1
|
Pan QR, Ouyang YQ, Jiang HH, Ou DN, Zhong JY, Li N. Bifunctional electrode materials: Enhancing microbial fuel cell efficiency with 3D hierarchical porous Fe 3O 4/Fe-N-C structures. Bioelectrochemistry 2025; 161:108829. [PMID: 39326346 DOI: 10.1016/j.bioelechem.2024.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The rational development of high-performance anode and cathode electrodes for microbial fuel cells (MFCs) is crucial for enhancing MFC performance. However, complex synthesis methods and single-performance electrode materials hinder their large-scale implementation. Here, three-dimensional hierarchical porous (3DHP) Fe3O4/Fe-N-C composites were prepared via the hard template method. Notably, Fe3O4/Fe-N-C-0.04-600 demonstrated uniformly dispersed Fe3O4 nanoparticles and abundant Fe-Nx and pyridinic nitrogen, showing excellent catalytic performance for oxygen reduction reaction (ORR) with a half-wave potential (E1/2) of 0.74 V (vs. RHE), surpassing Pt/C (0.66 V vs. RHE). Moreover, Fe3O4/Fe-N-C-0.04-600 demonstrated favorable biocompatibility as an anode material, enhancing anode biomass and extracellular electron transfer efficiency. Sequencing results confirmed its promotion of electrophilic microorganisms in the anode biofilm. MFCs employing Fe3O4/Fe-N-C-0.04-600 as both anode and cathode materials achieved a maximum power density of 831.8 ± 27.7 mW m-2, enduring operation for 38 days. This study presents a novel approach for rational MFC design, emphasizing bifunctional materials capable of serving as anode materials for microorganism growth and as cathode catalysts for ORR catalysis.
Collapse
Affiliation(s)
- Qiu-Ren Pan
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Ying-Qi Ouyang
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Hui-Huan Jiang
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Dong-Ni Ou
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jun-Ying Zhong
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Nan Li
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Eryılmaz M, Otuzoğlu J, Tezel U, Demircan O. The influence of ZIF-L in a microbial fuel cell (MFC) cathode for oxygen reduction reaction (ORR). Biotechnol Lett 2024; 47:5. [PMID: 39609312 DOI: 10.1007/s10529-024-03548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 11/30/2024]
Abstract
Microbial fuel cells (MFCs) utilize the metabolic activities of microorganisms, through which the chemical energy is directly converted into electrical energy. Bacteria produce electrons by means of oxidation of organic/inorganic substrates within the MFCs. Metal organic frameworks (MOFs) that are porous coordination polymers have gained much interest in the field of efficient catalysts due to their unique characteristics. The utilization of MOF catalysts for oxygen reduction reaction (ORR) in the MFC cathode is one of the most remarkable research areas in material science. MOF (zeolitic imidazole framework-leaf like, ZIF-L) decorated cathode system was employed for the first time in MFC to monitor the improvement in performance by taking advantages of both electrocatalytic activity and porosity of MOFs for the utilization of bioelectrons for ORR. Analysis of ORR performance of ZIF-L/carbon black (CB) composite cathode demonstrated that ZIF-L containing cathode system had an improved ORR activity compared to MFC cathode materials in the literature. The remarkable current density value of 2.1 mA cm-2 and the maximum power density value of 1,462 mW m-2 at room temperature revealed that ZIF-L decorated cathode is an excellent alternative for efficient reduction of oxygen in MFCs.
Collapse
Affiliation(s)
- Müşerref Eryılmaz
- Department of Chemistry, Boğaziçi University, Bebek, 34342, İstanbul, Türkiye
| | - Janset Otuzoğlu
- Department of Chemistry, Boğaziçi University, Bebek, 34342, İstanbul, Türkiye
| | - Ulas Tezel
- Institute of Environmental Sciences, Boğaziçi University, İstanbul, Türkiye
| | - Oktay Demircan
- Department of Chemistry, Boğaziçi University, Bebek, 34342, İstanbul, Türkiye.
| |
Collapse
|
3
|
Qi Q, Liu Z, Chen X, Yu J, Li X, Wang R, Liu Y, Chen J. Promoted electrochemical performance by MOF on MOF composite catalyst of microbial fuel cell: CuCo-MOF@ZIF-8 and the comparison between two-step hydrothermal method and dual-solution method. Biosens Bioelectron 2024; 264:116693. [PMID: 39167887 DOI: 10.1016/j.bios.2024.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
The microbial fuel cell (MFC) is a device that simultaneously achieves electricity generation and sewage degradation. In this study, a novel cathode catalyst metal-organic frameworks (MOFs) have been fabricated by two-step hydrothermal and dual-solution method (CuCo-MOF@ZIF-8). The synthesized trimetal MOFs exhibited a 3D badminton-like structure morphology and porosity. The results of the characterizations showed that CuCo-MOF@ZIF-8 possesses greater surface area porosity and novel functional groups. The Trimetal MOF-on-MOF mode not only demonstrated the stability of the structure but also enhanced its mechanism. Molecular mechanism analysis revealed changes in the organic ligand and metal binding site due to the transformation of Cu2+ to Cu+, Co2+ to Co3+, and Zn-N to Zn-O organic connection. Furthermore, differences between the two fabrication methods were compared. The solid-state single preparation (CuCo-MOF@ZIF-8-1), was synthesized using the two-step hydrothermal method; the liquid mixed preparation material (CuCo-MOF@ZIF-8-2), was synthesized using the dual-solution method; they exhibited completely different chemical structures and morphologies during material testing and characterization. The maximum output power density of CuCo-MOF@ZIF-8-2-MFC was 246.38 mW/m2, about 2.49 times of ZIF-8 (98.72 mW/m2). The output voltage of CuCo-MOF@ZIF-8-1-MFC was measured at 357 mV over 10 d, while that of CuCo-MOF@ZIF-8-2-MFC reached 365 mV over 12 d.
