1
|
Xu J, Li Y, Yan F. Constructed MXene matrix composites as sensing material and applications thereof: A review. Anal Chim Acta 2024; 1288:342027. [PMID: 38220263 DOI: 10.1016/j.aca.2023.342027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 01/16/2024]
Abstract
Most studies on MXene matrix composites for sensor development have primarily focused on synthesis and application. Nevertheless, there is currently a lack of research on how the introduction of different materials affects the sensing properties of these composites. The rapid development of MXene has raised intriguing questions about improving sensor performance by combining MXene with other materials such as polymers, metals and inorganic non-metals. This review will concentrate on the construction of MXene-based composites and explore ways to enhance their sensor applications. Specifically, this review describes why the introduction of materials to the system brings the advantage of low concentration and high sensitivity assays, as well as the MXene-based frameworks that have been recently investigated. Lastly, in order to capture the current trend of MXene-based composites in sensor applications and identify promising research directions, this review will critically evaluate the potential applications of newly developed MXene systems.
Collapse
Affiliation(s)
- Jinyun Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Yating Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Pharmaceutical Sciences, Tiangong University, Tianjin, 300387, PR China.
| |
Collapse
|
2
|
Wang Z, Su R, Zhao M, Zhang L, Yang L, Xiao F, Tang W, Chen L, He P, Yang D. B 4C/Ce co-modified Ti/PbO 2 dimensionally stable anode: Facile one-step electrodeposition preparation and highly efficient electrocatalytic degradation of tetracycline. CHEMOSPHERE 2023; 343:140142. [PMID: 37716565 DOI: 10.1016/j.chemosphere.2023.140142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/20/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The application of PbO2 for electrochemical oxidation technology is limited by its low electrocatalytic activity and short service life. Herein, based on the facile one-step electrodeposition, we prepared a boron carbide (B4C) and cerium (Ce) co-modified Ti/PbO2 (Ti/PbO2-B4C-Ce) electrode to overcome these shortcomings. Compared with Ti/PbO2 electrode, the denser surface is displayed by Ti/PbO2-B4C-Ce electrode. Meanwhile, electrochemical characterization indicates that the introduction of B4C and Ce significantly enhance the electrochemical performance of PbO2 electrode. In degradation experiments, under optimized conditions (current density 20 mA cm-2, pH 9, 0.15 M Na2SO4 and 30 °C), the fully degradation of tetracycline (TC) can be completed within 30 min. Furthermore, the trapping experiment demonstrates that ∙OH and SO4·- radicals have a synergistic effect in the degradation process of TC. Based on results of liquid chromatography-mass spectrometer, the generated ·OH preferentially attacks amides, phenols and conjugated double bond groups in TC. Importantly, Ti/PbO2-B4C-Ce electrode maintains a constant degradation efficiency even after 10 recycling tests, and its service life is 2.4 times of traditional Ti/PbO2 electrode. Hence, Ti/PbO2-B4C-Ce electrode is a promising electrode for degradation of organic wastewater containing amides, phenols, and conjugated double bond groups.
Collapse
Affiliation(s)
- Zeyi Wang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Rong Su
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; School of Science, Xichang University, Xichang, 615000, PR China
| | - Maojie Zhao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Luyao Zhang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lu Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Weishan Tang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lichuan Chen
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Dingming Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| |
Collapse
|
3
|
Xu M, Gao C, Zhang X, Liang X, Hu Y, Wang F. Development of SDS-Modified PbO 2 Anode Material Based on Ti 3+ Self-Doping Black TiO 2NTs Substrate as a Conductive Interlayer for Enhanced Electrocatalytic Oxidation of Methylene Blue. Molecules 2023; 28:6993. [PMID: 37836836 PMCID: PMC10574806 DOI: 10.3390/molecules28196993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Efficient and stable electrode materials are urgently required for wastewater treatment in the electrocatalytic degradation of toxic and refractory organic pollutants. Ti3+ self-doping black TiO2 nanotube arrays (Ti/B-TiO2-NTs) as an interlayer were used for preparing a novel PbO2 electrode via an electrochemical reduction technology, and a sodium dodecyl sulfate (SDS)-modified PbO2 catalytic layer was successfully achieved via an electrochemical deposition technology. The physicochemical characterization tests showed that the Ti/B-TiO2-NTs/PbO2-SDS electrodes have a denser surface and finer grain size with the introduction of Ti3+ in the interlayer of Ti/TiO2-NTs and the addition of SDS in the active layer of PbO2. The electrochemical characterization results showed that the Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS electrode had higher oxygen evolution potential (2.11 V vs. SCE), higher electrode stability, smaller charge-transfer resistance (6.74 Ω cm-2), and higher hydroxyl radical production activity, leading to it possessing better electrocatalytic properties. The above results indicated that the physicochemical and electrochemical characterization of the PbO2 electrode were all enhanced significantly with the introduction of Ti3+ and SDS. Furthermore, the Ti/B-TiO2-NTs/PbO2-SDS electrodes displayed the best performance on the degradation of methylene blue (MB) in simulated wastewater via bulk electrolysis. The removal efficiency of MB and the chemical oxygen demand (COD) could reach about 99.7% and 80.6% under the optimal conditions after 120 min, respectively. The pseudo-first-order kinetic constant of the Ti/B-TiO2-NTs/PbO2-SDS electrode was 0.03956 min-1, which was approximately 3.18 times faster than that of the Ti/TiO2-NTs/PbO2 electrode (0.01254 min-1). In addition, the Ti/B-TiO2-NTs/PbO2-SDS electrodes showed excellent stability and reusability. The degradation mechanism of MB was explored via the experimental identification of intermediates. In summary, the Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS electrode is a promising electrode in treating wastewater.
