1
|
Xiao L, Jia D, Chen C, Liu T, Zhang X, Huang Q, Ubaidullah M, Sun Y, Huang S, Pu Z. Rare-earth oxide promoted Pd electrocatalyst for formic acid oxidation. Dalton Trans 2025; 54:3478-3485. [PMID: 39869171 DOI: 10.1039/d4dt03296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including Sc2O3, CeO2, La2O3, and Pr2O3. For example, Pd nanoparticles incorporated with Sc2O3 supported on nitrogen-doped reduced graphene oxide (Pd-Sc2O3/N-rGO-x, x = 1/3, 1/2, 2/3, 1, and 3/2; "x" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method. When directly used as an electrocatalyst towards formic acid oxidation (FAO), Pd-Sc2O3/N-rGO-2/3 exhibits the highest mass current density of 972.9 mA mgPd-1, surpassing that of the reference catalysts Pd/C (262.6 mA mgPd-1) and Pd/N-rGO (304.9 mA mgPd-1). More importantly, the Pd-Sc2O3/N-rGO-2/3 catalyst demonstrates high CO tolerance and long-term stability in the FAO reaction. The improved electrooxidation activity and stability could be attributed to the synergistic effect between Sc2O3 and Pd nanoparticles. Therefore, this study presents a crucial contribution to the advancement of various rare-earth oxides in enhancing Pd activity towards FAO and beyond.
Collapse
Affiliation(s)
- Lusheng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Danqi Jia
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Chen Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Tingting Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yuzhi Sun
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Zonghua Pu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| |
Collapse
|
2
|
Li Y, Yao MS, He Y, Du S. Recent Advances of Electrocatalysts and Electrodes for Direct Formic Acid Fuel Cells: from Nano to Meter Scale Challenges. NANO-MICRO LETTERS 2025; 17:148. [PMID: 39960581 PMCID: PMC11832879 DOI: 10.1007/s40820-025-01648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025]
Abstract
Direct formic acid fuel cells are promising energy devices with advantages of low working temperature and high safety in fuel storage and transport. They have been expected to be a future power source for portable electronic devices. The technology has been developed rapidly to overcome the high cost and low power performance that hinder its practical application, which mainly originated from the slow reaction kinetics of the formic acid oxidation and complex mass transfer within the fuel cell electrodes. Here, we provide a comprehensive review of the progress around this technology, in particular for addressing multiscale challenges from catalytic mechanism understanding at the atomic scale, to catalyst design at the nanoscale, electrode structure at the micro scale and design at the millimeter scale, and finally to device fabrication at the meter scale. The gap between the highly active electrocatalysts and the poor electrode performance in practical devices is highlighted. Finally, perspectives and opportunities are proposed to potentially bridge this gap for further development of this technology.
Collapse
Affiliation(s)
- Yang Li
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Ming-Shui Yao
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanping He
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650504, People's Republic of China.
| | - Shangfeng Du
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Li Y, Yang J, Liu F, Shi C, Zhu E, Yin S, Yu J, Xu M. Evolution of High-Index Facets Pt Nanocrystals Induced by N-Defective Sites in the Integrated Electrode for Enhanced Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309457. [PMID: 38150624 DOI: 10.1002/smll.202309457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Highly efficient and durable Pt electrocatalysts are the key to boost the performance of fuel cells. The high-index facets (HIF) Pt nanocrystals are regarded as excellent catalytic activity and stability catalysts. However, nucleation, growth and evolution of high-index facets Pt nanocrystals induced by defective sites is still a challenge. In this work, tetrahexahedron (THH) and hexactahedron (HOH) Pt nanocrystals are synthesized, which are loaded on the nitrogen-doped reduced graphene oxide (N-rGO) support of the integrated electrodes by the square wave pulse method. Experimental investigations and density functional theory (DFT) calculations are conducted to analyze the growth and evolution mechanism of HIF Pt nanocrystals on the graphene-derived carbon supports. It shows that the H adsorption on the N-rGO/CFP support can induce evolution of Pt nanocrystals. Moreover, the N-defective sites on the surface of N-rGO can lead to a slower growth of Pt nanocrystals than that on the surface of reduced graphene oxide (rGO). Pt/N-rGO/CFP (20 min) shows the highest specific activity in methanol oxidation, which is 1.5 times higher than that of commercial Pt/C. This research paves the way on the design and synthesis of HIF Pt nanocrystal using graphene-derived carbon materials as substrates in the future.
