1
|
Bhange M, Telange D. Convergence of nanotechnology and artificial intelligence in the fight against liver cancer: a comprehensive review. Discov Oncol 2025; 16:77. [PMID: 39841330 PMCID: PMC11754566 DOI: 10.1007/s12672-025-01821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Liver cancer is one of the most challenging malignancies, often associated with poor prognosis and limited treatment options. Recent advancements in nanotechnology and artificial intelligence (AI) have opened new frontiers in the fight against this disease. Nanotechnology enables precise, targeted drug delivery, enhancing the efficacy of therapeutics while minimizing off-target effects. Simultaneously, AI contributes to improved diagnostic accuracy, predictive modeling, and the development of personalized treatment strategies. This review explores the convergence of nanotechnology and AI in liver cancer treatment, evaluating current progress, identifying existing research gaps, and discussing future directions. We highlight how AI-powered algorithms can optimize nanocarrier design, facilitate real-time monitoring of treatment efficacy, and enhance clinical decision-making. By integrating AI with nanotechnology, clinicians can achieve more accurate patient stratification and treatment personalization, ultimately improving patient outcomes. This convergence holds significant promise for transforming liver cancer therapy into a more precise, individualized, and efficient process. However, data privacy, regulatory hurdles, and the need for large-scale clinical validation remain. Addressing these issues will be essential to fully realizing the potential of these technologies in oncology.
Collapse
Affiliation(s)
- Manjusha Bhange
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi Meghe, Wardha, Maharashtra, 442001, India.
| | - Darshan Telange
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi Meghe, Wardha, Maharashtra, 442001, India
| |
Collapse
|
2
|
Duan L, Fu H, Sun H, Sun Y, Lu Z, Liu J. Cu 2S/C@NiMnCe-layered double hydroxide with core-shell rods array structure as the cathode for high performance supercapacitors. J Colloid Interface Sci 2024; 676:331-342. [PMID: 39042960 DOI: 10.1016/j.jcis.2024.07.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
The selection of highly efficient materials and the construction of advantageous structures are essential for realizing high-performance electrode materials. In this paper, electrode material Cu2S/C@NiMnCe-LDH/CF with excellent morphology and high performance has been successfully designed and prepared by simple hydrothermal and calcination techniques. First, ZIF-67 is loaded on the outer layer of Cu2S rods to obtain core-shell structured Cu2S@ZIF-67 rods, whose ZIF-67 MOF shell is carbonized to obtain Cu2S@C rods. Then, NiMnCe-LDH are epitaxially loaded on the outer layer of Cu2S@C to obtain Cu2S/C@NiMnCe-LDH rods. At a current density of 2 mA cm-2, Cu2S/C@NiMnCe-LDH/CF exhibits an area capacitance of 5176.4 mF cm-2. The mass capacitance and the energy density of the Cu2S/C@NiMnCe-LDH/CF//AC asymmetric supercapacitor (ASC) reach 150.82F g-1 at a sweep rate of 0.8 A/g and 53.62 Wh kg-1 at a power density of 639.99 W kg-1, respectively. Meanwhile, after 8000 electrochemical cycles, the specific capacitance of Cu2S/C@NiMnCe-LDH/CF//AC still has a retention rate of 86.32 %, which proves its excellent cycling stability. These results demonstrate a new strategy for the preparation of novel core-shell structured Cu2S/C@NiMnCe-LDH/CF nanocomposite material for electrode materials of energy storage devices with superb performance.
Collapse
Affiliation(s)
- Lejiao Duan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Hucheng Fu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Huiru Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Yuesheng Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Zhongqi Lu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China.
| |
Collapse
|
3
|
Abdelkhalek MM, Seif R, Abdallah RZ, Akar AA, Siam R, Allam NK. Recovery of copper/carbon matrix nanoheteroarchitectures from recyclable electronic waste and their efficacy as antibacterial agents. RSC Adv 2024; 14:25750-25758. [PMID: 39148753 PMCID: PMC11325858 DOI: 10.1039/d4ra04750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Innovative solutions are urgently needed with the growing environmental hazard of electronic waste (e-waste) and the rising global threat of bacterial infections. This study addresses both issues by using e-waste to produce copper nanoparticles within a carbon matrix (Cu/C NPs), mitigating environmental hazards while exploring their antibacterial properties. Printed circuit boards from discarded computers were collected and treated with 2 M ammonium citrate dissolved in 8% ammonia solution. The leached solution was used to synthesize copper particles using ascorbic acid. The synthesized Cu/C NPs were characterized using various techniques such as EDX, field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The antibacterial activity of Cu/C NPs against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated using colony-forming unit (CFU) reduction assay and calculating the minimum inhibitory concentrations (MICs). The Cu/C NPs were found to be effective against E. coli and S. aureus with 100% and 98% CFU reduction, respectively, with MICs ranging from 250 to 375 μg mL-1 for E. coli and 375 to 750 μg mL-1 for S. aureus, according to the bacterial load. The bactericidal kinetics showed complete bacterial elimination after 5 and 7 hours for E. coli and S. aureus, respectively. This study presents a sustainable approach for utilizing e-waste and demonstrates the potential of the recovered nanoparticles for antibacterial applications.