Collapse
Affiliation(s)
- Mai Xu
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Chunli Gao
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China;
| | - Xiaoyan Zhang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Xian Liang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Yunhu Hu
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Fengwu Wang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| |
Collapse
|
4
|
Wang X, Wang L, Wu D, Yuan D, Ge H, Wu X. PbO 2 materials for electrochemical environmental engineering: A review on synthesis and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158880. [PMID: 36130629 DOI: 10.1016/j.scitotenv.2022.158880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Lead dioxide (PbO2) materials have been widely employed in various fields such as batteries, electrochemical engineering, and more recently environmental engineering as anode materials, due to their unique physicochemical properties. Key performances of PbO2 electrodes, such as energy efficiency and space-time yield, are influenced by morphological as well as compositional factors. Micro-nano structure regulation and decoration of metal/non-metal on PbO2 is an outstanding technique to revamp its electrocatalytic activities and enhance environmental engineering efficiency. The aim of this review is to comprehensively summarize the recent research progress in the morphology control, the structure constructions, and the element doping of PbO2 materials, further with many environmental application cases evaluated. Concerning electrochemical environmental engineering, the lead dioxide employed in chemical oxygen demand detection, ozone generators, and wastewater treatment has been comprehensively reviewed. In addition, the future research perspectives, challenges and the opportunities on PbO2 materials for environmental applications are proposed.
Collapse
Affiliation(s)
- Xi Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Luyang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dandan Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Du Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
5
|
Elaboration of Highly Modified Stainless Steel/Lead Dioxide Anodes for Enhanced Electrochemical Degradation of Ampicillin in Water. SEPARATIONS 2022. [DOI: 10.3390/separations10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lead dioxide-based electrodes have shown a great performance in the electrochemical treatment of organic wastewater. In the present study, modified PbO2 anodes supported on stainless steel (SS) with a titanium oxide interlayer such as SS/TiO2/PbO2 and SS/TiO2/PbO2-10% Boron (B) were prepared by the sol–gel spin-coating technique. The morphological and structural properties of the prepared electrodes were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that the SS/TiO2/PbO2-10% B anode led to a rougher active surface, larger specific surface area, and therefore stronger ability to generate powerful oxidizing agents. The electrochemical impedance spectroscopy (EIS) measurements showed that the modified PbO2 anodes displayed a lower charge transfer resistance Rct. The influence of the introduction of a TiO2 intermediate layer and the boron doping of a PbO2 active surface layer on the electrochemical degradation of ampicillin (AMP) antibiotic have been investigated by chemical oxygen demand measurements and HPLC analysis. Although HPLC analysis showed that the degradation process of AMP with SS/PbO2 was slightly faster than the modified PbO2 anodes, the results revealed that SS/TiO2/PbO2-10%B was the most efficient and economical anode toward the pollutant degradation due to its physico-chemical properties. At the end of the electrolysis, the chemical oxygen demand (COD), the average current efficiency (ACE) and the energy consumption (EC) reached, respectively, 69.23%, 60.30% and 0.056 kWh (g COD)−1, making SS/TiO2/PbO2-10%B a promising anode for the degradation of ampicillin antibiotic in aqueous solutions.