Collapse
Affiliation(s)
- Yuhui Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Kunming, 650093, China
| | - Jirong Yang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Kunming, 650093, China
| | - Feng Liu
- Yunnan Precious Metals Laboratory, Kunming, 650100, China
| | - Chaoyang Shi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Kunming, 650093, China
| | - Enze Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Kunming, 650093, China
| | - Shubiao Yin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jie Yu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Mingli Xu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Kunming, 650093, China
| |
Collapse
|
4
|
Mares-Briones F, Higareda A, Lopez-Miranda JL, Mendoza-Cruz R, Esparza R. Bimetallic AgPt Nanoalloys as an Electrocatalyst for Ethanol Oxidation Reaction: Synthesis, Structural Analysis, and Electro-Catalytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1396. [PMID: 37110981 PMCID: PMC10145194 DOI: 10.3390/nano13081396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In the present work, the chemical synthesis of AgPt nanoalloys is reported by the polyol method using polyvinylpyrrolidone (PVP) as a surfactant and a heterogeneous nucleation approach. Nanoparticles with different atomic compositions of the Ag and Pt elements (1:1 and 1:3) were synthesized by adjusting the molar ratios of the precursors. The physicochemical and microstructural characterization was initially performed using the UV-Vis technique to determine the presence of nanoparticles in suspension. Then, the morphology, size, and atomic structure were determined using XRD, SEM, and HAADF-STEM techniques, confirming the formation of a well-defined crystalline structure and homogeneous nanoalloy with an average particle size of less than 10 nm. Finally, the cyclic voltammetry technique evaluated the electrochemical activity of bimetallic AgPt nanoparticles supported on Vulcan XC-72 carbon for the ethanol oxidation reaction in an alkaline medium. Chronoamperometry and accelerated electrochemical degradation tests were performed to determine their stability and long-term durability. The synthesized AgPt (1:3)/C electrocatalyst presented significative catalytic activity and superior durability due to the introduction of Ag that weakens the chemisorption of the carbonaceous species. Thus, it could be an attractive candidate for cost-effective ethanol oxidation compared to commercial Pt/C.
Collapse
Affiliation(s)
- Fabian Mares-Briones
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Qro., Mexico; (F.M.-B.); (J.L.L.-M.)
| | - América Higareda
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán A.C., Carretera Sierra Papacal-Chuburná Puerto, Km 5, Sierra Papacal, Mérida 97302, Yuc., Mexico;
| | - Jose Luis Lopez-Miranda
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Qro., Mexico; (F.M.-B.); (J.L.L.-M.)
| | - Rubén Mendoza-Cruz
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Circuito de la Investigación Científica, C.U., Ciudad de México 04510, CDMX, Mexico;
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Qro., Mexico; (F.M.-B.); (J.L.L.-M.)
| |
Collapse
|
5
|
Xie J, Huang D, Yin H, Liu F, Ding Y. Au-Stabilized Nanoporous PdCuAu Alloys Exhibiting Outstanding Catalytic Activity and Durability for the Formic Acid Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35466-35476. [PMID: 35894751 DOI: 10.1021/acsami.2c04350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metallic Pd is widely recognized as an efficient electrocatalyst for the formic acid oxidation reaction (FAOR), which unfortunately suffers from poor durability owing to Pd dissolution and CO poisoning. The present work describes an effective method to enhance Pd durability by alloying with Cu and Au. Cu could provide surface OH at low potentials to remove poisonous CO for improved CO resistance. Au, the most inert metal, was added to reduce Pd and Cu dissolution. Moreover, alloying with Cu and Au could also modulate the electronic structure of Pd which is just profitable for the FAOR. The constructed PdCuAu with a nanoporous structure exhibits a specific activity of 14.9 mA cm-2 and a Pd mass activity of 6012 A g-1, which is ∼15 times and ∼14 times higher than those of commercial Pd/C. While these two electrocatalysts were used as fuel cell anodes, the maximum power density of the PdCuAu anode (Pd loading 10 μg cm-2) is 93.2 mW cm-2 and the value of the Pd/C anode (Pd loading 1.2 mg cm-2) is 60.3 mW cm-2. The power efficiency of Pd has been notably increased by 185 times in this home-made nanoporous PdCuAu ternary alloy electrocatalyst.
