1
|
Kim SB, Yapo JA, Yasuhara A, Yubuta K, Fokwa BPT. Vanadium-Stabilized MoB Nanoparticles Enable Hydrogen Evolution at Industry-Relevant High Current Densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412693. [PMID: 40264382 DOI: 10.1002/smll.202412693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/15/2025] [Indexed: 04/24/2025]
Abstract
Bulk molybdenum boride electrocatalysts have emerged as as cost-effective alternatives to platinum-based catalysts toward the hydrogen evolution reaction (HER), particularly under harsh industrial conditions requiring high current densities. However, differences in electrode preparation methods between molybdenum borides and Pt/C thus complicate direct activity comparison. In this study, vanadium-stabilized molybdenum monoboride (V0.3Mo0.7B) nanoparticles are synthesized and shown to outperform Pt/C at industrially relevant current densities under the same experimental conditions, achieving 1000 mA cm-2 with an overpotential of just 0.452 V compared to 0.837 V for Pt/C. Our density functional theory (DFT) calculations demonstrate that V0.31Mo0.69B exhibits improved Gibbs free energy for HER (ΔGH = -0.12 eV) at high hydrogen coverages (80 to 100%), showcasing its superior catalytic activity at high current densities. Stability tests demonstrate that the V0.3Mo0.7B electrode retains 97% of its performance after ≈28 h of operation at 1000 mA cm-2, positioning it as a compelling candidate for sustainable hydrogen production.
Collapse
Affiliation(s)
- Sang Bum Kim
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Johan A Yapo
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Akira Yasuhara
- JEOL Ltd. 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Kunio Yubuta
- Institute for Aqua Regeneration (ARG), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Boniface P T Fokwa
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
- Center for Catalysis, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
2
|
Silviya R, Bhide A, Gupta S, Bhabal R, Mali KH, Bhagat BR, Spreitzer M, Dashora A, Patel N, Fernandes R. Bifunctional Amorphous Transition-Metal Phospho-Boride Electrocatalysts for Selective Alkaline Seawater Splitting at a Current Density of 2A cm -2. SMALL METHODS 2024; 8:e2301395. [PMID: 38282459 DOI: 10.1002/smtd.202301395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Hydrogen production by direct seawater electrolysis is an alternative technology to conventional freshwater electrolysis, mainly owing to the vast abundance of seawater reserves on earth. However, the lack of robust, active, and selective electrocatalysts that can withstand the harsh and corrosive saline conditions of seawater greatly hinders its industrial viability. Herein, a series of amorphous transition-metal phospho-borides, namely Co-P-B, Ni-P-B, and Fe-P-B are prepared by simple chemical reduction method and screened for overall alkaline seawater electrolysis. Co-P-B is found to be the best of the lot, requiring low overpotentials of ≈270 mV for hydrogen evolution reaction (HER), ≈410 mV for oxygen evolution reaction (OER), and an overall voltage of 2.50 V to reach a current density of 2 A cm-2 in highly alkaline natural seawater. Furthermore, the optimized electrocatalyst shows formidable stability after 10,000 cycles and 30 h of chronoamperometric measurements in alkaline natural seawater without any chlorine evolution, even at higher current densities. A detailed understanding of not only HER and OER but also chlorine evolution reaction (ClER) on the Co-P-B surface is obtained by computational analysis, which also sheds light on the selectivity and stability of the catalyst at high current densities.
