1
|
Chavan GT, Dubal DP, Morankar PJ, Jeon CW, An J, Song KH. Hierarchical CoMn-LDH and Heterostructured Composites for Advanced Supercapacitors and Electrocatalysis Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:604. [PMID: 39942270 PMCID: PMC11818902 DOI: 10.3390/ma18030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/08/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025]
Abstract
In the present study, self-assembled hierarchical CoMn-LDH, CoMn@CuZnS, and CoMn@CuZnFeS heterostructured composites were synthesized for bifunctional applications. As an electrode for a supercapacitor, CoMn-LDH demonstrated superior areal and specific capacitance of 5.323 F cm-2 (279.49 mAh/g) at 4 mA cm-2, comparable to or even higher than other LDHs. The assembled AC//CoMn-LDH hybrid supercapacitor device further demonstrated better stability with 63% original capacitance over 20,000 cycles. Later, as a catalyst, CoMn-LDH, CoMn@CuZnS, and CoMn@CuZnFeS electrodes revealed better performance, with overpotentials of 340, 350, and 366 and -199, -215, and -222 mV to attain 10 mA cm-2 of current density for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. Moreover, for CoMn-LDH, small Tafel slopes of 102 and 128 mV/dec were noticed for OER and HER with good stability compared to heterostructured electrodes.
Collapse
Affiliation(s)
- Ganesh T. Chavan
- Department of Civil & Environmental Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea; (G.T.C.); (J.A.)
| | - Deepak P. Dubal
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisben, QLD 4000, Australia
| | - Pritam J. Morankar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Chan-Wook Jeon
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jinsung An
- Department of Civil & Environmental Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea; (G.T.C.); (J.A.)
| | - Ki-Han Song
- Department of Civil Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
2
|
Wang Z, Song Y, Li R, Li R, Jia R, Nie K, Xie H, Xu X, Lin L. Fabrication of oxygen-vacancy abundant NiAl-layered double hydroxides for ultrahigh capacity supercapacitors. Dalton Trans 2025; 54:821-831. [PMID: 39576216 DOI: 10.1039/d4dt02351j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The manipulation of oxygen vacancies is regarded as a viable approach to enhance the electrochemical properties of electrode materials. Herein, NiAl-LDH nanosheets with rich oxygen vacancies were successfully synthesized on the surface of nickel foam via a conventional hydrothermal and chemical reduction strategy. The oxygen vacancies were introduced and modulated via NaBH4 treatment, significantly enhancing the electrochemical properties. The oxygen-vacancy abundant NiAl-LDH electrode materials show a high capacitance of 4028 mF cm-2 at the current density of 2 mA cm-2 and obtain a high capacity retention of 3000 mF cm-2 even at a current density of up to 20 mA cm-2. In addition, the symmetric SC device achieves a notable energy density of 71.3 W h kg-1 while operating at a power density of 2400 W kg-1. The empirical and theoretical findings demonstrate that the incorporation of oxygen vacancies significantly contributes to the improvement of the electrochemical characteristics of LDH electrode materials. The samples discussed in this work have the potential to serve as advanced electrode materials for supercapacitors in high-capacity energy storage devices.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Yifan Song
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Ruiqi Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Risheng Li
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Runping Jia
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Kunliang Nie
- Sichuan Huachuan Industries Co., Ltd, Chengdu, 610106, PR China.
