affiliation(s)
- Kyungwhan Min
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Abu Zafar Al Munsur
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Ujeong-ro, Naju-si, Jeollanam-do 58217, Republic of Korea
| | - Sae Yane Paek
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soomin Jeon
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - So Young Lee
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| |
Collapse
|
3
|
Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells. Polymers (Basel) 2023; 15:polym15030659. [PMID: 36771960 PMCID: PMC9920170 DOI: 10.3390/polym15030659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
A direct methanol fuel cell (DMFC) is an excellent energy device in which direct conversion of methanol to energy occurs, resulting in a high energy conversion rate. For DMFCs, fluoropolymer copolymers are considered excellent proton-exchange membranes (PEMs). However, the high cost and high methanol permeability of commercial membranes are major obstacles to overcome in achieving higher performance in DMFCs. Novel developments have focused on various reliable materials to decrease costs and enhance DMFC performance. From this perspective, cellulose-based materials have been effectively considered as polymers and additives with multiple concepts to develop PEMs for DMFCs. In this review, we have extensively discussed the advances and utilization of cost-effective cellulose materials (microcrystalline cellulose, nanocrystalline cellulose, cellulose whiskers, cellulose nanofibers, and cellulose acetate) as PEMs for DMFCs. By adding cellulose or cellulose derivatives alone or into the PEM matrix, the performance of DMFCs is attained progressively. To understand the impact of different structures and compositions of cellulose-containing PEMs, they have been classified as functionalized cellulose, grafted cellulose, acid-doped cellulose, cellulose blended with different polymers, and composites with inorganic additives.
Collapse
|
4
|
Meng Y, Sun J, Li Z, Liu Q. Study on preparation and performance of sulfonated polyaryl ether nitrile@Im-MOF-801(SPEN@Im-MOF-801)composite proton exchange membrane. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sulfonated polyaryl ether nitrile (SPEN) is some of the most viable novel materials to replace the Nafion membrane. To resolve the issue of proton conductivity in fuel cells with poor sulfonation degree polyaryl ether nitrile cell membranes. A metal-organic structure (MOF-801) was added as a filler, and imidazole was loaded by the MOF-801 structural skeleton via a chemical ligand to improve the SPEN’s proton conductivity. The expected chemical structure of im-MOF-801 and SPEN@Im-MOF-801 was confirmed by using FTIR and 1H NMR. Loading im-MOF-801 into SPEN resulted in SPEN@Im-MOF-801 composite proton exchange membranes. The impacts of the metal-organic framework on the performance of SPEN composite membranes were explored by assessing their mechanical characteristics, thermal stability, proton conductivity, and methanol permeability. The results show that the composite has outstanding thermal and mechanical stability. The tensile strength of membranes rose from 25.92 MPa to 39.34 MPa compared to the castings SPEN membrane, which was attributable to creating a hydrogen-bonding network between im-MOF-801 and SPEN, which boosted intermolecular forces. The carboxyl and hydroxyl groups in im-MOF-801 gave additional acceptors and donors that expanded the proton conductivity of SPEN, which was 16.19 ×10−2 S·cm−1 and expanded continuously, followed by a decrease with increasing temperature. Proton conductivity of SPEN@Im-MOF-801–3 and im-MOF-801–9 comes to 18.46 and 17.07 ×10−2 S·cm−1 at 80°C. Moreover, the methanol penetration of SPEN@Im-MOF-801 decreased reliably (from 5.32 to 1.02 ×10−7 S·cm−1 which was much lower than that of the Nafion film 21.87 ×10−7 S·cm−1). Subsequently, the most noteworthy selectivity of SPEN@Im-MOF-801–3 comes to 2.93×105 S·cm−3·s−1, which is approximately 8.9 times higher than that of Nafion (0.33×105 S·cm−3·s−1). The comes about demonstrates that these composites have potential applications in DMFCs.