Collapse
Affiliation(s)
- Junyang Xie
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Danyang Huang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Huiming Yin
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Feng Liu
- Yunnan Precious Metal Provincial Laboratory Co., Ltd., Kunming 650106, China
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
6
|
Asal YM, Mohammad AM, Abd El Rehim SS, Al-Akraa IM. Augmented formic acid electro-oxidation at a co-electrodeposited Pd/Au nanoparticle catalyst. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Enhanced durability of PdPt/C electrocatalyst during the ethanol oxidation reaction in alkaline media. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Gao S, Hu S, Luo G, Sun S, Zhang X. 2,2′-bipyridine palladium (II) complexes derived N-doped carbon encapsulated palladium nanoparticles for formic acid oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Abstract
A novel “MnOx/Pt/MWCNT-GC” nanocatalyst is recommended for the electrooxidation of formic acid (EOFA), the principal anodic reaction in the direct formic acid fuel cells (DFAFCs). The sequential (layer-by-layer) protocol was employed to prepare the catalyst through the electrodeposition of Pt (nano-Pt) and manganese oxide (nano-MnOx) nanoparticles onto the surface of a glassy carbon (GC) electrode supported with multiwalled carbon nanotubes (MWCNTs). The nano-MnOx could successfully mediate the mechanism of EOFA by accelerating the charge transfer, “electronic effect”. On the other hand, MWCNTs could enhance the catalytic performance by changing the surface geometry that inhibited the adsorption of poisoning CO, which is a typical intermediate in the reaction mechanism of EOFA that is responsible for the potential deterioration of the catalytic performance of DFAFCs. Interestingly with this modification, a significant enhancement in the catalytic activity and stability toward EOFA was achieved. Several techniques will be employed to evaluate the catalyst’s morphology, composition, crystal structure, and activity and further to understand the role of each of the nano-MnOx and MWCNTs in the catalytic enhancement.
Collapse
|
10
|
Boosting the electrocatalytic activity of ZrO2/MWCNT supported PdPt bi-metallic electrocatalyst towards ethanol oxidation reaction by electrochemical activation process and modeling by artificial neural network approach. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Progress in the Development of Electrodeposited Catalysts for Direct Liquid Fuel Cell Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fuel cells are a key enabling technology for the future economy, thereby providing power to portable, stationary, and transportation applications, which can be considered an important contributor towards reducing the high dependencies on fossil fuels. Electrocatalyst plays a vital role in improving the performance of the low temperature fuel cells. Noble metals (Pt, Pd) supported on carbon have shown promising performance owing to their high catalytic activity for both electroreduction and electrooxidation and have good stability. Catalyst preparation by electrodeposition is considered to be simple in terms of operation and scalability with relatively low cost to obtain high purity metal deposits. This review emphasises the role of electrodeposition as a cost-effective method for synthesising fuel cell catalysts, summarising the progress in the electrodeposited Pt and Pd catalysts for direct liquid fuel cells (DLFCs). Moreover, this review also discusses the technological advances made utilising these catalysts in the past three decades, and the factors that impede the technological advancement of the electrodeposition process are presented. The challenges and the fundamental research strategies needed to achieve the commercial potential of electrodeposition as an economical, efficient methodology for synthesising fuel cells catalysts are outlined with the necessary raw materials considering current and future savings scenario.