Collapse
Affiliation(s)
- Qin Qi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Zhen Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Xiaomin Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Jiale Yu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Xin Li
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
4
|
Qi X, Gao X, Wang X, Xu P. Harnessing Pseudomonas putida in bioelectrochemical systems. Trends Biotechnol 2024; 42:877-894. [PMID: 38184440 DOI: 10.1016/j.tibtech.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024]
Abstract
Bioelectrochemical systems (BESs), a group of promising integrated systems that combine the advantages of biotechnology and electrochemical techniques, offer new opportunities to address environmental and energy challenges. Exoelectrogens capable of extracellular electron transfer (EET) are the critical factor enabling electrocatalytic activity in BESs. Pseudomonas putida, an aerobe widely used in environmental bioremediation, the biosynthesis of valuable chemicals, and energy bioproduction, has attracted much attention due to its unique application potential in BESs. This review provides a comprehensive understanding of the working principles, key factors, and applications of BESs using P. putida as the exoelectrogen. The challenges and perspectives for the development of BESs with P. putida as the exoelectrogen are also proposed and discussed.
Collapse
Affiliation(s)
- Xiaoyan Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xinyu Gao
- College of Arts and Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
5
|
Xu Y, Zhang X, Liu Y, Wei Y, Lan F, Wang R, Yang Y, Chen J. Trace N-doped manganese dioxide cooperated with Ping-pong chrysanthemum-like NiAl-layered double hydroxide on cathode for improving bioelectrochemical performance of microbial fuel cell. BIORESOURCE TECHNOLOGY 2023; 381:129139. [PMID: 37169200 DOI: 10.1016/j.biortech.2023.129139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Trace N-doped manganese dioxide (MnO2) nanoparticles were attached to NiAl-layered double hydroxide (LDH) nano sheets by a simple two-step hydrothermal reaction, and N-MnO2@NiAl-LDH was successfully prepared as cathode catalyst of microbial fuel cell (MFC). N-MnO2@NiAl-LDH was Ping-pong chrysanthemum-like structure formed by overlapping lamellar structures, with spherical MnO2 particles attached on. The unique Ping-pong chrysanthemum-like structure and pore size distribution provided large number of electrochemical active sites. The recombination of trace N and MnO2 reduced the charge transfer resistance, accelerated the electron transfer rate, and N-MnO2@NiAl-LDH showed high oxygen reduction reaction (ORR) capability. The maximum output power density of N-MnO2@NiAl-LDH-MFC was 698 mW/m2, about 4.59 times of NiAl-LDH (152.1 mW/m2). The maximum voltage was about 320 mV, and the stability was good for about 7 d. This would provide technical reference for the utilization of cathode catalyst for fuel cells.
Collapse
Affiliation(s)
- Yuling Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Xinyi Zhang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yushan Wei
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Feng Lan
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
6
|
Zhao F, Chen Y, Zhang S, Li M, Tang X. Three-Dimensional Carbon Monolith Coated by Nano-TiO 2 for Anode Enhancement in Microbial Fuel Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3437. [PMID: 36834138 PMCID: PMC9966231 DOI: 10.3390/ijerph20043437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
A three-dimensional (3D) anode is essential for high-performance microbial fuel cells (MFCs). In this study, 3D porous carbon monoliths from a wax gourd (WGCM) were obtained by freeze-drying and carbonization. Nano-TiO2 was further coated onto the surface of WGCM to obtain a nano-TiO2/WGCM anode. The WGCM anode enhanced the maximum power density of MFCs by 167.9% compared with the carbon felt anode, while nano-TiO2/WGCM anode additionally increased the value by 45.8% to achieve 1396.2 mW/m2. WGCM enhancement was due to the 3D porous structure, the good conductivity and the surface hydrophilicity, which enhanced electroactive biofilm formation and anodic electron transfer. In addition, nano-TiO2 modification enhanced the enrichment of Acinetobacter, an electricigen, by 31.0% on the anode to further improve the power production. The results demonstrated that the nano-TiO2/WGCM was an effective anode for power enhancement in MFCs.
Collapse
Affiliation(s)
| | | | | | | | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430062, China
| |
Collapse
|
7
|
2D layered structure-supported imidazole-based metal-organic framework for enhancing the power generation performance of microbial fuel cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Bio-electrocatalyst Fe3O4/Fe@C derived from MOF as a high-performance bioanode in single-chamber microbial fuel cell. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Auer B, Telfer S, GROSS A. Metal Organic Frameworks for Bioelectrochemical Applications. ELECTROANAL 2022. [DOI: 10.1002/elan.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Aswathi M, Ganesh V, Berchmans S. MOF based electrode platforms in the assembly of Biofuel cells and Self‐powered sensors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M Aswathi
- CSIR-CECRI: Central Electrochemical Research Institute CSIR EEC division INDIA
| | - V. Ganesh
- CSIR-CECRI: Central Electrochemical Research Institute CSIR EEC division INDIA
| | - Sheela Berchmans
- CSIR-Central Electrochemical Research Institute: Central Electrochemical Research Institute CSIR Electrodics and electrocatalysis Division CECRI 630006 Karaikudi INDIA
| |
Collapse
|
11
|
Liu Y, Zhang X, Li H, Peng L, Qin Y, Lin X, Zheng L, Li C. Porous α-Fe2O3 nanofiber combined with carbon nanotube as anode to enhance the bioelectricity generation for microbial fuel cell. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|