1
|
Qin J, Tong K, Chang Q, Xie Y, Wu X, Fan C, Chen H. Rapid determination of volatile benzene derivatives and chlorobenzenes in goat's milk by HS-SPME-GC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1480-1497. [PMID: 39236017 DOI: 10.1080/19440049.2024.2400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
A method for the determination of eight benzenes (BTEXs) and twelve chlorobenzenes (CBs) in goat's milk by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS/MS) was developed. The study investigated the impact of various factors such as extraction fiber type, salt amount, equilibrium conditions, and desorption conditions on the outcomes. Target analytes were separated on a DB-HeavyWAX column and quantified using the external standard method. The results showed that the target compounds had a good linear relationship in the range of 0.01 ∼ 50 μg/L (R2 > 0.997), the limit of detection (LOD) was 0.003 ∼ 0.150 μg/L, and the limit of quantification (LOQ) was 0.01 ∼ 0.50 μg/L. The average recoveries were 82%-116% and the relative standard deviation (RSD) was 0.8%-17.3% under the three addition levels of 1×, 2×, and 10 × LOQ. In a survey of twenty goat's milk samples, only ethylbenzene, xylenes, cumene, chlorobenzene, and 1,4-dichlorobenzene were detected at levels exceeding their respective limits of quantification. The method was evaluated using two ecological scales (Eco-Scale), GAPI and AGREEN, to verify its environmental friendliness and applicability. This method is simple, green, and efficient, which provides a certain theoretical basis for the production and quality safety evaluation of dairy products.
Collapse
Affiliation(s)
- Jingyin Qin
- Chinese Academy of Inspection and Quarantine, Beijing, China
- College of Chemistry and Materials Science, Hebei University, Baoding, China
| | - Kaixuan Tong
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Qiaoying Chang
- Chinese Academy of Inspection and Quarantine, Beijing, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Yujie Xie
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Xingqiang Wu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Chunlin Fan
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Hui Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
2
|
Teimoori S, Shirkhanloo H, Hassani AH, Panahi M, Mansouri N. Rapid extraction of BTEX in water and milk samples based on functionalized multi-walled carbon nanotubes by dispersive homogenized-micro-solid phase extraction. Food Chem 2023; 421:136229. [PMID: 37105118 DOI: 10.1016/j.foodchem.2023.136229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
An advanced synthesis based on the phenylalanine (Phe) and task-specific ionic liquid (TSIL) functionalized on multi-walled carbon nanotubes (Phe/TSIL@MWCNTs), was used to extract benzene, ethylbenzene, toluene, and xylene (BTEX) from cow's milk, powdered milk, and farm water samples. The BTEX was efficiently extracted by ultrasound-assisted dispersive homogenized-micro-solid phase extraction (USA-DH-µ-SPE) between 95.1% and 103.4%. By procedure, 50 mg of Phe/TSIL@MWCNTs was added to 0.2 mL of acetone and injected into 10 mL of the samples. The upper aqueous solution was vacuumed, the vial heated to 80 °C, and the BTEX desorbed in the vial. Then, using a Hamilton syringe, 1-20 µL of gas in the headspace vial was determined by injecting it into the gas chromatography with flame ionization detection (GC-FID). The linear range, LOD, and LOQ for BTEX in milk and water samples were obtained at 0.05-500 µg L-1, 15 ng L-1, and 50 ng L-1, respectively (r = 0.9997, RSD% = 2.27).
Collapse
Affiliation(s)
- Shahnaz Teimoori
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Shirkhanloo
- Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, Tehran 14857-33111, Iran.
| | - Amir Hessam Hassani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Panahi
- Department of Energy and Industry, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nabiollah Mansouri
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Odor-active volatile compounds in preterm breastmilk. Pediatr Res 2022; 91:1493-1504. [PMID: 33963300 PMCID: PMC9197798 DOI: 10.1038/s41390-021-01556-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Volatile compounds in breastmilk (BM) likely influence flavor learning and, through the cephalic phase response, metabolism, and digestion. Little is known about the volatile compounds present in preterm BM. We investigated whether maternal or infant characteristics are associated with the profile of volatile compounds in preterm BM. METHODS Using solid-phase microextraction coupled with gas chromatography/mass spectrometry, we analyzed volatile compounds in 400 BM samples collected from 170 mothers of preterm infants. RESULTS Forty volatile compounds were detected, mostly fatty acids and their esters (FA and FAe), volatile organic compounds (VOCs), aldehydes, terpenoids, alcohols, and ketones. The relative concentration of most FA and FAe increased with advancing lactation and were lower in BM of most socially deprived mothers and those with gestational diabetes (p < 0.05), but medium-chain FAs were higher in colostrum compared to transitional BM (p < 0.001). Infant sex, gestational age, and size at birth were not associated with the profile of volatile compounds in preterm BM. CONCLUSIONS Sensory-active volatile FA and FAe are the major contributors to the smell of preterm BM. The associations between lactation stage, maternal characteristics, and volatile compounds, and whether differences in volatile compounds may affect feeding behavior or metabolism, requires further research. IMPACT Sensory-active volatile FAs are major contributors to the smell of preterm BM and are influenced by the lactation stage and maternal characteristics. Longitudinal analysis of volatile compounds in preterm BM found that FAs increased with advancing lactation. Colostrum had a higher concentration of medium-chain FAs compared to transitional BM and the concentration of these is associated with socioeconomic status, gestational diabetes, and ethnicity.