Collapse
Affiliation(s)
- R Silviya
- Department of Physics and Electronics, Christ University, Bengaluru, 560029, India
| | - Aniruddha Bhide
- Department of Physics and Electronics, Christ University, Bengaluru, 560029, India
| | - Suraj Gupta
- Advanced Materials Department, Jožef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Rinkoo Bhabal
- Department of Physics and Electronics, Christ University, Bengaluru, 560029, India
| | - Kishan H Mali
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Brajesh Rajesh Bhagat
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Matjaž Spreitzer
- Advanced Materials Department, Jožef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Alpa Dashora
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Nainesh Patel
- Department of Physics and Electronics, Christ University, Bengaluru, 560029, India
| | - Rohan Fernandes
- Department of Physics and Electronics, Christ University, Bengaluru, 560029, India
| |
Collapse
|
3
|
Wang B, Yang F, Feng L. Recent Advances in Co-Based Electrocatalysts for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302866. [PMID: 37434101 DOI: 10.1002/smll.202302866] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Water splitting is a promising technique in the sustainable "green hydrogen" generation to meet energy demands of modern society. Its industrial application is heavily dependent on the development of novel catalysts with high performance and low cost for hydrogen evolution reaction (HER). As a typical non-precious metal, cobalt-based catalysts have gained tremendous attention in recent years and shown a great prospect of commercialization. However, the complexity of the composition and structure of newly-developed Co-based catalysts make it urgent to comprehensively retrospect and summarize their advance and design strategies. Hence, in this review, the reaction mechanism of HER is first introduced and the possible role of the Co component during electrocatalysis is discussed. Then, various design strategies that could effectively enhance the intrinsic activity are summarized, including surface vacancy engineering, heteroatom doping, phase engineering, facet regulation, heterostructure construction, and the support effect. The recent progress of the advanced Co-based HER electrocatalysts is discussed, emphasizing that the application of the above design strategies can significantly improve performance by regulating the electronic structure and optimizing the binding energy to the crucial intermediates. At last, the prospects and challenges of Co-based catalysts are shown according to the viewpoint from fundamental explorations to industrial applications.
Collapse
Affiliation(s)
- Bin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| |
Collapse
|
4
|
Recent Trends in Electrochemical Catalyst Design for Hydrogen Evolution, Oxygen Evolution, and Overall Water Splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Fang X, Wang X, Ouyang L, Zhang L, Sun S, Liang Y, Luo Y, Zheng D, Kang T, Liu Q, Huo F, Sun X. Amorphous Co-Mo-B Film: A High-Active Electrocatalyst for Hydrogen Generation in Alkaline Seawater. Molecules 2022; 27:7617. [PMID: 36364442 PMCID: PMC9657096 DOI: 10.3390/molecules27217617] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The development of efficient electrochemical seawater splitting catalysts for large-scale hydrogen production is of great importance. In this work, we report an amorphous Co-Mo-B film on Ni foam (Co-Mo-B/NF) via a facile one-step electrodeposition process. Such amorphous Co-Mo-B/NF possesses superior activity with a small overpotential of 199 mV at 100 mA cm-2 for a hydrogen evolution reaction in alkaline seawater. Notably, Co-Mo-B/NF also maintains excellent stability for at least 24 h under alkaline seawater electrolysis.
Collapse
Affiliation(s)
- Xiaodong Fang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Analytical Testing Center, School of Chemistry and Chemical Engineering, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University, Neijiang 641100, China
| | - Xiangguo Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Analytical Testing Center, School of Chemistry and Chemical Engineering, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University, Neijiang 641100, China
| | - Ling Ouyang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yimei Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tairan Kang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Feng Huo
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Analytical Testing Center, School of Chemistry and Chemical Engineering, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University, Neijiang 641100, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
6
|
Nickel-Cobalt Phosphide Terephthalic acid Nano-heterojunction as Excellent Bifunctional Electrocatalyst for Overall Water Splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Xiao X, Yang L, Sun W, Chen Y, Yu H, Li K, Jia B, Zhang L, Ma T. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105830. [PMID: 34878210 DOI: 10.1002/smll.202105830] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is regarded as the most effective pathway to generate green energy-hydrogen-which is considered as one of the most promising clean energy solutions to the world's energy crisis and climate change mitigation. Although electrocatalytic water splitting has been proposed for decades, large-scale industrial hydrogen production is hindered by high electricity cost, capital investment, and electrolysis media. Harsh conditions (strong acid/alkaline) are widely used in electrocatalytic mechanism studies, and excellent catalytic activities and efficiencies have been achieved. However, the practical application of electrocatalytic water splitting in harsh conditions encounters several obstacles, such as corrosion issues, catalyst stability, and membrane technical difficulties. Thus, the research on water splitting in mild conditions (neutral/near neutral), even in natural seawater, has aroused increasing attention. However, the mechanism in mild conditions or natural seawater is not clear. Herein, different conditions in electrocatalytic water splitting are reviewed and the effects and proposed mechanisms in the three conditions are summarized. Then, a comparison of the reaction process and the effects of the ions in different electrolytes are presented. Finally, the challenges and opportunities associated with direct electrocatalytic natural seawater splitting and the perspective are presented to promote the progress of hydrogen production by water splitting.
