1
|
Aziz T, Rohullah, Ullah A, Zeb U, Hussain M, Ali A, Haq F, Kiran M. Advancements in cellulose nanocrystals: A review of functionalization, applications, and challenges. Int J Biol Macromol 2025; 315:144552. [PMID: 40414397 DOI: 10.1016/j.ijbiomac.2025.144552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 05/17/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Cellulose nanocrystals (CNCs) have emerged as highly versatile nanomaterials due to their exceptional mechanical properties, tunable surface chemistry, and biodegradability. This review explores recent advancements in CNC functionalization, focusing on chemical and physical modification techniques to enhance their interfacial adhesion, dispersibility, and compatibility for a wide array of applications. This review article discusses the various industrial applications of CNCs, such as those explored in nanocomposites, biomedical engineering, environmental remediation, and advanced coatings. Emphasized an in-depth analysis of the latest breakthroughs addressing key challenges, including scalability, cost-efficiency, and hydrophobic-hydrophilic balance. The future perspectives highlight the necessity for green functionalization methodologies and large-scale industrial implementation. By bridging the vacuum between laboratory research and industrial feasibility, this review aims to offer a comprehensive roadmap for future CNCs' advancement.
Collapse
Affiliation(s)
- Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013 Zhenjiang, China
| | - Rohullah
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing, China
| | - Asmat Ullah
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310012, China
| | - Umer Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Munir Hussain
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Amjad Ali
- Institute of Chemistry, University Silesia, Szkolna 9, 40-600 Katowice, Poland
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Mehwish Kiran
- Faculty of Agriculture, Gomal University, Dera Ismail Khan 29050, Pakistan
| |
Collapse
|
2
|
Hasanin MS, Abdelraof M, Hashem AH, El Saied H. Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microb Cell Fact 2023; 22:24. [PMID: 36747200 PMCID: PMC9901133 DOI: 10.1186/s12934-023-02031-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
Bacterial Cellulose (BC) is still the most renewable available biopolymer produced in fine nature from alternative microbial sources as bacteria. In the present study, newly BC producing bacteria were successfully isolated from acidic fruits. The most potent producer was isolated from strawberry and identified genetically using 16 s rRNA technique as Achromobacter S3. Different fruit peels were screened to produce BC using the cheapest culture medium. Among them, Mango peel waste (MPW) hydrolysate proved to be the significant inducible alternative medium without any extra nutrients for the maximum productivity. Improvement of the BC yield was successfully achieved via statistical optimization of the MPW culture medium, from 0.52 g/L to 1.22 g/L with 2.5-fold increased about the standard HS culture medium. Additionally, the physicochemical analysis affirmed the cellulose molecular structure as well as observed the crystallinity of nanofiber as 72 and 79% for BC produced by Achromobacter S33 on HS and MPW media, respectively. Moreover, the topographical study illustrated that the BC nanofibers had close characteristics upon fiber dimeter and length as about 10 and 200 nm, respectively.
Collapse
Affiliation(s)
- Mohamed S. Hasanin
- grid.419725.c0000 0001 2151 8157Cellulose and Paper Department, National Research Centre, Cairo, 12622 Dokki Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, National Research Centre, Cairo, 12622, Dokki, Egypt.
| | - Amr H. Hashem
- grid.411303.40000 0001 2155 6022Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884 Egypt
| | - Houssni El Saied
- grid.419725.c0000 0001 2151 8157Cellulose and Paper Department, National Research Centre, Cairo, 12622 Dokki Egypt
| |
Collapse
|
3
|
Ecofriendly bioactive film doped CuO nanoparticles based biopolymers and reinforced by enzymatically modified nanocellulose fibers for active packaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Bonilla Loaiza AM, Rodríguez-Jasso RM, Belmares R, López-Badillo CM, Araújo RG, Aguilar CN, Chávez ML, Aguilar MA, Ruiz HA. Fungal Proteins from Sargassum spp. Using Solid-State Fermentation as a Green Bioprocess Strategy. Molecules 2022; 27:3887. [PMID: 35745010 PMCID: PMC9230583 DOI: 10.3390/molecules27123887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
The development of green technologies and bioprocesses such as solid-state fermentation (SSF) is important for the processing of macroalgae biomass and to reduce the negative effect of Sargassum spp. on marine ecosystems, as well as the production of compounds with high added value such as fungal proteins. In the present study, Sargassum spp. biomass was subjected to hydrothermal pretreatments at different operating temperatures (150, 170, and 190 °C) and pressures (3.75, 6.91, and 11.54 bar) for 50 min, obtaining a glucan-rich substrate (17.99, 23.86, and 25.38 g/100 g d.w., respectively). The results indicate that Sargassum pretreated at a pretreatment temperature of 170 °C was suitable for fungal growth. SSF was performed in packed-bed bioreactors, obtaining the highest protein content at 96 h (6.6%) and the lowest content at 72 h (4.6%). In contrast, it was observed that the production of fungal proteins is related to the concentration of sugars. Furthermore, fermentation results in a reduction in antinutritional elements, such as heavy metals (As, Cd, Pb, Hg, and Sn), and there is a decrease in ash content during fermentation kinetics. Finally, this work shows that Aspergillus oryzae can assimilate nutrients found in the pretreated Sargassum spp. to produce fungal proteins as a strategy for the food industry.