Collapse
|
6
|
Quick fabrication of evenly porous PbO2 through potential linear increase electrodeposition. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Fabrication of a novel Ti3C2-modified Sb-SnO2 porous electrode for electrochemical oxidation of organic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Zheng T, Wei C, Chen H, Xu J, Wu Y, Xing X. Fabrication of PbO 2 Electrodes with Different Doses of Er Doping for Sulfonamides Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013503. [PMID: 36294088 PMCID: PMC9602837 DOI: 10.3390/ijerph192013503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 05/22/2023]
Abstract
In the present study, PbO2 electrodes, doped with different doses of Er (0%, 0.5%, 1%, 2%, and 4%), were fabricated and characterized. Surface morphology characterization by SEM-EDS and XRD showed that Er was successfully doped into the PbO2 catalyst layer and the particle size of Er-PbO2 was reduced significantly. Electrochemical oxidation of sulfamerazine (SMR) in the Er-PbO2 anode system obeyed te pseudo first-order kinetic model with the order of 2% Er-PbO2 > 4% Er-PbO2 > 1% Er-PbO2 > 0.5% Er-PbO2 > 0% PbO2. For 2% Er-PbO2, kSMR was 1.39 h-1, which was only 0.93 h-1 for 0% PbO2. Effects of different operational parameters on SMR degradation in 2% Er-PbO2 anode system were investigated, including the initial pH of the electrolyte and current density. Under the situation of an initial pH of 3, a current density of 30 mA·cm-2, a concentration of SMR 30 mg L-1, and 0.2 M Na2SO4 used as supporting electrolyte, SMR was totally removed in 3 h, and COD mineralization efficiency was achieved 71.3% after 6 h electrolysis. Furthermore, the degradation pathway of SMR was proposed as combining the active sites identification by density functional calculation (DFT) and intermediates detection by LC-MS. Results showed that Er-PbO2 has great potential for antibiotic wastewater treatment in practical applications.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wu
- Correspondence: (Y.W.); (X.X.); Tel.: +86-10-68933621 (X.X.)
| | - Xuan Xing
- Correspondence: (Y.W.); (X.X.); Tel.: +86-10-68933621 (X.X.)
| |
Collapse
|
9
|
Enhanced electrochemical removal of dye wastewater by PbO2 anodes using halloysite nanotubes with different surface charge properties. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Synthesis of N, O-rich active site porous polymers and their efficient recovery of Gd(III) from solution. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Yu S, Zhang R, Dang Y, Zhou Y, Zhu JJ. Electrochemical activation of peroxymonosulfate at Ti/La2O3-PbO2 anode to enhance the degradation of typical antibiotic wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Zhang Z, Yi G, Li P, Wang X, Wang X, Zhang C, Zhang Y, Sun Q. Eu/GO/PbO2 composite based anode for highly efficient electrochemical oxidation of hydroquinone. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Man S, Luo D, Sun Q, Yang H, Bao H, Xu K, Zeng X, He M, Yin Z, Wang L, Mo Z, Yang W, Li X. When MXene (Ti 3C 2T x) meet Ti/PbO 2: An improved electrocatalytic activity and stability. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128440. [PMID: 35158250 DOI: 10.1016/j.jhazmat.2022.128440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Stable electrode materials with high catalytic activity are urgently required for electrochemical degradation of refractory organic pollutants in wastewater treatment. Herein, high conductive MXene (Ti3C2Tx) was firstly fabricated by electrophoretic deposition (EPD) as an interlayer for preparing a novel PbO2 electrode. The well-conducted Ti3C2Tx interlayer significantly improved the electrochemical performance of the EPD-2.0/PbO2 (EPD time was 2.0 min) electrode with the charge transfer resistance decreased by 9.51 times, the inner active sites increased by 5.21 times and the ∙OH radicals generation ability enhanced by 4.07 times than the control EPD-0/PbO2 anode. Consequently, the EPD-2.0/PbO2 electrode achieved nearly 100% basic fuchsin (BF) and 86.78% COD removal efficiency after 3.0 h electrolysis. Therefore, this new PbO2 electrode presented a promising potential for electrochemical degradation of BF and the new Ti3C2Tx middle layer could also be used to fabricate other efficient and stable anodes, such as SnO2, MnO2, TiO2, etc.