Collapse
Affiliation(s)
- Mariam M Abdelkhalek
- Energy Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Rania Seif
- Energy Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Rehab Z Abdallah
- Department of Biology, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Abdallah A Akar
- Energy Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Rania Siam
- Department of Biology, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
4
|
Su C, Hilal M, Yang F, Xu X, Zhang C, Guo S, Zhang J, Cai Z, Yuan H, Xie W. Enhanced Energy Storage Performance through Controlled Composition and Synthesis of 3D Mixed Metal-Oxide Microspheres. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:825. [PMID: 38786782 PMCID: PMC11123681 DOI: 10.3390/nano14100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Binary transition metal oxide complexes (BTMOCs) in three-dimensional (3D) layered structures show great promise as electrodes for supercapacitors (SCs) due to their diverse oxidation states, which contribute to high specific capacitance. However, the synthesis of BTMOCs with 3D structures remains challenging yet crucial for their application. In this study, we present a novel approach utilizing a single-step hydrothermal technique to fabricate flower-shaped microspheres composed of a NiCo-based complex. Each microsphere consists of nanosheets with a mesoporous structure, enhancing the specific surface area to 23.66 m2 g-1 and facilitating efficient redox reactions. When employed as the working electrode for supercapacitors, the composite exhibits remarkable specific capacitance, achieving 888.8 F g-1 at 1 A g-1. Furthermore, it demonstrates notable electrochemical stability, retaining 52.08% capacitance after 10,000 cycles, and offers a high-power density of 225 W·kg-1, along with an energy density of 25 Wh·kg-1, showcasing its potential for energy storage applications. Additionally, an aqueous asymmetric supercapacitor (ASC) was assembled using NiCo microspheres-based complex and activated carbon (AC). Remarkably, the NiCo microspheres complex/AC configuration delivers a high specific capacitance of 250 F g-1 at 1 A g-1, with a high energy density of 88 Wh kg-1, for a power density of 800 W kg-1. The ASC also exhibits excellent long-term cyclability with 69% retention over 10,000 charge-discharge cycles. Furthermore, a series of two ASC devices demonstrated the capability to power commercial blue LEDs for a duration of at least 40 s. The simplicity of the synthesis process and the exceptional performance exhibited by the developed electrode materials hold considerable promise for applications in energy storage.
Collapse
Affiliation(s)
- Chongjie Su
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China; (C.S.); (F.Y.); (X.X.); (C.Z.); (S.G.); (J.Z.)
| | - Muhammad Hilal
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea;
| | - Fan Yang
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China; (C.S.); (F.Y.); (X.X.); (C.Z.); (S.G.); (J.Z.)
| | - Xinda Xu
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China; (C.S.); (F.Y.); (X.X.); (C.Z.); (S.G.); (J.Z.)
| | - Chao Zhang
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China; (C.S.); (F.Y.); (X.X.); (C.Z.); (S.G.); (J.Z.)
| | - Shuoyu Guo
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China; (C.S.); (F.Y.); (X.X.); (C.Z.); (S.G.); (J.Z.)
| | - Junning Zhang
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China; (C.S.); (F.Y.); (X.X.); (C.Z.); (S.G.); (J.Z.)
| | - Zhicheng Cai
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea;
| | - Huimin Yuan
- College of Physics and Electronic Engineering, Qilu Normal University, Ji’nan 250200, China
| | - Wanfeng Xie
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China; (C.S.); (F.Y.); (X.X.); (C.Z.); (S.G.); (J.Z.)
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
5
|
Ribeiro GAC, de Lima SLS, Santos KER, Mendonça JP, Macena P, Pessanha EC, Cordeiro TC, Gardener J, Solórzano G, Fonsaca JES, Domingues SH, Dos Santos CC, Dourado AHB, Tanaka AA, da Silva AGM, Garcia MAS. Zn-doped MnO x nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors. DISCOVER NANO 2023; 18:147. [PMID: 38047970 PMCID: PMC10695906 DOI: 10.1186/s11671-023-03933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnOx nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnOx nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g-1 at a charge/discharge current density of 1.0 A g-1 in a 2.0 mol L-1 KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.
Collapse
Affiliation(s)
- Geyse A C Ribeiro
- Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil
| | - Scarllett L S de Lima
- Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Karolinne E R Santos
- Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil
| | - Jhonatam P Mendonça
- Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil
| | - Pedro Macena
- Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Emanuel C Pessanha
- Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Thallis C Cordeiro
- Centro de Ciências Exatas E Tecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, RJ, Brazil
| | - Jules Gardener
- Center for Nanoscale Systems, School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
| | - Guilhermo Solórzano
- Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Jéssica E S Fonsaca
- Mackenzie Institute for Advanced Research in Graphene and Nanotechnologies - MackGraphe, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | - Sergio H Domingues
- Mackenzie Institute for Advanced Research in Graphene and Nanotechnologies - MackGraphe, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | | | - André H B Dourado
- São Carlos Institute of Chemistry, Universidade de São Paulo (USP), São Carlos, SP, Brazil
| | - Auro A Tanaka
- Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil
| | - Anderson G M da Silva
- Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.