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co. Ltd, Hangzhou, 310003, PR China
| | - Xiaowei Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| |
Collapse
|
3
|
Chakraborty A, Jyoti, Maji TK. Integration of metal-organic frameworks and clay toward functional composite materials. Dalton Trans 2025; 54:433-457. [PMID: 39618288 DOI: 10.1039/d4dt02789b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Metal-organic frameworks (MOFs) have become increasingly important as a class of porous crystalline materials because of their diverse applications. At the same time, significant progress has been achieved in the field of MOF-based composite materials toward novel applications based on the synergistic effect of two or more different components. Clay materials have been explored recently in MOF chemistry for the synthesis of MOF-clay composites, which are a new class of functional materials synthesized by a cooperative combination of MOFs with clay. Such composites have evolved only in the recent past with important functions and applications, such as enhanced gas storage and separation, CO2 capture and conversion, catalysis, drug delivery, and water harvesting. Notably, the typical shortcomings of MOFs, such as moisture sensitivity, poor water dispersibility, poor thermal and chemical stability, and poor processability, could be overcome by developing novel MOF-clay composites. This article provides a concise overview of MOF-clay composites and their applications in various fields that will drive the interest of researchers to explore the emerging field of MOF-clay chemistry. In the initial sections, we classify the clays that have been used in MOF chemistry and briefly discuss their structures and chemistry. We also present the advantages of MOF-clay composites and discuss their synthetic methodologies. In the later sections, we classify different MOF-clay composites based on the clay and present some representative examples of such composites that show unique properties and applications. Finally, the development in this field is summarized, and the future scope of such composites is discussed.
Collapse
Affiliation(s)
- Anindita Chakraborty
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Jyoti
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
4
|
Cui Y, Zhao L, He D, Sun J, Yang J, Tang W, Yu H, Lou C, Wang W, Zhang X, Zhao H. Preparation of Zirconium-Based MOF-Derived Phosphide on GO/MXene Double Substrates for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47751-47762. [PMID: 39213617 DOI: 10.1021/acsami.4c10803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
At present, it is very necessary to select and prepare suitable positive and negative electrode materials to fabricate high-performance asymmetric supercapacitors. Metal-organic frameworks (MOFs) have garnered significant attention in the energy storage field due to their high conductivity. As a branch, the zirconium organic framework (UIO-66) is a promising porous material due to its large specific surface area and abundant Zr centers. Graphene oxide (GO) and MXene are very suitable as substrate materials for conducting an MOF due to their abundant active sites and adjustable interlayer distance. The GO/MXene@NiZrP prepared through an in situ composite of GO and Mxene with the hydrothermal method and calcining method showed excellent electrochemical performance. Compared with the precursor UIO-66, the specific capacitance of the final product GO/MXene@NiZrP increases more than ten times, mainly because of its special layered porous structure, and GO/MXene@NiZrP has a larger specific surface area, pore volume, and surface defects caused by unstable Zr4+ than those of UIO-66. Using GO/MXene@NiZrP as the positive electrode and biochar (BC) as the negative electrode, an asymmetric supercapacitor, BC//GO/MXene@NiZrP, is assembled. After 10,000 cycles at a current density of 10 A g-1, the capacitance retention remains at 83.3%, showing excellent cycle stability.
Collapse
Affiliation(s)
- Yuhan Cui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161006, China
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Lijie Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161006, China
| | - Danfeng He
- College of Science, Qiongtai Normal University, Haikou ,Hainan 571100 ,China
| | - Jing Sun
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Jinyue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161006, China
| | - Wanxia Tang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161006, China
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar,Heilongjiang161006,China
| | - Haixia Yu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161006, China
| | - Chunhua Lou
- College of Materials Science and Engineering, Qiqihar University, Qiqihar ,Heilongjiang Province 161006, China
| | - Wendi Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161006, China
| | - Xinyou Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161006, China
| | - Huaping Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161006, China
| |
Collapse
|
5
|
Pazhamalai P, Krishnan V, Mohamed Saleem MS, Kim SJ, Seo HW. Investigating composite electrode materials of metal oxides for advanced energy storage applications. NANO CONVERGENCE 2024; 11:30. [PMID: 39080114 PMCID: PMC11289214 DOI: 10.1186/s40580-024-00437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Electrochemical energy systems mark a pivotal advancement in the energy sector, delivering substantial improvements over conventional systems. Yet, a major challenge remains the deficiency in storage technology to effectively retain the energy produced. Amongst these are batteries and supercapacitors, renowned for their versatility and efficiency, which depend heavily on the quality of their electrode materials. Metal oxide composites, in particular, have emerged as highly promising due to the synergistic effects that significantly enhance their functionality and efficiency beyond individual components. This review explores the application of metal oxide composites in the electrodes of batteries and SCs, focusing on various material perspectives and synthesis methodologies, including exfoliation and hydrothermal/solvothermal processes. It also examines how these methods influence device performance. Furthermore, the review confronts the challenges and charts future directions for metal oxide composite-based energy storage systems, critically evaluating aspects such as scalability of synthesis, cost-effectiveness, environmental sustainability, and integration with advanced nanomaterials and electrolytes. These factors are crucial for advancing next-generation energy storage technologies, striving to enhance performance while upholding sustainability and economic viability.