Collapse
Affiliation(s)
- Adriana M. Bonilla Loaiza
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Rosa M. Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Ruth Belmares
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Claudia M. López-Badillo
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Rafael G. Araújo
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Cristóbal N. Aguilar
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Mónica L. Chávez
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Miguel A. Aguilar
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Saltillo, Av. Industria Metalúrgica 1062, Ramos Arizpe C.P. 25900, Coahuila, Mexico;
| | - Héctor A. Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| |
Collapse
|
5
|
El-Sheekh MM, Bedaiwy MY, El-Nagar AA, Elgammal EW. Saccharification of pre-treated wheat straw via optimized enzymatic production using Aspergillus niger: Chemical analysis of lignocellulosic matrix. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2087511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Aya A. El-Nagar
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Eman W. Elgammal
- Chemistry of Natural and Microbial Products Department, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
6
|
Affiliation(s)
- Mohamed S. Hasanin
- Cellulose & Paper Dept. National Research Centre El‐Buhouth St. Dokki 12622 Egypt
| |
Collapse
|
7
|
Wang X, Hou R, Zhang Q, Darwesh OM, Gao M, Zhang Z, Wang Y. Enhancing the Stability of Asphalt Emulsion Using Environmentally Friendly Cationically Modified Hydroxyethyl Cellulose (CMHEC) at Different Concentrations and pH Values. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
The cationically modified hydroxyethyl cellulose (CMHEC) was synthesized successfully and applied for preparing the cationic asphalt emulsion. The apparent viscosity and phase separation of the emulsion were studied at different CMHEC concentrations and pH values. The results indicated that the apparent viscosity of the emulsion was increased with increasing CMHEC concentration, and the phase separation was significantly reduced correspondingly. In addition, the effect of pH value on the emulsion quality was involved. The apparent viscosity of the emulsion showed the tendency to decrease firstly and then increase to the minimum value at pH 2. All results indicated that CMHEC has excellent potential in the manufacture of asphalt emulsion and the research of the pH effect on the formulation of asphalt emulsion has essential significance.
Collapse
Affiliation(s)
- Xiaoxi Wang
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| | - Runhan Hou
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| | - Qian Zhang
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| | - Osama M. Darwesh
- School of Material Sciences and Engineering, Hebei University of Technology , Tianjin , China
- Department of Agricultural Microbiology, National Research Centre, Dokki , Cairo , Egypt
| | - Mengyao Gao
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| | - Zixu Zhang
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| | - Yuexin Wang
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| |
Collapse
|
8
|
Din MI, Rizwan R, Hussain Z, Khalid R. Biogenic synthesis of mono dispersed Co/CoO nanoparticles using Syzygium cumini leaves for catalytic application. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1808993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Muhammad Imran Din
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Rimsha Rizwan
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Zaib Hussain
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Rida Khalid
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| |
Collapse
|
9
|
Yi T, Zhao H, Mo Q, Pan D, Liu Y, Huang L, Xu H, Hu B, Song H. From Cellulose to Cellulose Nanofibrils-A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5062. [PMID: 33182719 PMCID: PMC7697919 DOI: 10.3390/ma13225062] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
This review summarizes the preparation methods of cellulose nanofibrils (CNFs) and the progress in the research pertaining to their surface modification. Moreover, the preparation and surface modification of nanocellulose were comprehensively introduced based on the existing literature. The review focuses on the mechanical treatment of cellulose, the surface modification of fibrillated fibers during pretreatment, the surface modification of nanocellulose and the modification of CNFs and their functional application. In the past five years, research on cellulose nanofibrils has progressed with developments in nanomaterials research technology. The number of papers on nanocellulose alone has increased by six times. However, owing to its high energy consumption, high cost and challenging industrial production, the applications of nanocellulose remain limited. In addition, although nanofibrils exhibit strong biocompatibility and barrier and mechanical properties, their high hydrophilicity limits their practical application. Current research on cellulose nanofibrils has mainly focused on the industrial production of CNFs, their pretreatment and functional modification and their compatibility with other biomass materials. In the future, with the rapid development of modern science and technology, the demand for biodegradable biomass materials will continue to increase. Furthermore, research on bio-based nanomaterials is expected to advance in the direction of functionalization and popularization.