| | - Marco A S Garcia
- Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil.
| |
Collapse
|
6
|
Du B, Shi X, Zhu H, Xu J, Bai Y, Wang Q, Wang X, Zhou J. Preparation and characterization of bifunctional wolfsbane-like magnetic Fe 3O 4 nanoparticles-decorated lignin-based carbon nanofibers composites for electromagnetic wave absorption and electrochemical energy storage. Int J Biol Macromol 2023; 246:125574. [PMID: 37385319 DOI: 10.1016/j.ijbiomac.2023.125574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Recently, with the pursuit of high-efficiency electromagnetic wave absorption (EMWA) and electrochemical energy storage (EES) materials, multifunctional lignin-based composites have attracted significant interest due to their low cost, vast availability, and sustainability. In this work, lignin-based carbon nanofibers (LCNFs) was first prepared by electrospinning, pre-oxidation and carbonization processes. Then, different content of magnetic Fe3O4 nanoparticles were deposited on the surface of LCNFs via the facile hydrothermal way to produce a series of bifunctional wolfsbane-like LCNFs/Fe3O4 composites. Among them, the synthesized optimal sample (using 12 mmol of FeCl3·6H2O named as LCNFs/Fe3O4-2) displayed excellent EMWA ability. When the minimum reflection loss (RL) value achieved -44.98 dB at 6.01 GHz with an thickness of 1.5 mm, and the effective absorption bandwidth (EAB) was up to 4.19 GHz ranging from 5.10 to 7.21 GHz. For supercapacitor electrode, the highest specific capacitance of LCNFs/Fe3O4-2 reached 538.7 F/g at the current density of 1 A/g, and the capacitance retention remained at 80.3 %. Moreover, an electric double layer capacitor of LCNFs/Fe3O4-2//LCNFs/Fe3O4-2 also showed a remarkable power density of 7755.29 W/kg, outstanding energy density of 36.62 Wh/kg and high cycle stability (96.89 % after 5000 cycles). In short, the construction of this multifunctional lignin-based composites has potential applications in electromagnetic wave (EMW) absorbers and supercapacitor electrodes.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaojuan Shi
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yating Bai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
7
|
Teixeira LT, de Lima SLS, Rosado TF, Liu L, Vitorino HA, Dos Santos CC, Mendonça JP, Garcia MAS, Siqueira RNC, da Silva AGM. Sustainable Cellulose Nanofibers-Mediated Synthesis of Uniform Spinel Zn-Ferrites Nanocorals for High Performances in Supercapacitors. Int J Mol Sci 2023; 24:ijms24119169. [PMID: 37298121 DOI: 10.3390/ijms24119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023] Open
Abstract
Spinel ferrites are versatile, low-cost, and abundant metal oxides with remarkable electronic and magnetic properties, which find several applications. Among them, they have been considered part of the next generation of electrochemical energy storage materials due to their variable oxidation states, low environmental toxicity, and possible synthesis through simple green chemical processing. However, most traditional procedures lead to the formation of poorly controlled materials (in terms of size, shape, composition, and/or crystalline structure). Thus, we report herein a cellulose nanofibers-mediated green procedure to prepare controlled highly porous nanocorals comprised of spinel Zn-ferrites. Then, they presented remarkable applications as electrodes in supercapacitors, which were thoroughly and critically discussed. The spinel Zn-ferrites nanocorals supercapacitor showed a much higher maximum specific capacitance (2031.81 F g-1 at a current density of 1 A g-1) than Fe2O3 and ZnO counterparts prepared by a similar approach (189.74 and 24.39 F g-1 at a current density of 1 A g-1). Its cyclic stability was also scrutinized via galvanostatic charging/discharging and electrochemical impedance spectroscopy, indicating excellent long-term stability. In addition, we manufactured an asymmetric supercapacitor device, which offered a high energy density value of 18.1 Wh kg-1 at a power density of 2609.2 W kg-1 (at 1 A g-1 in 2.0 mol L-1 KOH electrolyte). Based on our findings, we believe that higher performances observed for spinel Zn-ferrites nanocorals could be explained by their unique crystal structure and electronic configuration based on crystal field stabilization energy, which provides an electrostatic repulsion between the d electrons and the p orbitals of the surrounding oxygen anions, creating a level of energy that determines their final supercapacitance then evidenced, which is a very interesting property that could be explored for the production of clean energy storage devices.