Collapse
Affiliation(s)
- Parthiban Pazhamalai
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea
| | - Vignesh Krishnan
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Mohamed Sadiq Mohamed Saleem
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Sang-Jae Kim
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea.
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea.
- Nanomaterials & System Lab, Major of Mechanical System Engineering, College of Engineering, Jeju National University, Jeju, 63243, South Korea.
| | - Hye-Won Seo
- Department of Physics, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
6
|
Zhang B, Zhang N, Zhao G, Mu L, Liao W, Qiu S, Xu X. Regulation of electron density redistribution for efficient alkaline hydrogen evolution reaction and overall water splitting. J Colloid Interface Sci 2024; 665:1054-1064. [PMID: 38579388 DOI: 10.1016/j.jcis.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The rational design of morphology and heterogeneous interfaces for non-precious metal electrocatalysts is crucial in electrochemical water decomposition. In this paper, a bifunctional electrocatalyst (Ni/NiFe LDH), which coupling nickel with nickel-iron layer double hydroxide (NiFe LDH), is synthesized on carbon cloth. At current density of 10 mA cm-2, the Ni/NiFe LDH exhibits a low hydrogen evolution reaction (HER) overpotential of only 36 mV due to the accelerated electrolyte penetration, which is caused by superhydrophilic interface. Moreover, an alkaline electrolyzer is formed and provide a current density of 10 mA cm-2 with a voltage of only 1.49 V. It is confirmed by the density functional theory (DFT) that electron from the Ni layer is transferred to NiFe LDH layer, redistributing the local electron density around the heterogeneous phase interface. Thus, the Gibbs free energy for hydrogen adsorption is optimized. This work provides a promising strategy for the rational regulation of electrons at heterogeneous interfaces and the synthesis of flexible electrocatalysts.
Collapse
Affiliation(s)
- Baojie Zhang
- School of Physics and Technology, University of Jinan, Jinan 250022, PR China
| | - Ningning Zhang
- School of Physics and Technology, University of Jinan, Jinan 250022, PR China
| | - Gang Zhao
- School of Physics and Technology, University of Jinan, Jinan 250022, PR China.
| | - Lan Mu
- School of Physics and Technology, University of Jinan, Jinan 250022, PR China
| | - Wenbo Liao
- School of Physics and Technology, University of Jinan, Jinan 250022, PR China
| | - Shipeng Qiu
- School of Physics and Technology, University of Jinan, Jinan 250022, PR China
| | - Xijin Xu
- School of Physics and Technology, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
7
|
Ma J, Zhao Q, Ye Z. An eco-friendly self-assembled catalyst preparation and study of tetracycline degradation: Performance, mechanism to application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171768. [PMID: 38499103 DOI: 10.1016/j.scitotenv.2024.171768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Chloromethyl styrene resin can undergo specific chemical modifications and is an excellent adsorbent material for treating difficult-to-degrade substances in wastewater. In this study, chloromethyl styrene resin will be used as a carrier, and polystyrene chloromethyl resin (PS-Cl) was converted into PS-NH2 by amino modification. The self-assembly of cobalt-based metal-organic framework (CoMOF) was induced on the surface of PS-NH2 by using a novel preparation technique. The performance of the prepared PS-NH2@CoMOF self-assembled catalysts with core-shell-like structures in degrading the target pollutant, tetracycline (TC), was evaluated. The catalysts effectively induced rapid OH radical production from H2O2, had a degradation rate of as high as 88.3 % for 20 mg/L TC solution, and were highly stable and adaptable to aqueous environments. Free radicals and intermediates in the catalytic degradation process were detected by electron paramagnetic resonance and high-performance liquid chromatography mass spectrometry, and possible catalytic degradation pathways were analyzed. The catalytic dissociation behavior of H2O2 in the presence of different catalysts was studied in depth and compared with that of similar metal-organic framework materials through density-functional theory calculations. Results demonstrated the excellent performance of the PS-NH2@CoMOF catalysts. Finally, the catalysts' potential for use in practical engineering applications was evaluated with a flow column experimental model, and the results were more than satisfactory. Therefore, the use of the catalysts to degrade TC has great potential.