Collapse
Affiliation(s)
- Tan Yi
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Hanyu Zhao
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Qi Mo
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Donglei Pan
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Yang Liu
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Junwu Rd, Xixiangtang District, Nanning 530004, China
| | - Lijie Huang
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Junwu Rd, Xixiangtang District, Nanning 530004, China
| | - Hao Xu
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Bao Hu
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd., 12 Kexing Road, High-tech Zone, Nanning 530012, China;
| |
Collapse
|
10
|
Mostafa AM, Menazea A. Polyvinyl Alcohol/Silver nanoparticles film prepared via pulsed laser ablation: An eco-friendly nano-catalyst for 4-nitrophenol degradation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128125] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Kamel S, A. Khattab T. Recent Advances in Cellulose-Based Biosensors for Medical Diagnosis. BIOSENSORS 2020; 10:E67. [PMID: 32560377 PMCID: PMC7345568 DOI: 10.3390/bios10060067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Cellulose has attracted much interest, particularly in medical applications such as advanced biosensing devices. Cellulose could provide biosensors with enhanced biocompatibility, biodegradability and non-toxicity, which could be useful for biosensors. Thus, they play a significant role in environmental monitoring, medical diagnostic tools, forensic science, and foodstuff processing safety applications. This review summarizes the recent developments in cellulose-based biosensors targeting the molecular design principles toward medical detection purposes. The recognition/detection mechanisms of cellulose-based biosensors demonstrate two major classes of measurable signal generation, including optical and electrochemical cellulosic biosensors. As a result of their simplicity, high sensitivity, and low cost, cellulose-based optical biosensors are particularly of great interest for including label-free and label-driven (fluorescent and colorimetric) biosensors. There have been numerous types of cellulose substrates employed in biosensors, including several cellulose derivatives, nano-cellulose, bacterial cellulose, paper, gauzes, and hydrogels. These kinds of cellulose-based biosensors were discussed according to their preparation procedures and detection principle. Cellulose and its derivatives with their distinctive chemical structure have demonstrated to be versatile materials, affording a high-quality platform for accomplishing the immobilization process of biologically active molecules into biosensors. Cellulose-based biosensors exhibit a variety of desirable characteristics, such as sensitivity, accuracy, convenience, quick response, and low-cost. For instance, cellulose paper-based biosensors are characterized as being low-cost and easy to operate, while nano-cellulose biosensors are characterized as having a good dispersion, high absorbance capacity, and large surface area. Cellulose and its derivatives have been promising materials in biosensors which could be employed to monitor various bio-molecules, such as urea, glucose, cell, amino acid, protein, lactate, hydroquinone, gene, and cholesterol. The future interest will focus on the design and construction of multifunctional, miniaturized, low-cost, environmentally friendly, and integrated biosensors. Thus, the production of cellulose-based biosensors is very important.
Collapse
Affiliation(s)
- Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt;
| | - Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
12
|
Hasanin MS, Moustafa GO. New potential green, bioactive and antimicrobial nanocomposites based on cellulose and amino acid. Int J Biol Macromol 2020; 144:441-448. [DOI: 10.1016/j.ijbiomac.2019.12.133] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
|
13
|
Optical, electrical and mechanical studies of paper sheets coated by metals (Cu and Ag) via pulsed laser deposition. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126927] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Influence of Nitrogen Source and Growth Phase on Extracellular Biosynthesis of Silver Nanoparticles Using Cultural Filtrates of Scenedesmus obliquus. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, silver nanoparticles (AgNPs) were green-synthesized extracellularly by the action of bioactive compounds in cultural filtrates of green microalga Scenedesmus obliquus (KY621475). The influences of six different nitrogen sources (i.e., NaNO3, CO(NH4)2, (NH4)2CO3, KNO3, NH4NO3, and (NH4)2SO4) on extracellular biosynthesis of AgNPs were observed by UV–Visible spectroscopy (380–425 nm) and confirmed using high-resolution transmission electron microscopy (HRTEM). The highest biomass production was observed in the case of urea and ammonium carbonate treatments, which, surprisingly, showed negative activity for AgNPs biosynthesis. Considering their coupling and compatible presence in cultural filtrates, reductases (especially nitrate reductase) as reduction agents are assumed to play a key role in the extracellular biosynthesis of AgNPs. The cultural filtrates of the potassium and sodium nitrate treatments produce AgNPs of relatively small size (5–10 and 4–10 nm, respectively), smaller than those produced by filtrate of ammonium nitrate treatment. The antimicrobial activity of produced AgNPs was a function mainly of particle size, which was influenced by the nitrogen source of the microalgal culture. The AgNPs produced from the KNO3 and NaNO3 cultural filtrates performed the best as antimicrobial agents.