Collapse
|
12
|
Zhang T, Pu H, Dai H, Dong K, Wang K, Zhou L, Wang Y, Deng Y. Electrodeposition of a Three-Dimensional Nanostructure Composed of 2D Maple Leaf-like Rh Nanosheets for Formic Acid Oxidation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Te Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Houkang Pu
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Huizhen Dai
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Kaiyu Dong
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Kuankuan Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Luming Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Yingying Wang
- Qingdao Hengxing University of Science and Technology, Jiushui East Road 588, Qingdao 266100, China
| | - Yujia Deng
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| |
Collapse
|
13
|
Boosted performance of NiOx/Pt nanocatalyst for the electro-oxidation of formic acid: A substrate's functionalization with multi-walled carbon nanotubes. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Ahmad MS, Ab Rahim MH, Alqahtani TM, Witoon T, Lim JW, Cheng CK. A review on advances in green treatment of glycerol waste with a focus on electro-oxidation pathway. CHEMOSPHERE 2021; 276:130128. [PMID: 33714877 DOI: 10.1016/j.chemosphere.2021.130128] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Over the past decades, research efforts are being devoted into utilizing the biomass waste as a major source of green energy to maintain the economic, environmental, and social sustainability. Specifically, there is an emerging consensus on the significance of glycerol (an underutilised waste from biodiesel industry) as a cheap, non-toxic, and renewable source for valuable chemicals synthesis. There are numerous methods enacted to convert this glycerol waste to tartronic acid, mesoxalic acid, glyceraldehyde, dihydroxyacetone, oxalic acid and so on. Among these, the green electro-oxidation technique is one of the techniques that possesses potential for industrial application due to advantages such as non-toxicity process, fast response, and lower energy consumption. The current review covers the general understanding on commonly used techniques for alcohol (C1 & C2) conversion, with a specific insight on glycerol (C3) electro-oxidation (GOR). Since catalysts are the backbone of chemical reaction, they are responsible for the overall economy prospect of any processes. To this end, a comprehensive review on catalysts, which include noble metals, non-noble metals, and non-metals anchored over various supports are incorporated in this review. Moreover, a fundamental insight into the development of future electrocatalysts for glycerol oxidation along with products analysis is also presented.
Collapse
Affiliation(s)
- Muhammad Sheraz Ahmad
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang, Malaysia
| | - Mohd Hasbi Ab Rahim
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Malaysia
| | | | - Thongthai Witoon
- Department of Chemical Engineering, Kasetsart University, Bangkok, Thailand
| | - Jun-Wei Lim
- School of Chemical Sciences, Universiti Teknologi PETRONAS, Tronoh, Perak, Malaysia
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
15
|
Ye N, Bai Y, Jiang Z, Fang T. Design the PdCu/TaN C electrocatalyst with core-shell structure having high efficiency for methanol and formic acid oxidation reactions. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Liang Y, Ma T, Xiong Y, Qiu L, Yu H, Liang F. Highly efficient blackberry-like trimetallic PdAuCu nanoparticles with optimized Pd content for ethanol electrooxidation. NANOSCALE 2021; 13:9960-9970. [PMID: 34018506 DOI: 10.1039/d1nr00841b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rational design of highly efficient catalysts for ethanol electrooxidation is extremely challenging for developing direct ethanol fuel cells (DEFCs). Herein, a facile one-pot method has been developed to prepare blackberry-like PdAuCu nanoparticles (NPs) with tunable composition and surface structures. Among PdAuCu NPs with different Pd contents (1.6-22 mass%), PdAuCu NPs-0.5 (contained Pd at 2.5 mass%) delivered one of the highest catalytic activities of Pd-based catalysts towards ethanol electrooxidation, exhibiting a mass activity of 23.0 A mgPd-1. Kinetic analysis, electrochemical impedance spectroscopy and CO stripping test results suggested that the excellent electrocatalytic activity may originate from the optimized balance between Pd content and surface structure of PdAuCu NPs-0.5. The optimization of the balance between composition and surface structure would contribute to the further design of multimetallic nanoparticles for fuel cells and other applications.
Collapse
Affiliation(s)
- Yinyin Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Wala M, Simka W. Effect of Anode Material on Electrochemical Oxidation of Low Molecular Weight Alcohols-A Review. Molecules 2021; 26:2144. [PMID: 33918545 PMCID: PMC8070219 DOI: 10.3390/molecules26082144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The growing climate crisis inspires one of the greatest challenges of the 21st century-developing novel power sources. One of the concepts that offer clean, non-fossil electricity production is fuel cells, especially when the role of fuel is played by simple organic molecules, such as low molecular weight alcohols. The greatest drawback of this technology is the lack of electrocatalytic materials that would enhance reaction kinetics and good stability under process conditions. Currently, electrodes for direct alcohol fuel cells (DAFCs) are mainly based on platinum, which not only provides a poor reaction rate but also readily deactivates because of poisoning by reaction products. Because of these disadvantages, many researchers have focused on developing novel electrode materials with electrocatalytic properties towards the oxidation of simple alcohols, such as methanol, ethanol, ethylene glycol or propanol. This paper presents the development of electrode materials and addresses future challenges that still need to be overcome before direct alcohol fuel cells can be commercialized.
Collapse
Affiliation(s)
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Str. 6, 44-100 Gliwice, Poland;
| |
Collapse
|