Collapse
Affiliation(s)
- Jinmao Ma
- Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
8
|
Wang Y, Jiang D, Zhang Y, Chen J, Xie M, Du C, Wan L. Controlled preparation of cobalt carbonate hydroxide@nickel aluminum layered double hydroxide core-shell heterostructure for advanced supercapacitors. J Colloid Interface Sci 2024; 654:379-389. [PMID: 37847952 DOI: 10.1016/j.jcis.2023.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Herein, we report the rational fabrication of unique core-shell nanoclusters composed of cobalt carbonate hydroxide (Co-CH) @ nickel aluminum layered double hydroxide (NiAl-LDH) on a carbon cloth (CC) substrate using a two-step hydrothermal strategy. The one-dimensional (1D) Co-CH nanowires core-shell functions as a framework for the growth of two-dimensional (2D) NiAl-LDH nanosheets, leading to the formation of a hierarchically porous core-shell heterostructure. The presence of abundant heterointerfaces enhances electrical conductivity, reduces charge transfer resistance, and facilitates ion/electron transfer. Taking full advantage of its unique nanostructure and synergistic effect of two components, the as-prepared Co-CH@NiAl-LDH hybrid material illustrates a specific capacity of 1029.4 C/g (2058.9 mC cm-2) at 1 A g-1 and good rate capability with a capacity retention of 68.5% at 20 A g-1. Additionally, the assembled Co-CH@NiAl-LDH//pine pollen-derived porous carbon (PPC) hybrid supercapacitor (HSC) delivers impressive energy and power densities of 66.2 Wh kg-1 (0.27 Wh cm-2) and 17529.7 Wh kg-1 (0.11 Wh cm-2), respectively. This device also achieves a superior capacity retention of 80.3% over 20,000 cycles. These findings prove the importance of engineering heterointerfaces in heterostructure for the promotion of energy storage performance.
Collapse
Affiliation(s)
- Yuqi Wang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Dianyu Jiang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| |
Collapse
|
9
|
Lv C, Ren Y, Li B, Lu Z, Li L, Zhang X, Yang X, Yu X. 1,2,4-triazole-assisted metal-organic framework-derived nitrogen-doped carbon nanotubes with encapsulated Co 4N particles as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. J Colloid Interface Sci 2023; 645:618-626. [PMID: 37167911 DOI: 10.1016/j.jcis.2023.04.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
The design of high-performance oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) dual-functional catalysts is not only important for the further applications of zinc-air batteries (ZABs) but also a major challenge in the field of energy conversion. The cheap 1,2,4-triazole (1,2,4-TZ) can be decomposed easily by heat, making it a high research value in carbon catalysts derived from metal-organic frameworks (MOFs). Here, Co4N particles encapsulated at the top of N-doped carbon nanotubes (Co4N@NCNTs) were conveniently prepared by 1,2,4-TZ-assisted pyrolysis of Co-MOF-74 for the first time. Owing to the excellent activity of Co4N particles and the highly graphitized N-doped carbon nanotubes (NCNTs), Co4N@NCNTs obtained at 900 °C (Co4N@NCNT-900) exhibited astonishing catalytic performance in both ORR and OER, and high reversible oxygen bifunctional activity (ΔE = 0.685 V). Moreover, Co4N@NCNT-900 displayed a larger discharge power density (122 mW cm-2), a better specific capacity (811.8 mAh g-1), and more excellent durability during the ZAB test, implying that Co4N@NCNT-900 can act as a bifunctional high active catalyst in ZABs.
Collapse
Affiliation(s)
- Chenhao Lv
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yangyang Ren
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Beibei Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
10
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|