Collapse
Affiliation(s)
- Lucas T Teixeira
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-040, RJ, Brazil
| | - Scarllet L S de Lima
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-040, RJ, Brazil
| | - Taissa F Rosado
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-040, RJ, Brazil
| | - Liying Liu
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil
| | - Hector A Vitorino
- Centro de Investigación en Biodiversidad para la Salud, Universidad Privada Norbert Wiener, Lima 15046, Peru
| | - Clenilton C Dos Santos
- Departamento de Física, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Jhonatam P Mendonça
- Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Marco A S Garcia
- Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Rogério N C Siqueira
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-040, RJ, Brazil
| | - Anderson G M da Silva
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-040, RJ, Brazil
| |
Collapse
|
8
|
Hu P, Hu P, Vu TD, Li M, Wang S, Ke Y, Zeng X, Mai L, Long Y. Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications. Chem Rev 2023; 123:4353-4415. [PMID: 36972332 PMCID: PMC10141335 DOI: 10.1021/acs.chemrev.2c00546] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Vanadium oxides with multioxidation states and various crystalline structures offer unique electrical, optical, optoelectronic and magnetic properties, which could be manipulated for various applications. For the past 30 years, significant efforts have been made to study the fundamental science and explore the potential for vanadium oxide materials in ion batteries, water splitting, smart windows, supercapacitors, sensors, and so on. This review focuses on the most recent progress in synthesis methods and applications of some thermodynamically stable and metastable vanadium oxides, including but not limited to V2O3, V3O5, VO2, V3O7, V2O5, V2O2, V6O13, and V4O9. We begin with a tutorial on the phase diagram of the V-O system. The second part is a detailed review covering the crystal structure, the synthesis protocols, and the applications of each vanadium oxide, especially in batteries, catalysts, smart windows, and supercapacitors. We conclude with a brief perspective on how material and device improvements can address current deficiencies. This comprehensive review could accelerate the development of novel vanadium oxide structures in related applications.
Collapse
|
9
|
Li B, Liu S, Yang H, Wang R, Xu X, Zhou Y, Zhang Y, Yang D, Li J. Fabrication of Coral-like Polyaniline/Continuously Reinforced Carbon Nanotube Woven Composite Films for Flexible High-Stability Supercapacitor Electrodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4343-4357. [PMID: 36629286 DOI: 10.1021/acsami.2c20626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrochemical performance is significantly influenced by the structure and surface morphology of the electrode materials used in supercapacitors. Using the floating catalytic chemical vapor deposition (FCCVD) technique, a self-supporting, flexible layer of continuously reinforced carbon nanotube woven film (CNWF) was developed. Then, polyaniline (PANI) was formed in the conductive network of CNWF using cyclic voltammetry electrochemical polymerization (CVEP) in various aqueous electrolytes to produce a series of flexible CNWF/PANI composite films. The impacts of the CVEP period, electrolyte type, and electrolyte concentration on the surface morphology, doping degree, and hydrophilicity of CNWF/PANI composite films were thoroughly examined. The CNWF/PANI1-15C composite electrode, which was created using 15 cycles of CVEP in a solution of 1 M sodium bisulfate, displayed a distinctive coral-like PANI layer with a well-defined sharp nanoprotuberance structure, a 48% doping degree, and a quick reversible pseudocapacitive storage mechanism. At a current density of 1 A g-1, the energy density and specific capacitance reached 54.9 Wh kg-1 and 1098.0 F g-1, respectively, with a specific capacitance retention rate of 75.9% maintained at 10 A g-1. Both the specific capacitance and coulomb efficiency were maintained at 96.9% and more than 98.1% of their initial values after being subjected to 2000 cycles of galvanostatic charge and discharge, demonstrating excellent electrochemical cycling stability. The CNWF/PANI1-15C composite film, an ideal electrode material, offers a promising future in the field of flexible energy storage due to its exceptional mechanical properties (127.9 MPa tensile strength and 16.2% elongation at break).
Collapse
Affiliation(s)
- Bingjian Li
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Shi Liu
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Haicun Yang
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Ran Wang
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Xixi Xu
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Yinjie Zhou
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Yun Zhang
- Changzhou Key Laboratory of Functional Film Materials, Pan Asian Microvent Tech (Jiangsu) Corporation, Changzhou213164, China
| | - Dan Yang
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou213164, China
| | - Jinchun Li
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou213164, China
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou213164, China
| |
Collapse
|
10
|
Salheen SA, Nassar HF, Dsoke S, El-Deen AG. Constructing ultraporous activated hollow carbon nanospheres derived from rotten grapes for boosting energy density and lifespan supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
High-performance solid-state asymmetric supercapacitor based on Ti3C2Tx MXene/VS2 cathode and Fe3O4@rGO hydrogel anode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Tong L, Wu C, Hou J, Zhang X, Yan J, Wang Z, Wang Y, Mu J, Zhang Z, Che H. Fe3O4@PPy@MnO2 ternary core-shell nanospheres as electrodes for enhanced energy storage performance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Liu T, Xu Z, Chen L, Zhang Y, Wang M, Jia Y, Huang Y. Boosting zinc ion storage performance of sandwich-like V2O5/graphene composite by effectively inhibiting vanadium dissolution. J Colloid Interface Sci 2022; 613:524-535. [DOI: 10.1016/j.jcis.2022.01.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/20/2023]
|
14
|
Deyab NM, Taha MM, Allam NK. A mesoporous ternary transition metal oxide nanoparticle composite for high-performance asymmetric supercapacitor devices with high specific energy. NANOSCALE ADVANCES 2022; 4:1387-1393. [PMID: 36133682 PMCID: PMC9418259 DOI: 10.1039/d1na00694k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/17/2022] [Indexed: 06/16/2023]
Abstract
We report on the optimized fabrication and electrochemical properties of ternary metal oxide (Ti-Mo-Ni-O) nanoparticles as electrochemical supercapacitor electrode materials. The structural, morphological, and elemental composition of the fabricated Ti-Mo-Ni-O via rapid breakdown anodization are elucidated by field emission scanning electron microscopy, Raman, and photoelectron spectroscopy analyses. The Ti-Mo-Ni-O nanoparticles reveal pseudocapacitive behavior with a specific capacitance of 255.4 F g-1. Moreover, the supercapacitor device Ti-Mo-Ni-O NPs//mesoporous doped-carbon (TMN NPs//MPDC) device exhibited a superior specific energy of 68.47 W h kg-1 with a corresponding power density of 2058 W kg-1. The supercapacitor device shows 100% coulombic efficiency with 96.8% capacitance retention over 11 000 prolonged charge/discharge cycles at 10 A g-1.