Collapse
Affiliation(s)
- Xue Xiao
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lijun Yang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Hai Yu
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Kangkang Li
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
8
|
Mohammadpour E, Asadpour-Zeynali K. Ni3S2 nanosheets decorated on NiCo2O4 flakes-arrays directional growth of Ni foam for enhanced electrochemical hydrogen generation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Zhai W, Sakthivel T, Chen F, Du C, Yu H, Dai Z. Amorphous materials for elementary-gas-involved electrocatalysis: an overview. NANOSCALE 2021; 13:19783-19811. [PMID: 34846414 DOI: 10.1039/d1nr06764h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Given the critical demands on energy conversion, storage, and transportation, tremendous interest has been devoted to the field of material development related to energy harvesting, recently. As the only route towards energy utilization, the carriers with the characteristics of low carbon are regarded as the future choice, e.g., hydrogen and ammonia. To this end, electrocatalysis provides a green way to access these substances. However, the unfulfilled conversion efficiency is the bottleneck for practical application. In this review, the promising characteristics of amorphous materials and the amorphous-induced electrocatalytic enhancement (AIEE) were emphasized. In the beginning, the characteristics of amorphous materials are briefly summarized. The basic mechanism of heterogeneous electrocatalytic reactions is illustrated, including the hydrogen/oxygen evolution and oxygen/nitrogen reduction. In the third part, the electrocatalytic performance of amorphous materials is discussed in detail, and the mechanism of AIEE is highlighted. In the last section of this review, the challenges and outlook for the development of amorphous enhanced electrocatalysis are presented.
Collapse
Affiliation(s)
- Wenfang Zhai
- College of Electrical Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| | - Thangavel Sakthivel
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chengfeng Du
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Hong Yu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Zhengfei Dai
- College of Electrical Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| |
Collapse
|
10
|
Jiang H, Yan L, Zhang S, Zhao Y, Yang X, Wang Y, Shen J, Zhao X, Wang L. Electrochemical Surface Restructuring of Phosphorus-Doped Carbon@MoP Electrocatalysts for Hydrogen Evolution. NANO-MICRO LETTERS 2021; 13:215. [PMID: 34676473 PMCID: PMC8531175 DOI: 10.1007/s40820-021-00737-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 05/09/2023]
Abstract
The hydrogen evolution reaction (HER) through electrocatalysis is promising for the production of clean hydrogen fuel. However, designing the structure of catalysts, controlling their electronic properties, and manipulating their catalytic sites are a significant challenge in this field. Here, we propose an electrochemical surface restructuring strategy to design synergistically interactive phosphorus-doped carbon@MoP electrocatalysts for the HER. A simple electrochemical cycling method is developed to tune the thickness of the carbon layers that cover on MoP core, which significantly influences HER performance. Experimental investigations and theoretical calculations indicate that the inactive surface carbon layers can be removed through electrochemical cycling, leading to a close bond between the MoP and a few layers of coated graphene. The electrons donated by the MoP core enhance the adhesion and electronegativity of the carbon layers; the negatively charged carbon layers act as an active surface. The electrochemically induced optimization of the surface/interface electronic structures in the electrocatalysts significantly promotes the HER. Using this strategy endows the catalyst with excellent activity in terms of the HER in both acidic and alkaline environments (current density of 10 mA cm-2 at low overpotentials, of 68 mV in 0.5 M H2SO4 and 67 mV in 1.0 M KOH).
Collapse
Affiliation(s)
- Huimin Jiang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Changqing District, Jinan, 250353, People's Republic of China
- College of Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66, West Changjiang Road, Qingdao, 266580, People's Republic of China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Changqing District, Jinan, 250353, People's Republic of China.
| | - Shuo Zhang
- College of Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66, West Changjiang Road, Qingdao, 266580, People's Republic of China
| | - Yanchao Zhao
- College of Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66, West Changjiang Road, Qingdao, 266580, People's Republic of China
| | - Xue Yang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Changqing District, Jinan, 250353, People's Republic of China
| | - Yameng Wang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Changqing District, Jinan, 250353, People's Republic of China
| | - Jianxing Shen
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Changqing District, Jinan, 250353, People's Republic of China
| | - Xuebo Zhao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Changqing District, Jinan, 250353, People's Republic of China.
- College of Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66, West Changjiang Road, Qingdao, 266580, People's Republic of China.