Collapse
Affiliation(s)
- Shuaishuai Man
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Dehui Luo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Qing Sun
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Haifeng Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Hebin Bao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China; Fundamental Studies department, Army logistics University of PLA, Chongqing 401311, PR China
| | - Ke Xu
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xuzhong Zeng
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Miao He
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Zehao Yin
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Li Wang
- College of Power Engineering, Chongqing Electric Power College, Chongqing 400053, PR China
| | - Zhihong Mo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Wenjing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
14
|
Man S, Zeng X, Yin Z, Yang H, Bao H, Xu K, Wang L, Ge X, Mo Z, Yang W, Li X. Preparation of a novel Ce and Sb co-doped SnO2 nanoflowers electrode by a two-step (hydrothermal and thermal decomposition) method for organic pollutants electrochemical degradation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Rai D, Sinha S. Research trends in the development of anodes for electrochemical oxidation of wastewater. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The review focuses on the recent development in anode materials and their synthesis approach, focusing on their compatibility for treating actual industrial wastewater, improving selectivity, electrocatalytic activity, stability at higher concentration, and thereby reducing the mineralization cost for organic pollutant degradation. The advancement in sol–gel technique, including the Pechini method, is discussed in the first section. A separate discussion related to the selection of the electrodeposition method and its deciding parameters is also included. Furthermore, the effect of using advanced heating approaches, including microwave and laser deposition synthesis, is also discussed. Next, a separate discussion is provided on using different types of anode materials and their effect on active •OH radical generation, activity, and electrode stability in direct and indirect oxidation and future aspects. The effect of using different synthesis approaches, additives, and doping is discussed separately for each anode. Graphene, carbon nanotubes (CNTs), and metal doping enhance the number of active sites, electrochemical activity, and mineralization current efficiency (MCE) of the anode. While, microwave or laser heating approaches were proved to be an effective, cheaper, and fast alternative to conventional heating. The electrodeposition and nonaqueous solvent synthesis were convenient and environment-friendly techniques for conductive metallic and polymeric film deposition.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Shishir Sinha
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
16
|
Gao Y, Zhu W, Li Y, Zhang Q, Chen H, Zhang J, Huang T. Anthraquinone (AQS)/polyaniline (PANI) modified carbon felt (CF) cathode for selective H 2O 2 generation and efficient pollutant removal in electro-Fenton. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114315. [PMID: 34923409 DOI: 10.1016/j.jenvman.2021.114315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
A novel binder-free anthraquinone (AQS)/polyaniline (PANI) modified carbon felt (CF) cathode for selective H2O2 generation and efficient pollutant removal in electro-Fenton was fabricated by CV electro-deposition method. AQS, the oxygen reduction reaction (ORR) catalyst, was immobilized by the PANI film, which contributed to the obtained high stability of the AQS/PANI@CF cathode. The concentration of the electro-generated H2O2 on AQS/PANI@CF cathode (83.3 μmol L-1) was about 10 times higher than that of the bare CF cathode. And the high yield of H2O2 was attributed to the catalytic reduction of O2 by AQS to generate more superoxide radical (O2•-), which combined with H+ to form H2O2. Additionally, the rhodamine B (RhB) degradation efficiency reached 98.8% within 60 min with the AQS/PANI@CF served as the cathode with high stability and good repeatability. The main generated reactive radicals were determined by the quenching experiments and the electron paramagnetic resonance (EPR) tests. Besides, a plausible mechanism of the AQS/PANI@CF cathode applied electro-Fenton process was proposed. This work provided a reliable reference for the subsequent investigations of the binder-free cathode with high performance and stability.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yaqi Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qingyu Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Haonan Chen
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
17
|
Liu S, Jiang X, Waterhouse GIN, Zhang ZM, Yu LM. Efficient photoelectrocatalytic degradation of azo-dyes over polypyrrole/titanium oxide/reduced graphene oxide electrodes under visible light: Performance evaluation and mechanism insights. CHEMOSPHERE 2022; 288:132509. [PMID: 34627811 DOI: 10.1016/j.chemosphere.2021.132509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Herein, polypyrrole/titanium oxide/reduced graphene oxide (PTi/r-GO) electrodes were prepared and successfully applied for the photoelectrocatalytic (PEC) degradation of methyl orange (MO) under visible light. Polypyrrole-TiO2 composites rich in p-n heterojunctions were first prepared, then modified with r-GO to improve the electrical conductivity and facilitate charge separation under visible light irradiation. The obtained PTi/r-GO composites were then deposited onto a titanium mesh, which served as the working electrode in PEC experiments. A MO removal efficiency of 93% was achieved in 50 min using PTi/r-GO electrode under PEC conditions (Xe lamp, λ > 420 nm, bias of 0.6 V, 0.1 M Na2SO4 electrolyte), which was far higher than MO removal efficiencies under electrocatalytic oxidation (22%) or photocatalytic oxidation (47%) conditions. This confirmed that excellent activity of the PTi/r-GO electrode under PEC conditions was due to a combination of electrochemical and photocatalytic oxidation processes (involving •OH and •O2- generation). Further, PTi/r-GO was very stable under the applied PEC conditions, with the MO removal efficiency remaining >90% after five cycles. PEC degradation pathways for MO on PTi/r-GO were explored, with a number of key intermediates in the MO mineralization process identified. Results demonstrate that PEC electrodes combining p-type polypyrrole, n-type TiO2 and rGO are very effective in the treatment of hazardous organic compounds in wastewater.