Collapse
Affiliation(s)
- Nourhan M Deyab
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
- Physical Chemistry Department, National Research Centre Dokki Giza Egypt
| | - Manar M Taha
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
15
|
|
16
|
Andikaey Z, Ensafi AA, Rezaei B. Iron-doped cobalt copper phosphide/phosphate composite with 3D hierarchical flower-like structures as electrodes for hybrid supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Liu R, Xu S, Shao X, Wen Y, Shi X, Hu J, Yang Z. Carbon coating on metal oxide materials for electrochemical energy storage. NANOTECHNOLOGY 2021; 32:502004. [PMID: 34450612 DOI: 10.1088/1361-6528/ac21eb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
During the past decades, nano-structured metal oxide electrode materials have received growing attention due to their low development cost and high theoretical specific capacity, accordingly, quite a lot of metal oxide electrode materials are being used in electrochemical energy storage devices. However, the further development was limited by the relatively low electrical conductivity and the volume expansion during electrochemical reactions. Thus, many approaches have been proposed to obtain high-efficiency metal oxide electrode materials, such as designing nanomaterials with ideal morphology and high specific surface area, optimizing with carbon-based materials (such as graphene and glucose) to prepare nanocomposites, combining with conductive substrates to enhance the conductivity of electrodes, etc. Owning to the advantages of low cost and high chemical stability of carbon materials, core-shell structure formed by carbon-coated metal oxides is considered to be a promising solution to solve these problems. Therefore, this review mainly focuses on recent research advances in the field of carbon-coated metal oxides for energy storage, summarizing the advantages and disadvantages of common metal oxides and different types of carbon sources, and proposing methods to optimize the material properties in terms of structure and morphology, carbon layer thickness, coating method, specific surface area and pore size distribution, as well as improving electrical conductivity. In addition, the double or multi-layer coating strategy is also a reflection of the continuous development of carbon coating method. Hopefully, this rereview may provide a new direction for the renewal and development of future energy storage electrode materials.
Collapse
Affiliation(s)
- Ruiqi Liu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Shusheng Xu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Xiaoxuan Shao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Yi Wen
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Xuerong Shi
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Jing Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Jiangsu Province 215009, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
18
|
Salazar-Aguilar AD, Rodriguez-Rodriguez JI, Piñeiro-García A, Tristan F, Labrada-Delgado GJ, Meneses-Rodríguez D, Vega-Díaz SM. Layer-by-Layer Method to Prepare Three-Dimensional Reduced Graphene Materials with Controlled Architectures Using SiO 2 as a Sacrificial Template. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Alma D. Salazar-Aguilar
- Departamento de Ingeniería Química, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Avenida Tecnológico esq., A. García Cubas #600 Pt, CP 38010 Celaya, Guanajuato, México
| | - José Iván Rodriguez-Rodriguez
- Departamento de Ingeniería Química, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Avenida Tecnológico esq., A. García Cubas #600 Pt, CP 38010 Celaya, Guanajuato, México
| | - Alexis Piñeiro-García
- Departamento de Ingeniería Química, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Avenida Tecnológico esq., A. García Cubas #600 Pt, CP 38010 Celaya, Guanajuato, México
| | - Ferdinando Tristan
- Departamento de Ingeniería Química, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Avenida Tecnológico esq., A. García Cubas #600 Pt, CP 38010 Celaya, Guanajuato, México
| | | | - David Meneses-Rodríguez
- Cátedras-CONACYT CINVESTAV, Mérida Km 6, Carretera Antigua a Progreso, Cordemex, CP 97310 Mérida, Yucatán, México
| | - Sofia Magdalena Vega-Díaz
- Departamento de Ingeniería Química, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Avenida Tecnológico esq., A. García Cubas #600 Pt, CP 38010 Celaya, Guanajuato, México
| |
Collapse
|
19
|
Wang H, Xu X, Neville A. In situ synthesis of nanostructured Fe 3O 4@TiO 2 composite grown on activated carbon cloth as a binder-free electrode for high performance supercapacitors. RSC Adv 2021; 11:23541-23549. [PMID: 35479810 PMCID: PMC9036530 DOI: 10.1039/d1ra04424a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Transition metal oxide (TMO) nanomaterials with regular morphology have received widening research attention as electrode materials due to their improved electrochemical characteristics. In this study we present the successful fabrication of an Fe3O4/TiO2 nanocomposite grown on a carbon cloth (Fe3O4/TiO2@C) used as a high-efficiency electrochemical supercapacitor electrode. Flexible electrodes are directly used for asymmetric supercapacitors without any binder. The increased specific surface area of the TiO2 nanorod arrays provides sufficient adsorption sites for Fe3O4 nanoparticles. An asymmetric supercapacitor composed of Fe3O4/TiO2@C is tested in 1 M Na2SO3 electrolyte, and the synergistic effects of fast reversible Faraday reaction on the Fe3O4/TiO2 surface and the highly conductive network formed by TiO2@C help the electrode to achieve a high areal capacitance of 304.1 mF cm−2 at a current density of 1 mA cm−2 and excellent cycling stability with 90.7% capacitance retention at 5 mA cm−2 after 10 000 cycles. As a result, novel synthesis of a binder-free Fe3O4/TiO2@C electrode provides a feasible approach for developing competitive candidates in supercapacitor applications. Transition metal oxide (TMO) nanomaterials with regular morphology have received widening research attention as electrode materials due to their improved electrochemical characteristics.![]()