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
11
|
Pu Z, Liu T, Zhang G, Liu X, Gauthier MA, Chen Z, Sun S. Nanostructured Metal Borides for Energy-Related Electrocatalysis: Recent Progress, Challenges, and Perspectives. SMALL METHODS 2021; 5:e2100699. [PMID: 34927953 DOI: 10.1002/smtd.202100699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/14/2021] [Indexed: 06/14/2023]
Abstract
The discovery of durable, active, and affordable electrocatalysts for energy-related catalytic applications plays a crucial role in the advancement of energy conversion and storage technologies to achieve a sustainable energy future. Transition metal borides (TMBs), with variable compositions and structures, present a number of interesting features including coordinated electronic structures, high conductivity, abundant natural reserves, and configurable physicochemical properties. Therefore, TMBs provide a wide range of opportunities for the development of multifunctional catalysts with high performance and long durability. This review first summarizes the typical structural and electronic features of TMBs. Subsequently, the various synthetic methods used thus far to prepare nanostructured TMBs are listed. Furthermore, advances in emerging TMB-catalyzed reactions (both theoretical and experimental) are highlighted, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the carbon dioxide reduction reaction, the nitrogen reduction reaction, the methanol oxidation reaction, and the formic acid oxidation reaction. Finally, challenges facing the development of TMB electrocatalysts are discussed, with focus on synthesis and energy-related catalytic applications, and some potential strategies/perspectives are suggested as well, which will profit the design of more efficient TMB materials for application in future energy conversion and storage devices.
Collapse
Affiliation(s)
- Zonghua Pu
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Tingting Liu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| |
Collapse
|
12
|
Mete B, Peighambardoust NS, Aydin S, Sadeghi E, Aydemir U. Metal-substituted zirconium diboride (Zr1-TMB2; TM = Ni, Co, and Fe) as low-cost and high-performance bifunctional electrocatalyst for water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Zhao S, Xie R, Kang L, Yang M, He X, Li W, Wang R, Brett DJL, He G, Chai G, Parkin IP. Enhancing Hydrogen Evolution Electrocatalytic Performance in Neutral Media via Nitrogen and Iron Phosphide Interactions. SMALL SCIENCE 2021; 1:2100032. [PMID: 40213050 PMCID: PMC11935853 DOI: 10.1002/smsc.202100032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/08/2021] [Indexed: 04/18/2025] Open
Abstract
It remains a challenge to develop efficient electrocatalysts in neutral media for hydrogen evolution reaction (HER) due to the sluggish kinetics and switch of the rate determining step. Although metal phosphides are widely used HER catalysts, their structural stability is an issue due to oxidization, and the HER performance in neutral media requires improvement. Herein, a new material, i.e., grapevine-shaped N-doped iron phosphide on carbon nanotubes, as an efficient HER catalyst in neutral media is developed. The optimized catalyst shows an overpotential of 256 mV at a large current density of 65 mA cm-2, which is even 10 mV lower than that of the commercial 20% Pt/C catalyst. The excellent performance of the catalyst is further studied by combined computational and experimental techniques, which proves that the interaction between nitrogen and iron phosphides can provide more efficient active structures and stabilize the metal phosphide electrocatalysts for HER.
Collapse
Affiliation(s)
- Siyu Zhao
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Ruikuan Xie
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002FujianP. R. China
| | - Liqun Kang
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Manni Yang
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Xingyu He
- Department of Chemical EngineeringUniversity of Cincinnati2600 Clifton AvenueOH45221USA
| | - Wenyao Li
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Ryan Wang
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Dan J. L. Brett
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Guanjie He
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
- School of ChemistryJoseph Banks LaboratoriesUniversity of LincolnGreen LaneLincolnLN6 7DLUK
| | - Guoliang Chai
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002FujianP. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhou, Fujian350108P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational ChemistryXiamenFujian361005P. R. China
| | - Ivan P. Parkin
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
14
|
Yusuf BA, Xie M, Yaseen W, Xie J, Xu Y. Hierarchical ultrathin defect-rich CoFe2O4@BC nanoflowers synthesized via a temperature-regulated strategy with outstanding hydrogen evolution reaction activity. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01346c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphical illustration of the synthesis and the electrocatalytic performance of CoFe2O4@BC 500 °C nanoflowers.
Collapse
Affiliation(s)
| | - Meng Xie
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- PR China
| | - Waleed Yaseen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jimin Xie
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|