Collapse
Affiliation(s)
- Yawei Meng
- College of Civil Aviation Safety Engineering, Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan, China
| | - Jichang Sun
- College of Civil Aviation Safety Engineering, Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan, China
| | - Zekun Li
- College of Civil Aviation Safety Engineering, Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan, China
| | - Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan, China
| |
Collapse
|
5
|
Ng WW, Thiam HS, Pang YL, Chong KC, Lai SO. A State-of-Art on the Development of Nafion-Based Membrane for Performance Improvement in Direct Methanol Fuel Cells. MEMBRANES 2022; 12:membranes12050506. [PMID: 35629832 PMCID: PMC9143503 DOI: 10.3390/membranes12050506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022]
Abstract
Nafion, a perfluorosulfonic acid proton exchange membrane (PEM), has been widely used in direct methanol fuel cells (DMFCs) to serve as a proton carrier, methanol barrier, and separator for the anode and cathode. A significant drawback of Nafion in DMFC applications is the high anode-to-cathode methanol fuel permeability that results in over 40% fuel waste. Therefore, the development of a new membrane with lower permeability while retaining the high proton conductivity and other inherent properties of Nafion is greatly desired. In light of these considerations, this paper discusses the research findings on developing Nafion-based membranes for DMFC. Several aspects of the DMFC membrane are also presented, including functional requirements, transport mechanisms, and preparation strategies. More importantly, the effect of the various modification approaches on the performance of the Nafion membrane is highlighted. These include the incorporation of inorganic fillers, carbon nanomaterials, ionic liquids, polymers, or other techniques. The feasibility of these membranes for DMFC applications is discussed critically in terms of transport phenomena-related characteristics such as proton conductivity and methanol permeability. Moreover, the current challenges and future prospects of Nafion-based membranes for DMFC are presented. This paper will serve as a resource for the DMFC research community, with the goal of improving the cost-effectiveness and performance of DMFC membranes.
Collapse
Affiliation(s)
- Wei Wuen Ng
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia; (W.W.N.); (Y.L.P.); (K.C.C.); (S.O.L.)
| | - Hui San Thiam
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia; (W.W.N.); (Y.L.P.); (K.C.C.); (S.O.L.)
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Correspondence:
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia; (W.W.N.); (Y.L.P.); (K.C.C.); (S.O.L.)
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Kok Chung Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia; (W.W.N.); (Y.L.P.); (K.C.C.); (S.O.L.)
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Soon Onn Lai
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia; (W.W.N.); (Y.L.P.); (K.C.C.); (S.O.L.)
| |
Collapse
|
6
|
Mayadevi TS, Goo BH, Paek SY, Choi O, Kim Y, Kwon OJ, Lee SY, Kim HJ, Kim TH. Nafion Composite Membranes Impregnated with Polydopamine and Poly(Sulfonated Dopamine) for High-Performance Proton Exchange Membranes. ACS OMEGA 2022; 7:12956-12970. [PMID: 35474770 PMCID: PMC9026075 DOI: 10.1021/acsomega.2c00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
We prepared Nafion composite membranes by impregnating Nafion-212 with polydopamine, poly(sulfonated dopamine), and poly(dopamine-co-sulfonated dopamine) using the swelling-filling method to generate nanopores in the Nafion framework that were filled with these polymers. Compared to the pristine Nafion-212 membrane, these composite membranes showed improved thermal and mechanical stabilities due to the strong interactions between the catecholamine of the polydopamine derivatives and the Nafion matrix. For the composite membrane filled with poly(sulfonated dopamine) (N-PSDA), further interactions were induced between the Nafion and the sulfonic acid side chain, resulting in enhanced water uptake and ion conductivity. In addition, filling the nanopores in the Nafion matrix with polymer fillers containing aromatic hydrocarbon-based dopamine units led to an increase in the degree of crystallinity and resulted in a significant decrease in the hydrogen permeability of the composite membranes compared to Nafion-212. Hydrogen crossovers 26.8% lower than Nafion-212 at 95% relative humidity (RH) (fuel cell operating conditions) and 27.3% lower at 100% RH (water electrolysis operating conditions) were obtained. When applied to proton exchange membrane-based fuel cells, N-PSDA exhibited a peak power density of 966 mW cm-2, whereas N-PSDA showed a current density of 4785 mA cm-2, which is 12.4% higher than Nafion-212 at 2.0 V and 80 °C.