Collapse
Affiliation(s)
- Hai Wang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China) Qingdao 266580 China.,Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds Leeds LS2 9JT UK
| | - Xingping Xu
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Anne Neville
- Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
20
|
Multi-walled vanadium oxide nanotubes modified 3D microporous bioderived carbon as novel electrodes for hybrid capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Saleh AA, Ahmed N, Biby AH, Allam NK. Supercapattery electrode materials by Design: Plasma-induced defect engineering of bimetallic oxyphosphides for energy storage. J Colloid Interface Sci 2021; 603:478-490. [PMID: 34216948 DOI: 10.1016/j.jcis.2021.06.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
Although transition metal hydroxides are promising candidates as advanced supercapattery materials, they suffer from poor electrical conductivity. In this regard, previous studies have typically analyzed separately the impacts of defect engineering at the atomic level and the conversion of hydroxides to phosphides on conductivity and the overall electrochemical performance. Meanwhile, this paper uniquely studies the aforementioned methodologies simultaneously inside an all-in-one simple plasma treatment for nickel cobalt carbonate hydroxide, examines the effect of altering the nickel-to-cobalt ratio in the binder-free defect-engineered bimetallic Ni-Co system, and estimates the respective quantum capacitance. Results show that the concurrent defect-engineering and phosphidation of nickel cobalt carbonate hydroxide boost the amount of effective redox and adsorption sites and increase the conductivity and the operating potential window. The electrodes exhibit ultra-high-capacity of 1462 C g-1, which is among the highest reported for a nickel-cobalt phosphide/phosphate system. Besides, a hybrid supercapacitor device was fabricated that can deliver an energy density of 48 Wh kg-1 at a power density of 800 W kg-1, along with an outstanding cycling performance, using the best performing electrode as the positive electrode and graphene hydrogel as the negative electrode. These results outperform most Ni-Co-based materials, demonstrating that plasma-assisted defect-engineered Ni-Co-P/POx is a promising material for use to assemble efficient energy storage devices.
Collapse
Affiliation(s)
- Amina A Saleh
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nashaat Ahmed
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed H Biby
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
22
|
A facile electrosynthesis approach of Mn-Ni-Co ternary phosphides as binder-free active electrode materials for high-performance electrochemical supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138197] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Yang S, Cen Y, Hu B, Xu C, Li Y, Yu J, Hu B, Meng J, Yu D, Chen C. High‐Performance Ytterbium‐Doped V
2
O
5
⋅ H
2
O Binder‐Free Thin‐Film Electrodes for Supercapacitors. ChemElectroChem 2021. [DOI: 10.1002/celc.202100169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shu Yang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 China
| | - Yuan Cen
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 China
| | - Bingbing Hu
- College of Materials Science and Engineering Chongqing Jiaotong University Chongqing 400074 China
| | - Chuanlan Xu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 China
| | - Yan Li
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 China
| | - Jingjing Yu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 China
| | - Bihao Hu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 China
| | - Jiazhi Meng
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 China
| | - Danmei Yu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 China
| | - Changguo Chen
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 China
| |
Collapse
|
24
|
Liang W, Zhitomirsky I. Composite Fe 3O 4-MXene-Carbon Nanotube Electrodes for Supercapacitors Prepared Using the New Colloidal Method. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2930. [PMID: 34072315 PMCID: PMC8199491 DOI: 10.3390/ma14112930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022]
Abstract
MXenes, such as Ti3C2Tx, are promising materials for electrodes of supercapacitors (SCs). Colloidal techniques have potential for the fabrication of advanced Ti3C2Tx composites with high areal capacitance (CS). This paper reports the fabrication of Ti3C2TX-Fe3O4-multiwalled carbon nanotube (CNT) electrodes, which show CS of 5.52 F cm-2 in the negative potential range in 0.5 M Na2SO4 electrolyte. Good capacitive performance is achieved at a mass loading of 35 mg cm-2 due to the use of Celestine blue (CB) as a co-dispersant for individual materials. The mechanisms of CB adsorption on Ti3C2TX, Fe3O4, and CNTs and their electrostatic co-dispersion are discussed. The comparison of the capacitive behavior of Ti3C2TX-Fe3O4-CNT electrodes with Ti3C2TX-CNT and Fe3O4-CNT electrodes for the same active mass, electrode thickness and CNT content reveals a synergistic effect of the individual capacitive materials, which is observed due to the use of CB. The high CS of Ti3C2TX-Fe3O4-CNT composites makes them promising materials for application in negative electrodes of asymmetric SC devices.