Collapse
Affiliation(s)
- Shiben Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, PR China
| | - Xiaohui Jiang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, PR China
| | | | - Zhi-Ming Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, PR China.
| | - Liang-Min Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, PR China.
| |
Collapse
|
18
|
Feng D, Shang Z, Xu P, Yue H, Li X. Electrochemical degradation of hydrolyzed polyacrylamide by a novel La-In co-doped PbO2 electrode: Electrode characterization, influencing factors and degradation pathway. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Fu X, Han Y, Xu H, Su Z, Liu L. Electrochemical study of a novel high-efficiency PbO 2 anode based on a cerium-graphene oxide co-doping strategy: Electrodeposition mechanism, parameter optimization, and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126890. [PMID: 34418839 DOI: 10.1016/j.jhazmat.2021.126890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A novel and efficient Ti/SnO2-Sb/PbO2-GO-Ce electrode was successfully fabricated based on the co-deposition of Ce ions and graphene oxide (GO) into β-PbO2 crystals and used as an anode for electrocatalytic oxidation of phenol. The electrodeposition mechanism, parameter optimization, mechanism analysis, and potential degradation pathways were discussed in depth. The co-doping of GO and Ce resulted in the high directional specificity of β(301), orderly and dense grain arrangement of PbO2 crystals. At the same time, the oxygen evolution potential, •OH generation capacity and lifetime were also improved. The effects of experimental parameters on phenol removal efficiency were evaluated, including the applied current density, electrode gap, supporting electrolyte, initial NaCl concentration, initial pH, and initial phenol concentration. Under the optimal conditions, the removal efficiency of phenol can reach 375.6 g m-2 h-1 for 20 min electrolysis, which is about 1.2 times that of the pure PbO2 electrode. The active oxygen species (•OH, ClO- and HClO) were important attributes to the degradation of phenol. Additionally, a potential degradation pathway for phenol was proposed. After 10 successive recycles, there was no significant difference of the electro-generated •OH, cell voltage and phenol removal rate, which confirms the stability and admirable reusability of Ti/SnO2-Sb/PbO2-GO-Ce electrode.
Collapse
Affiliation(s)
- Xiaolu Fu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yanhe Han
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Han Xu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zhimin Su
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Lina Liu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
20
|
Guo H, Xu Z, Wang D, Chen S, Qiao D, Wan D, Xu H, Yan W, Jin X. Evaluation of diclofenac degradation effect in "active" and "non-active" anodes: A new consideration about mineralization inclination. CHEMOSPHERE 2022; 286:131580. [PMID: 34280831 DOI: 10.1016/j.chemosphere.2021.131580] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
This work investigates the electrochemical oxidation (EO) of diclofenac (DCF) in water with Ti/Ti4O7, Ti/Ru-Ir, Ti/Sb-SnO2 and Ti/PbO2 electrodes. Scanning electron microscope and X-ray diffraction results suggest that Ti/Ti4O7 has porous stacked surface morphology and Ti/Sb-SnO2 possesses the smallest grain size. Linear sweep voltammetry test results indicate that PbO2 has the highest oxygen evolution potential, while Ti/Ti4O7 and Ti/Ru-Ir show better oxygen evolution activity. DCF degradation results reveal that PbO2 possessed the highest DCF removal (RDCF = 99.2%) and chemical oxygen demand (COD) removal (RCOD = 97.0%), the fastest COD degradation rate (k = 0.0275 min-1, R2 = 0.964), the lowest specific energy consumption (ECDCF = 1.81 kWh.g DCF-1, ECTOC = 6.90 kWh.g TOC-1). The toxicity variation of DCF during EO process on PbO2 is rise first and then to fall. Considering the differences of the four electrodes in residual, conversion and mineralization aspects, mineralization selectivity (MS) was proposed to estimate the mineralization inclination of electrodes during EO process, and PbO2 displays the strongest mineralization inclination (MS = 0.594). In addition, the possible degradation pathway of DCF on PbO2 electrode indicates a composite behavior of conversion and mineralization. All of them above indicate the promising application potential of PbO2 in lower concentration pharmaceuticals and personal care products wastewater treatment. Moreover, MS could be employed as a supplementary index to assess the different inclinations of this composite behavior on various electrodes used for electrochemical treatment of organics in later studies.
Collapse
Affiliation(s)
- Hua Guo
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, PR China
| | - Zhicheng Xu
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Dan Wang
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Shiyu Chen
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, PR China
| | - Dan Qiao
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, PR China
| | - Dan Wan
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Shaanxi Zhengwei Environmental Testing CO., LTD, Xi'an, 710049, PR China
| | - Hao Xu
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, PR China.