Collapse
Affiliation(s)
- T. S. Mayadevi
- Organic
Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| | - Bon-Hyuk Goo
- Organic
Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| | - Sae Yane Paek
- Hydrogen
and Fuel Cell Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Ook Choi
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| | - Youngkwang Kim
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic
of Korea
| | - Oh Joong Kwon
- Department
of Energy and Chemical Engineering, Incheon
National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Innovation
Center for Chemical Engineering, Incheon
National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - So Young Lee
- Hydrogen
and Fuel Cell Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Hyoung-Juhn Kim
- Hydrogen
and Fuel Cell Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic
of Korea
- Hydrogen
Energy Technology Laboratory, Korea Institute
of Energy Technology (KENTECH), Ujeong-ro, Naju-si, Jeollanam-do 58217, Republic of Korea
| | - Tae-Hyun Kim
- Organic
Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| |
Collapse
|
7
|
Neelakandan S, Wang L, Zhang B, Ni J, Hu M, Gao C, Wong WY, Wang L. Branched Polymer Materials as Proton Exchange Membranes for Fuel Cell Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1964524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sivasubramaniyan Neelakandan
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Li Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Boping Zhang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiangpeng Ni
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Meishao Hu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Chunmei Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Wai-Yeung Wong
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnique University, Hong Kong, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Cai YY, Zhang QG, Zhu AM, Liu QL. Two-dimensional metal-organic framework-graphene oxide hybrid nanocomposite proton exchange membranes with enhanced proton conduction. J Colloid Interface Sci 2021; 594:593-603. [PMID: 33780764 DOI: 10.1016/j.jcis.2021.03.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
A novel two-dimensional (2D) zeolitic imidazolate framework-graphene oxide hybrid nanocomposite (ZIF-L@GO) is designed as an inorganic filler in sulfonated poly(ether ether ketone) (SPEEK). ZIF-L with unique leaf-like morphology is grown in-situ on the GO sheet in aqueous media at room temperature. The terminal imidazole linker in ZIF-L@GO and the -SO3H in SPEEK can form acid-base pairs in the membrane interface to produce low energy proton conduction highway. Benefiting from the unique structural advantage, the hybrid SP-ZIF-L@GO membranes displayed promoted physicochemical and electrochemical performances over the pure SPEEK. The SP-ZIF-L@GO-5 achieved a proton conductivity of 0.265 and 0.0364 S cm-1 at 70 °C-100% RH and 90 °C-40% RH, 1.76- and 6.24-fold higher than pure SPEEK, respectively. Meanwhile, a single cell based on SP-ZIF-L@GO-5 had an output power up to 652.82 mW cm-2 at 60 °C, 1.45 times higher than the pure SPEEK. In addition, the durability test was performed by holding open circuit voltage (OCV) for 24 h. The SP-ZIF-L@GO-5 provided better long-term stability than the pure SPEEK. These superior performance suggests a promising application in PEMFC.
Collapse
Affiliation(s)
- Yuan Yuan Cai
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qiu Gen Zhang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ai Mei Zhu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qing Lin Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
9
|
A Robust Composite Proton Exchange Membrane of Sulfonated Poly (Fluorenyl Ether Ketone) with an Electrospun Polyimide Mat for Direct Methanol Fuel Cells Application. Polymers (Basel) 2021; 13:polym13040523. [PMID: 33578764 PMCID: PMC7916468 DOI: 10.3390/polym13040523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
As a key component of direct methanol fuel cells, proton exchange membranes with suitable thickness and robust mechanical properties have attracted increasing attention. On the one hand, a thinner membrane gives a lower internal resistance, which contributes highly to the overall electrochemical performance of the cell, on the other hand, strong mechanical strength is required for the application of proton exchange membranes. In this work, a sulfonated poly (fluorenyl ether ketone) (SPFEK)-impregnated polyimide nanofiber mat composite membrane (PI@SPFEK) was fabricated. The new composite membrane with a thickness of about 55 μm exhibited a tensile strength of 35.1 MPa in a hydrated state, which is about 65.8% higher than that of the pristine SPFEK membrane. The antioxidant stability test in Fenton’s reagent shows that the reinforced membrane affords better oxidation stability than does the pristine SPFEK membrane. Furthermore, the morphology, proton conductivity, methanol permeability, and fuel cell performance were carefully evaluated and discussed.
Collapse
|
10
|
Adenosine triphosphate@graphene oxide proton channels for proton exchange membranes constructed via electrostatic layer-by-layer deposition. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Intrinsic proton conductive deoxyribonucleic acid (DNA) intercalated graphene oxide membrane for high-efficiency proton conduction. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Xu G, Zou J, Guo Z, Li J, Ma L, Li Y, Cai W. Bi-Functional Composting the Sulfonic Acid Based Proton Exchange Membrane for High Temperature Fuel Cell Application. Polymers (Basel) 2020; 12:polym12051000. [PMID: 32357433 PMCID: PMC7285267 DOI: 10.3390/polym12051000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/05/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Although sulfonic acid (SA)-based proton-exchange membranes (PEMs) dominate fuel cell applications at low temperature, while sulfonation on polymers would strongly decay the mechanical stability limit the applicable at elevated temperatures due to the strong dependence of proton conduction of SA on water. For the purpose of bifunctionally improving mechanical property and high-temperature performance, Nafion membrane, which is a commercial SA-based PEM, is composited with fabricated silica nanofibers with a three-dimensional network structure via electrospinning by considering the excellent water retention capacity of silica. The proton conductivity of the silica nanofiber–Nafion composite membrane at 110 °C is therefore almost doubled compared with that of a pristine Nafion membrane, while the mechanical stability of the composite Nafion membrane is enhanced by 44%. As a result, the fuel cell performance of the silica nanofiber-Nafion composite membrane measured at high temperature and low humidity is improved by 38%.