Collapse
Affiliation(s)
| | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada;
| |
Collapse
|
25
|
Sun G, Ren H, Shi Z, Zhang L, Wang Z, Zhan K, Yan Y, Yang J, Zhao B. V 2O 5/vertically-aligned carbon nanotubes as negative electrode for asymmetric supercapacitor in neutral aqueous electrolyte. J Colloid Interface Sci 2021; 588:847-856. [PMID: 33309246 DOI: 10.1016/j.jcis.2020.11.126] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
Development of aqueous asymmetric supercapacitors (ASCs) is often limited by low specific capacitance of negative electrodes. Herein, a composite electrode with tiny vanadium pentoxide (V2O5) nanoparticles homogeneously decorated in vertically-aligned carbon nanotube arrays (VACNTs) is prepared by supercritical CO2 impregnation and subsequent annealing, and used as binder-free negative electrode for aqueous ASCs. Owing to its unique three-dimensional (3D) hierarchical nanostructure, the V2O5/VACNTs (VN) electrodes exhibit an ideal specific capacitance of 284 F g-1 in the potential range of -1.1 to 0 V vs SCE at 2 A g-1 and outstanding cycling stability in the Na2SO4 aqueous solution. An aqueous ASC device possessing wide potential range of 1.7 V was constructed with pure VACNTs and VN-350 as the positive and negative electrodes, respectively. The ASC delivers a high energy density of 32.3 Wh kg-1 at a power density of 118 W kg-1 and satisfactory cycling life with capacitance retention of 76% after 5000 cycles.
Collapse
Affiliation(s)
- Gan Sun
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hao Ren
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhongting Shi
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lu Zhang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuo Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Zhan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ya Yan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhe Yang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bin Zhao
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
26
|
Zhang H, Yang D, Lau A, Ma T, Lin H, Jia B. Hybridized Graphene for Supercapacitors: Beyond the Limitation of Pure Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007311. [PMID: 33634597 DOI: 10.1002/smll.202007311] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Graphene-based supercapacitors have been attracting growing attention due to the predicted intrinsic high surface area, high electron mobility, and many other excellent properties of pristine graphene. However, experimentally, the state-of-the-art graphene electrodes face limitations such as low surface area, low electrical conductivity, and low capacitance, which greatly limit their electrochemical performances for supercapacitor applications. To tackle these issues, hybridizing graphene with other species (e.g., atom, cluster, nanostructure, etc.) to enlarge the surface area, enhance the electrical conductivity, and improve capacitance behaviors are strongly desired. In this review, different hybridization principles (spacers hybridization, conductors hybridization, heteroatoms doping, and pseudocapacitance hybridization) are discussed to provide fundamental guidance for hybridization approaches to solve these challenges. Recent progress in hybridized graphene for supercapacitors guided by the above principles are thereafter summarized, pushing the performance of hybridized graphene electrodes beyond the limitation of pure graphene materials. In addition, the current challenges of energy storage using hybridized graphene and their future directions are discussed.
Collapse
Affiliation(s)
- Huihui Zhang
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Dan Yang
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Alan Lau
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Han Lin
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
27
|
Enhancement of supercapacitance of reduced graphene oxide, copper oxide and polyaniline using the mixture of methane sulphonic acid and sulphuric acid as electrolyte. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Keyang H, Ruiyi L, Zaijun L, Yongqiang Y. Controllable synthesis of superparamagnetic NiCo-graphene quantum dot-graphene composite with excellent dispersion for high performance magnetic field-controlled electrochemical flow hybrid supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
El-Deen AG, Hussein El-Shafei M, Hessein A, Hassanin AH, Shaalan NM, El-Moneim AA. High-performance asymmetric supercapacitor based hierarchical NiCo 2O 4@ carbon nanofibers//Activated multichannel carbon nanofibers. NANOTECHNOLOGY 2020; 31:365404. [PMID: 32470955 DOI: 10.1088/1361-6528/ab97d6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthesis of rational nanostructure design of hybrid materials including uniformly growing, stable and highly porous structures have received a great deal of attention for many energy storage applications. In this study, the positive electrode of the uniform distribution of NiCo2O4 nanorods anchored on carbon nanofibers has been successfully prepared by in-situ growth under the hydrothermal process. Whereas, the activated multichannel carbon nanofibers (AMCNFs) have been fabricated via electrospinning followed by alkaline activation as the negative electrode. The crystal phase, morphological structure for the proposed electrode materials were characterized by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Moreover, the electrochemical behaviors were investigated using cyclic voltammetry (CV), galvanostatic charge and discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. Compared to the neat CNFs and the pristine NiCo2O4, the NiCo2O4@CNFs hybrid electrodes showed better electrochemical performance and achieved a high specific capacitance up to 649 F g-1 at a current density of 3 A g-1. The optimized NiCo2O4@CNFs//AMCNFs asymmetric device achieved a high energy density of 38.5 Wh kg-1 with a power density of 1.6 kW kg-1 and possessed excellent recyclability with 93.1% capacitance retention over 6000 charging/discharging cycles. Overall, the proposed study introduces a facile strategy for the robust design of hybrid structured as effective nanomaterials based electrode for high-performance electrochemical supercapacitors.