| | - Wei Yan
- Dep. of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, PR China
| | - Xiaoliang Jin
- Shaanxi Zhengwei Environmental Testing CO., LTD, Xi'an, 710049, PR China
| |
Collapse
|
21
|
Fabrication of a Ti/PbO2 electrode with Sb doped SnO2 nanoflowers as the middle layer for the degradation of methylene blue, norfloxacin and p-dihydroxybenzene. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Chen B, Yu Q, Chen Z, Zhu W, Li S, You H, Lv Z, Liu Y, Hu Q, Zheng Z, Farhana Y. Polystyrene microsphere assisted synthesis of a Co/PEG comodified PbO2 anode and its electrocatalytic oxidation performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Long Y, Liang J, Xue Y. Ultrasound-assisted electrodeposition synthesis of nZVI-Pd/AC toward reductive degradation of methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67098-67107. [PMID: 34244938 DOI: 10.1007/s11356-021-15316-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
A novel composite (nZVI/Pd-AC) was prepared by loading nanoscale zero-valent iron (nZVI) and Pd on activated carbon (AC) electrode under electrodeposition with ultrasound, which was used to reductive degradation of methylene blue (MB). The loading contents of Fe and Pd in composite materials were 15.84% and 2.06%, respectively. XPS results further confirmed that the as-prepared material contained Fe0 and Pd0. Without external conditions, MB could be degraded in the presence of nZVI/Pd-AC and reached equilibrium within 180 min. To investigate the reusability, the re-electrodeposition strategy was effective to refresh the active sites of nZVI/Pd-AC, and the removal efficiency only reduced by 4.51% in five circles indicating the good reusability of nZVI/Pd-AC composites. GC-MS was used to identify possible degradation pathways of MB; the results showed that the degradation products were mainly N, N-dimethylaniline and 2-amino-5-dimethylamino-benzenesulfonic acid. And the S-C, C-N bonds are the sites easier to be attacked.
Collapse
Affiliation(s)
- Yingtao Long
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China
- Chongqing Municipal Institute of Municipal Design and Research Co., Ltd., Chongqing, 400020, China
| | - Jianjun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China.
| | - Yinghao Xue
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China
| |
Collapse
|
24
|
Lv Z, Chen Z, Yu Q, Zhu W, You H, Chen B, Zheng Z, Liu Y, Hu Q. Micro-area investigation on electrochemical performance improvement with Co and Mn doping in PbO 2 electrode materials. RSC Adv 2021; 11:28949-28960. [PMID: 35478565 PMCID: PMC9038181 DOI: 10.1039/d1ra04006e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
PbO2-Co3O4-MnO2 electrodes, used in the electrowinning industry and in the degradation of organic pollutants, have demonstrated an elevated performance through macroscopic electrochemical measurements. However, few reports have investigated localized electrochemical performance, which plays an indispensable role in determining the essential reasons for the improvement of the modified material. In this study, the causes of the increase in electrochemical reactivity are unveiled from a micro perspective through scanning electrochemical microscopy (SECM), X-ray diffraction (XRD), Raman microscopy (Raman), and X-ray photoelectronic energy spectroscopy (XPS). The results show that the increase of electrochemical reactivity of the modified electrodes results from two factors: transformation of the microstructure and change in the intrinsic physicochemical properties. Constant-height scanning maps indicate that the electrochemical reactivity of the modified electrodes is higher than that of the PbO2 electrode on the whole and high-reactivity areas are orderly distributed, coinciding with the observations from SEM and XRD. Thus, one of the reasons for the improvement of the modified electrode performance is the refinement of the microscopic morphology. The other reason is the surge of the oxygen vacancy concentration on the surface of the coating, which is supported by XRD, Raman and XPS. This finding is detected by the probe approach curve (PAC), which can quantitatively characterize the electrochemical reactivity of a substrate. Heterogeneous charge transfer rate constants of the modified electrode are 4-5 times higher than that of the traditional PbO2 electrode. This research offers some insight into the electrochemical reactivity of modified PbO2 electrodes from a micro perspective.