Collapse
|
15
|
Abou Hammad AB, Abd El-Aziz ME, Hasanin MS, Kamel S. A novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles. Carbohydr Polym 2019; 216:54-62. [PMID: 31047082 DOI: 10.1016/j.carbpol.2019.03.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Biodegradable, antimicrobial, and semiconducting cellulosic composite was synthesized by in-situ polymerization of polyaniline in the presence of cellulose. The cobalt ferrite nanoparticles (CFO-NPs) were added during the polymerization process to acquire this composite magnetic property. The CFO-NPs were prepared by sol-gel method with average particles size less than 50 nm. The nanocomposites were characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). In addition, their magnetic, dielectric constant, dielectric loss, and conductivity behaviors were studied. The magnetization (Ms) and conductivity increased up to 3.7 emu/g and 3.5 × 10-3 S/cm, respectively, with increasing CFO-NPs content. The prepared electromagnetic nanocomposite exhibits highly efficient biodegradability and antimicrobial activity against Escherichia coli, Bacillus subtilis, and Candida albicans. The antimicrobial activity increased with increasing CFO-NPs while the biodegradability decreased.
Collapse
Affiliation(s)
- A B Abou Hammad
- Solid-State Department, National Research Centre, 33 El Bohouth St., Dokki, Giza P.O. 12622, Egypt
| | - M E Abd El-Aziz
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, Giza P.O. 12622, Egypt.
| | - M S Hasanin
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza P.O. 12622, Egypt
| | - S Kamel
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza P.O. 12622, Egypt
| |
Collapse
|
16
|
Youssef A, Hasanin M, Abd El-Aziz M, Darwesh O. Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon 2019; 5:e01332. [PMID: 30923764 PMCID: PMC6423816 DOI: 10.1016/j.heliyon.2019.e01332] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/06/2018] [Accepted: 03/06/2019] [Indexed: 10/31/2022] Open
Abstract
Lignocellulosic fibers, which obtained from Citrus trees trimmings, were modified with Aspergillus flavus (EGYPTA5) enzymes. The non-modified and the modified lignocellulosic fibers were used with low density polyethylene (LDPE) by melt blending brabender method at 170 °C with different ratio (5, 10 and 20 wt%) to obtain wood plastic composites (WPC). The prepared samples were characterized using Fourier-transformed infrared (FT-IR), Scan Electron Microscope (SEM), and Water vapor transmission rate (WVTR) as well as, the mechanical, thermal, biodegradability and swelling properties were examined. The fabricated WPC displayed good mechanical and thermal properties compare with pure LDPE. Also, the WVTR was enhanced by the addition of modified lignocellulosic fibers over the unmodified one. Moreover, the enzymes assay such as cellulase and lignin peroxidase enzymes were estimated and confirming the growing of fungi on the lignocellulosic fiber in solid state fermentation condition to improve lignin peroxidase production and eliminate cellulose enzymes. The fabricated WPC can be used in different environmental application such as packaging system, that it will be green, economic, and partially biodegradable.
Collapse
Affiliation(s)
- A.M. Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - M.S. Hasanin
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - M.E. Abd El-Aziz
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - O.M. Darwesh
- Agricultural Microbiology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
17
|
Abdelraof M, Hasanin MS, El-Saied H. Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydr Polym 2019; 211:75-83. [PMID: 30824106 DOI: 10.1016/j.carbpol.2019.01.095] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/30/2018] [Accepted: 01/26/2019] [Indexed: 11/18/2022]
Abstract
Potato peel waste (PPW) is employed as the first report on bacterial cellulose (BC) production by Gluconacetobacter xylinus. Scharification of PPW was performed by 2 M different mineral acids individually. The suitable pre-treatment conditions were determined by reducing sugar release. Although all acid PPW-hydrolysates culture media are studied to produce BCs. Nitric acid hydrolysate gives the high productivity value The influence of nitric acid PPW-hydrolysate culture condition parameters were applied throughout the Taguchi method and the optimum conditions for the highest BC yield (4.7 g/L) was observed after 6 days at 35 °C, pH 9, medium volume 55 ml and with 8% inoculum size. The instrumental analysis of PPW-BC, included FT-IR, Particle size distribution, BET, DSC, XRD and SEM are cleared that the PPW-BC recorded high crystalliny82.5%, excellent PDI. In general, this study revealed that nitric acid PPW-hydrolysate could be used as cost effective alternative medium for production of BC with sustainable processes that can overcome the environmental pollution.
Collapse
Affiliation(s)
- Mohamed Abdelraof
- Microbial Chemistry Department, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, 12622, Dokki, Cairo, Egypt..
| | - Houssni El-Saied
- Cellulose and Paper Department, National Research Centre, 12622, Dokki, Cairo, Egypt
| |
Collapse
|