Collapse
Affiliation(s)
- Ahmed G El-Deen
- Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni- Suef University, Beni-Suef 62511, Egypt. Materials Science and Engineering Department, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt
| | | | | | | | | | | |
Collapse
|
30
|
Mao Y, Zhou B, Peng S. Magnetite ultrafine particles/porous reduced graphene oxide in situ grown onto Ni foam as a binder-free electrode for supercapacitors. RSC Adv 2020; 10:20753-20764. [PMID: 35517778 PMCID: PMC9054301 DOI: 10.1039/d0ra03724a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/21/2020] [Indexed: 12/05/2022] Open
Abstract
Here, we report a simple and green electrochemical route to fabricate a porous network of a Fe3O4 nanoparticle-porous reduced graphene oxide (p-rGO) nanocomposite supported on a nickel-foam substrate, which is directly used as a binder-free charge storage electrode. Through this method, pristine Fe3O4 NPs/Ni, p-rGO/Ni and Fe3O4 NPs@p-rGO/Ni electrodes are fabricated and compared. In the fabricated Fe3O4 NPs@p-rGO/Ni electrode, the porous rGO sheets served as a conductive network to facilitate the collection and transportation of electrons during the charge/discharge cycles, improving the conductivity of magnetite NPs and providing a larger specific surface area. As a result, the Fe3O4 NPs@p-rGO/Ni exhibited a specific capacitance of 1323 F g-1 at 0.5 A g-1 and 79% capacitance retention when the current density is increased 20 times, where the Fe3O4 NPs/Ni electrode showed low specific capacitance of 357 F g-1 and 43% capacity retention. Furthermore, the composite electrode kept 95.1% and 86.7% of its initial capacitances at the current densities of 1 and 4 A g-1, respectively, which were higher than those of a Fe3O4/NF electrode at similar loads (i.e. 80.4% and 65.9% capacitance retentions at 1 and 4 A g-1, respectively). These beneficial effects proved the synergistic contribution between p-rGO and Fe3O4. Hence, such ultrafine magnetite particles grown onto a porous reduced GO network directly imprinted onto a Ni substrate could be a promising candidate for high performance energy storage aims.
Collapse
Affiliation(s)
- Yingling Mao
- College of Science, ShaoYang University ShaoYang 422000 China
- Hunan Provincial Key Laboratory of Grids Operation and Control on Multi-Power Sources Area ShaoYang 422000 China
| | - Benhu Zhou
- College of Science, ShaoYang University ShaoYang 422000 China
| | - Sen Peng
- College of Science, ShaoYang University ShaoYang 422000 China
| |
Collapse
|
31
|
Shi W, Gao X, Mao J, Qian X, Liu W, Wu F, Li H, Zeng Z, Shen J, Cao X. Exploration of Energy Storage Materials for Water Desalination via Next-Generation Capacitive Deionization. Front Chem 2020; 8:415. [PMID: 32500060 PMCID: PMC7242748 DOI: 10.3389/fchem.2020.00415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Abstract
Clean energy and environmental protection are critical to the sustainable development of human society. The numerous emerged electrode materials for energy storage devices offer opportunities for the development of capacitive deionization (CDI), which is considered as a promising water treatment technology with advantages of low cost, high energy efficiency, and wide application. Conventional CDI based on porous carbon electrode has low salt removal capacity which limits its application in high salinity brine. Recently, the faradaic electrode materials inspired by the researches of sodium-batteries appear to be attractive candidates for next-generation CDI which capture ions by the intercalation or redox reactions in the bulk of electrode. In this mini review, we summarize the recent advances in the development of various faradaic materials as CDI electrodes with the discussion of possible strategies to address the problems present.
Collapse
Affiliation(s)
- Wenhui Shi
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Xinlong Gao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jing Mao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xin Qian
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Fangfang Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Haibo Li
- Ningxia Key Lab Photovolta Material, Ningxia University, Yinchuan, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiangnan Shen
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Xiehong Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
32
|
|
33
|
Mesbah YI, Ahmed N, Ali BA, Allam NK. Recycling of Li−Ni−Mn−Co Hydroxide from Spent Batteries to Produce High‐Performance Supercapacitors with Exceptional Stability. ChemElectroChem 2020. [DOI: 10.1002/celc.202000081] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yasmine I. Mesbah
- Energy Materials Laboratory School of Sciences and EngineeringThe American University in Cairo New Cairo 11835 Egypt
| | - Nashaat Ahmed
- Energy Materials Laboratory School of Sciences and EngineeringThe American University in Cairo New Cairo 11835 Egypt
| | - Basant A. Ali
- Energy Materials Laboratory School of Sciences and EngineeringThe American University in Cairo New Cairo 11835 Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory School of Sciences and EngineeringThe American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|