Collapse
Affiliation(s)
- Ze Lv
- Faculty of Science, Kunming University of Science and Technology Kunming 650093 China
| | - Zhen Chen
- Faculty of Science, Kunming University of Science and Technology Kunming 650093 China
| | - Qiang Yu
- Faculty of Science, Kunming University of Science and Technology Kunming 650093 China
| | - Wei Zhu
- Faculty of Science, Kunming University of Science and Technology Kunming 650093 China
| | - Hongjun You
- Faculty of Science, Kunming University of Science and Technology Kunming 650093 China
| | - Bangyao Chen
- Faculty of Science, Kunming University of Science and Technology Kunming 650093 China
| | - Zhaoyi Zheng
- Faculty of Science, Kunming University of Science and Technology Kunming 650093 China
| | - Yuanyuan Liu
- Faculty of Science, Kunming University of Science and Technology Kunming 650093 China
| | - Qi Hu
- Faculty of Science, Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
25
|
Electrochemical oxidation of hydroquinone using Eu-doped PbO2 electrodes: Electrode characterization, influencing factors and degradation pathways. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Enhanced photoelectrocatalytic degradation of tetracycline using a bifacial electrode of nickel-polyethylene glycol-PbO2//Ti//TiO2-Ag2O. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Chen S, He P, Zhou P, Wang X, Xiao F, He Q, Li J, Jia L, Zhang H, Jia B, Tang B. Development of a novel graphitic carbon nitride and multiwall carbon nanotube co-doped Ti/PbO 2 anode for electrocatalytic degradation of acetaminophen. CHEMOSPHERE 2021; 271:129830. [PMID: 33556630 DOI: 10.1016/j.chemosphere.2021.129830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
In this work, we have constructed a novel graphitic carbon nitride/multiwall carbon nanotube (GCN/CNT) doped Ti/PbO2 as anode for highly effective degradation of acetaminophen (ACE) wastewater. The ACE removal efficiency of 83.2% and chemical oxygen demand removal efficiency of 76.3% are achieved under the optimal condition of temperature 25 °C, initial pH 7, current density 15 mA cm-2 and Na2SO4 concentration 6.0 g L-1. The excellent electrocatalytic activity of Ti/PbO2-GCN-CNT anode for ACE oxidation is ascribed to the effective suppression of oxygen evolution and the enhanced electron transfer after introducing GCN and CNT. Furthermore, Ti/PbO2-GCN-CNT electrode displays excellent stability and reusability. ACE degradation is accomplished by direct oxidation and indirect oxidation, and ∙OH radical plays primary role in the indirect oxidation of ACE wastewater. The intermediates of ACE degradation are detailly investigated using LC-MS analysis and a possible degradation mechanism is proposed.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Xuejiao Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jing Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lingpu Jia
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Bin Jia
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
28
|
Chen S, He P, Wang X, Xiao F, Zhou P, He Q, Jia L, Dong F, Zhang H, Jia B, Liu H, Tang B. Co/Sm-modified Ti/PbO 2 anode for atrazine degradation: Effective electrocatalytic performance and degradation mechanism. CHEMOSPHERE 2021; 268:128799. [PMID: 33187658 DOI: 10.1016/j.chemosphere.2020.128799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
In this work, Ti/PbO2-Co-Sm electrode has been successfully prepared using electrodeposition and further applied for the electrocatalysis of atrazine (ATZ) herbicide wastewater. As expected, Ti/PbO2-Co-Sm electrode displays highest oxygen evolution potential, lowest charge transfer resistance, longest service lifetime and most effective electrocatalytic activity compared with Ti/PbO2, Ti/PbO2-Sm and Ti/PbO2-Co electrodes. Orthogonal and single factor experiments are designed to optimize the condition of ATZ degradation. The maximum degradation efficiency of 92.6% and COD removal efficiency of 84.5% are achieved in electrolysis time 3 h under the optimum condition (current density 20 mA cm-2, Na2SO4 concentration 8.0 g L-1, pH 5 and temperature 35 °C). In addition, Ti/PbO2-Co-Sm electrode exhibits admirable recyclability in degradation progress. The degradation of ATZ is accomplished by indirect electrochemical oxidation and ∙OH is tested as the main active substance in ATZ oxidation. The possible degradation mechanism of ATZ has been proposed according to the degradation intermediates detected by LC-MS. This research suggests that Ti/PbO2-Co-Sm is a promising electrode for ATZ degradation.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Xuejiao Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lingpu Jia
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Bin Jia
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hongtao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.
| |
Collapse
|
29
|
Hua G, Zhicheng X, Dan Q, Dan W, Hao X, Wei Y, Xiaoliang J. Fabrication and characterization of porous titanium-based PbO 2 electrode through the pulse electrodeposition method: Deposition condition optimization by orthogonal experiment. CHEMOSPHERE 2020; 261:128157. [PMID: 33113652 DOI: 10.1016/j.chemosphere.2020.128157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Porous titanium-based PbO2 electrodes were successfully fabricated by pulse electrodeposition method. The primary pulse electrodeposition parameters, including pulse frequency (f), duty ratio (γ), average current density (Ja) and electrodeposition time (t) were considered in this study. An orthogonal experiment was designed based on those four factors and in three levels. SEM images and XRD results suggest that the surface morphology and structure of PbO2 electrodes could be easily changed by varying pulse electrodeposition parameters. Orthogonal analysis reveals that the increase of f and Ja could decrease the average grain size of PbO2 electrodes, which is conducive to create more active sites and promote the generation of hydroxide radicals. The electrochemical degradation of Azophloxine was carried out to evaluate the electrochemical oxidation performance of pulse electrodeposited electrodes. The results indicate that the influences of four factors can be ranked as follow: Ja >γ≈ t > f. The higher f, larger Ja and longer t could facilitate the optimization of the integrated electrochemical degradation performance of prepared PbO2 electrode. The accelerated life time is dominated by Ja and t, coincident with the average weight increase of β-PbO2 layer. The optimal parameters of pulse electrodeposition turn out to be: f = 50 Hz, γ = 30%, Ja = 25 mA cm-2, t = 60 min. Together, the consequences of the experiments give assistance to uncover and roughly conclude the mechanism of pulse electrodeposition.