Collapse
Affiliation(s)
- Guoxiao Xu
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; (G.X.); (J.Z.); (Z.G.); (W.C.)
| | - Juan Zou
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; (G.X.); (J.Z.); (Z.G.); (W.C.)
| | - Zhu Guo
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; (G.X.); (J.Z.); (Z.G.); (W.C.)
| | - Jing Li
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; (G.X.); (J.Z.); (Z.G.); (W.C.)
- Correspondence: (J.L.); (L.M.)
| | - Liying Ma
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
- Correspondence: (J.L.); (L.M.)
| | - Ying Li
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China;
| | - Weiwei Cai
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; (G.X.); (J.Z.); (Z.G.); (W.C.)
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
| |
Collapse
|
13
|
Junoh H, Jaafar J, Nordin NAHM, Ismail AF, Othman MHD, Rahman MA, Aziz F, Yusof N. Performance of Polymer Electrolyte Membrane for Direct Methanol Fuel Cell Application: Perspective on Morphological Structure. MEMBRANES 2020; 10:E34. [PMID: 32106509 PMCID: PMC7142913 DOI: 10.3390/membranes10030034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Membrane morphology plays a great role in determining the performance of polymer electrolyte membranes (PEMs), especially for direct methanol fuel cell (DMFC) applications. Membrane morphology can be divided into two types, which are dense and porous structures. Membrane fabrication methods have different configurations, including dense, thin and thick, layered, sandwiched and pore-filling membranes. All these types of membranes possess the same densely packed structural morphology, which limits the transportation of protons, even at a low methanol crossover. This paper summarizes our work on the development of PEMs with various structures and architecture that can affect the membrane's performance, in terms of microstructures and morphologies, for potential applications in DMFCs. An understanding of the transport behavior of protons and methanol within the pores' limits could give some perspective in the delivery of new porous electrolyte membranes for DMFC applications.
Collapse
Affiliation(s)
- Hazlina Junoh
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Juhana Jaafar
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Nik Abdul Hadi Md Nordin
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | - Ahmad Fauzi Ismail
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Mohd Hafiz Dzarfan Othman
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Mukhlis A. Rahman
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Farhana Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Norhaniza Yusof
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| |
Collapse
|
14
|
Parthiban V, Sahu AK. Performance enhancement of direct methanol fuel cells using a methanol barrier boron nitride–Nafion hybrid membrane. NEW J CHEM 2020. [DOI: 10.1039/d0nj00433b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sulfonated hexagonal boron nitride is explored as a potential filler to prepare Nafion hybrid membranes for direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- V. Parthiban
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| | - A. K. Sahu
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| |
Collapse
|
15
|
Rambabu G, D Bhat S, Figueiredo FML. Carbon Nanocomposite Membrane Electrolytes for Direct Methanol Fuel Cells-A Concise Review. NANOMATERIALS 2019; 9:nano9091292. [PMID: 31510023 PMCID: PMC6781041 DOI: 10.3390/nano9091292] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 11/16/2022]
Abstract
A membrane electrolyte that restricts the methanol cross-over while retaining proton conductivity is essential for better electrochemical selectivity in direct methanol fuel cells (DMFCs). Extensive research carried out to explore numerous blends and composites for application as polymer electrolyte membranes (PEMs) revealed promising electrochemical selectivity in DMFCs of carbon nanomaterial-based polymer composites. The present review covers important literature on different carbon nanomaterial-based PEMs reported during the last decade. The review emphasises the proton conductivity and methanol permeability of nanocomposite membranes with carbon nanotubes, graphene oxide and fullerene as additives, assessing critically the impact of each type of filler on those properties.
Collapse
Affiliation(s)
- Gutru Rambabu
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Santoshkumar D Bhat
- CSIR-Central Electrochemical Research Institute-Madras Unit, CSIR Madras Complex, Chennai 600 113, India.
| | - Filipe M L Figueiredo
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
A facile synthesis of graphene nanoribbon-quantum dot hybrids and their application for composite electrolyte membrane in direct methanol fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.162] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|