1
|
Wu SC, Lin SM, Lo HA, Tang SY, Hsu YC, Peng YR, Gu BN, Chen YT, Shen YC, Wu TS, Chen CY, Liao HJ, Lee L, Chueh YL. Design of Electrolyte Using Deep Eutectic Solvents for High-Performance Rechargeable Nickel-Iodine Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412549. [PMID: 40045595 DOI: 10.1002/smll.202412549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Indexed: 04/03/2025]
Abstract
Rechargeable nickel-ion batteries (RNiBs) have attracted significant attention because of their high volumetric density, low cost, environmental friendliness, and easy recyclability. In this study, a rechargeable nickel-iodine battery using a rational design of a deep eutectic solvent (DES) electrolyte based on a conversion reaction mechanism is first demonstrated. The rechargeable Ni-I2 battery with the DES electrolyte delivered a specific capacity of 201 mAh g-1 with a coulombic efficiency of 82.5% over 65 cycles at a current density of 0.3 A g-1. The energy storage mechanism can be attributed to I+/I- redox chemistry, which has been validated by ex situ Raman, X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The study provides an avenue for exploring rechargeable nickel-ion batteries with DES electrolytes based on the conversion reaction mechanism.
Collapse
Affiliation(s)
- Shu-Chi Wu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Shih-Ming Lin
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Heng-An Lo
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Shin-Yi Tang
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Yu-Chieh Hsu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Yu-Ren Peng
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Bing-Ni Gu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Yu-Ting Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Ying-Chun Shen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chung-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Hsaing-Ju Liao
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Ling Lee
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yet-Sun University, Kaohsiung, 80424, Taiwan
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Zhu X, Liu S. Tremella-like 2D Nickel-Copper Disulfide with Ultrahigh Capacity and Cyclic Retention for Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43265-43276. [PMID: 36098979 DOI: 10.1021/acsami.2c10981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) disulfides possess unique physical and chemical properties and are widely used in electronic and photoelectric devices. Tuning the composition and optimizing the structure of the disulfides are feasible approaches to designing target sulfides for hybrid supercapacitors. This work synthesizes the tremella-like nanosheet-connected (CuxNi1-x)S2 via solvothermal and sulfur-vapor vulcanization. The 2D (CuxNi1-x)S2 electrode performs a high reversible capacity (526.0 mA h g-1 at 1 A g-1), decent capacity retention (75.6%) at 10 A g-1, and prolonged cyclic retention (94.4% over 15,000 cycles), which is higher than that of (CuxNi1-x)O and monometallic sulfides of NiS2 and CuS. The elevated electrochemical properties of (CuxNi1-x)S2 are attributed to the optimized composition with increased redox reaction, enlarged lattice distance, abundant active sites, and attractive electronic and ionic conductivity. Also, (CuxNi1-x)S2 and active carbon (AC) are assembled to form a hybrid supercapacitor (HSC). The (CuxNi1-x)S2//AC HSC demonstrates a maximum specific capacitance of 231.0 F g-1 at 1 A g-1 and a high energy density of 82.4 W h kg-1 at a power density of 1.82 kW kg-1. Outstanding cyclic retentions of 94.9 and 84.5% after 8000 and 10,000 cycles are also obtained. In conclusion, this result suggests a facile routine for preparing a novel 2D layer material of (CuxNi1-x)S2 with outstanding specific capacity and cycling performance for hybrid supercapacitors.
Collapse
Affiliation(s)
- Xi Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400700, China
| | - Shuangyi Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400700, China
| |
Collapse
|
4
|
Gao M, Xue Y, Zhang Y, Zhu C, Yu H, Guo X, Sun S, Xiong S, Kong Q, Zhang J. Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00695b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reasonable design of electrode materials is crucial for tuning the electrochemical performances of advanced energy storage systems.
Collapse
Affiliation(s)
- Mingyue Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yanchun Xue
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yutang Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Chengxing Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Haiwei Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Xingmei Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Shasha Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Shenglin Xiong
- Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Qinghong Kong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Junhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| |
Collapse
|
5
|
Jin X, Gu TH, Kwon NH, Hwang SJ. Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005922. [PMID: 33890336 DOI: 10.1002/adma.202005922] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 05/05/2023]
Abstract
2D nanostructured materials, including inorganic and graphene nanosheets, have evoked plenty of scientific research activity due to their intriguing properties and excellent functionalities. The complementary advantages and common 2D crystal shapes of inorganic and graphene nanosheets render their homogenous mixtures powerful building blocks for novel high-performance functional hybrid materials. The nanometer-level thickness of 2D inorganic/graphene nanosheets allows the achievement of unusually strong electronic couplings between sheets, leading to a remarkable improvement in preexisting functionalities and the creation of unexpected properties. The synergetic merits of atomically coupled 2D inorganic-graphene nanosheets are presented here in the exploration of novel heterogeneous functional materials, with an emphasis on their critical roles as hybridization building blocks, interstratified sheets, additives, substrates, and deposited monolayers. The great flexibility and controllability of the elemental compositions, defect structures, and surface natures of inorganic-graphene nanosheets provide valuable opportunities for exploring high-performance nanohybrids applicable as electrodes for supercapacitors and rechargeable batteries, electrocatalysts, photocatalysts, and water purification agents, to give some examples. An outlook on future research perspectives for the exploitation of emerging 2D nanosheet-based hybrid materials is also presented along with novel synthetic strategies to maximize the synergetic advantage of atomically mixed 2D inorganic-graphene nanosheets.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Ha Gu
- Department of Chemistry and Nanoscience, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Nam Hee Kwon
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Deng W, Chen J, Yang L, Liang X, Yin S, Deng X, Zou G, Hou H, Ji X. Solid Solution Metal Chalcogenides for Sodium-Ion Batteries: The Recent Advances as Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101058. [PMID: 34242471 DOI: 10.1002/smll.202101058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Indexed: 06/13/2023]
Abstract
The sodium-ion battery (SIB) has attracted ever growing attention as a promising alternative of the lithium-ion battery (LIB). Constructing appropriate anode materials is critical for speeding up the application of SIB. This review aims at guiding anode design from the material's perspective, and specifically focusing on solid solution metal chalcogenide anode. The sodium ion storage mechanisms of a solid solution metal chalcogenide anode is overviewed on basis of the elements it is composed of, and discusses how the solid solution character alters the electrochemical performances through diffusion and surface-controlled processes. In addition, by classifying solid solution metal chalcogenide as cation and anion, their recent applications are updated, and understanding the roles of guest elements in improving the electrochemical behaviors of a solid solution metal chalcogenide is carried out. After that, discussion of possible strategies to further optimize these anode materials in the future, flowing from crystal structure design to morphology control and finally to the intimacy improvement between conductive matrix and solid solution metal chalcogenide are also provided.
Collapse
Affiliation(s)
- Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jun Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Li Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinxing Liang
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Shouyi Yin
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xinglan Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|