Collapse
Affiliation(s)
- Guo Hua
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Xu Zhicheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Qiao Dan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Wan Dan
- Shaanxi Zhengwei Environmental Testing CO,. LTD, Xi'an, 710049, PR China.
| | - Xu Hao
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Yan Wei
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Jin Xiaoliang
- Shaanxi Zhengwei Environmental Testing CO,. LTD, Xi'an, 710049, PR China.
| |
Collapse
|
30
|
Chen S, Zhou L, Yang T, He Q, Zhou P, He P, Dong F, Zhang H, Jia B. Thermal decomposition based fabrication of dimensionally stable Ti/SnO 2-RuO 2 anode for highly efficient electrocatalytic degradation of alizarin cyanin green. CHEMOSPHERE 2020; 261:128201. [PMID: 33113663 DOI: 10.1016/j.chemosphere.2020.128201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
In this work, Ti/SnO2-RuO2 dimensionally stable anode has been successfully fabricated via thermal decomposition method and further used for highly efficient electrocatalytic degradation of alizarin cyanin green (ACG) dye wastewater. The morphology, crystal structure and composition of Ti/SnO2-RuO2 electrode are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF), respectively. The result of accelerated life test suggests that as-prepared Ti/SnO2-RuO2 anode exhibits excellent electrochemical stability. Some parameters, such as reaction temperature, initial pH, electrode spacing and current density, have been investigated in detail to optimize the degradation condition of ACG. The results show that the decolorization efficiency and chemical oxygen demand removal efficiency of ACG reach up to 80.4% and 51.3% after only 40 min, respectively, under the optimal condition (reaction temperature 25 °C, pH 5, electrode spacing 1.0 cm and current density 3 mA cm-2). Furthermore, the kinetics analysis reveals that the process of electrocatalytic degradation of ACG follows the law of quasi-first-order kinetics. The excellent electrochemical activity demonstrates that the Ti/SnO2-RuO2 electrode presents a favorable application prospect in the electrochemical treatment of anthraquinone dye wastewater.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lianhong Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Tiantian Yang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Mianyang, 621010, Sichuan, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Bin Jia
- Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
31
|
Qaseem S, Dlamini DS, Zikalala SA, Tesha JM, Husain MD, Wang C, Jiang Y, Wei X, Vilakati GD, Li J. Electro-catalytic membrane anode for dye removal from wastewater. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
32
|
Chen S, Li J, Liu L, He Q, Zhou L, Yang T, Wang X, He P, Zhang H, Jia B. Fabrication of Co/Pr co-doped Ti/PbO 2 anode for efficiently electrocatalytic degradation of β-naphthoxyacetic acid. CHEMOSPHERE 2020; 256:127139. [PMID: 32470737 DOI: 10.1016/j.chemosphere.2020.127139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The existence of β-naphthoxyacetic acid (BNOA) pesticide in water system has aroused serious environmental problem because of its potential toxicity for humans and organisms. Therefore, exploiting an efficient method without secondary pollution is extremely urgent. Herein, a promising Ti/PbO2-Co-Pr composite electrode has been successfully fabricated through simple one-step electrodeposition for efficiently electrocatalytic degradation of BNOA. Compared with Ti/PbO2, Ti/PbO2-Co and Ti/PbO2-Pr electrodes, Ti/PbO2-Co-Pr electrode with smaller pyramidal particles possesses higher oxygen evolution potential, excellent electrochemical stability and outstanding electrocatalytic activity. The optimal degradation condition is assessed by major parameters including temperature, initial pH, current density and Na2SO4 concentration. The degradation efficiency and chemical oxygen demand removal efficiency of BNOA reach up to 94.6% and 84.6%, respectively, under optimal condition (temperature 35 °C, initial pH 5, current density 12 mA cm-2, Na2SO4 concentration 8.0 g L-1 and electrolysis time 3 h). Furthermore, Ti/PbO2-Co-Pr electrode presents economic energy consumption and superior repeatability. Finally, the possible degradation mechanism of BNOA is put forward according to the main intermediate products identified by liquid chromatography-mass spectrometer. The present research paves a new path to degrade BNOA pesticide wastewater with Ti/PbO2-Co-Pr electrode.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jing Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Liya Liu
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lianhong Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Tiantian Yang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Xuejiao Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Bin Jia
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, PR China
| |
Collapse
|