Collapse
|
4
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
5
|
Muelbert M, Bloomfield FH, Pundir S, Harding JE, Pook C. Olfactory Cues in Infant Feeds: Volatile Profiles of Different Milks Fed to Preterm Infants. Front Nutr 2021; 7:603090. [PMID: 33521036 PMCID: PMC7843498 DOI: 10.3389/fnut.2020.603090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/11/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Smell is determined by odor-active volatile compounds that bind to specific olfactory receptors, allowing us to discriminate different smells. Olfactory stimulation may assist with digestion and metabolism of feeds in the neonate by activation of the cephalic phase response of digestion. Infants' physiological responses to the smell of different milks suggest they can distinguish between breastmilk and infant formula. We aimed to describe the profile of volatile compounds in preterm breastmilk and investigate how this differed from that of other preterm infant feeding options including pasteurized donor breastmilk, breastmilk with bovine milk-based fortifier, human milk-based products and various infant formulas. Methods: Forty-seven milk samples (13 different infant formulas and 34 human milk-based samples) were analyzed. Volatile compounds were extracted using Solid Phase Micro Extraction. Identification and relative quantification were carried out by Gas Chromatography with Mass Spectrometry. Principal Component Analysis (PCA) and one-way Analysis of Variance (ANOVA) with Tukey's HSD (parametric data) or Conover's post-hoc test (non-parametric data) were used as appropriate to explore differences in volatile profiles among milk types. Results: In total, 122 compounds were identified. Breastmilk containing bovine milk-based fortifier presented the highest number of compounds (109) and liquid formula the lowest (70). The profile of volatile compounds varied with 51 compounds significantly different (adjusted p < 0.001) among milk types. PCA explained 47% of variability. Compared to preterm breastmilk, the profile of volatile compounds in breastmilk with added bovine milk-based fortifier was marked by presence of fatty acids and their esters, ketones and aldehydes; infant formulas were characterized by alkyls, aldehydes and furans, and human milk-based products presented high concentrations of aromatic hydrocarbons, terpenoids and specific fatty acids. Conclusions: Sensory-active products of fatty acid oxidation are the major contributors to olfactory cues in infant feeds. Analysis of volatile compounds might be useful for monitoring quality of milk and detection of oxidation products and environmental contaminants. Further research is needed to determine whether these different volatile compounds have biological or physiological effects in nutrition of preterm infants.
Collapse
Affiliation(s)
- Mariana Muelbert
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Shikha Pundir
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Chris Pook
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Park CJ, Barakat R, Ulanov A, Li Z, Lin PC, Chiu K, Zhou S, Perez P, Lee J, Flaws J, Ko CJ. Sanitary pads and diapers contain higher phthalate contents than those in common commercial plastic products. Reprod Toxicol 2019; 84:114-121. [PMID: 30659930 DOI: 10.1016/j.reprotox.2019.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 01/23/2023]
Abstract
Sanitary pads and diapers are made of synthetic plastic materials that can potentially be released while being used. This study measured the amounts of volatile organic compounds (VOCs) (methylene chloride, toluene, and xylene) and phthalates (DBP, DEHP, DEP, and BBP) contained in sanitary pads and diapers. In sanitary pads, 5,900- and 130-fold differences of VOC and phthalate concentrations were seen among the brands. In the diapers, 3- and 63-fold differences of VOC and phthalate concentrations were detected among the brands. VOC concentrations from the sanitary pads and diapers were similar to that of the residential air. However, phthalate concentrations of sanitary pads and diapers were significantly higher than those found in common commercial plastic products. As sanitary pads and diapers are in direct contact with external genitalia for an extended period, there is a probability that a considerable amount of VOCs or phthalates could be absorbed into the reproductive system.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA; Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Benha, 13518, Egypt
| | - Alexander Ulanov
- Metabolomics Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Zhong Li
- Metabolomics Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Po-Ching Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Karen Chiu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Sherry Zhou
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Pablo Perez
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jungyeon Lee
- TV Chosun Broadcasting, 33, Sejong-daero 21-gil, Jung-gu, Seoul, 04519, Republic of Korea
| | - Jodi Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
7
|
Porto-Figueira P, Pereira JAM, Câmara JS. Exploring the potential of needle trap microextraction combined with chromatographic and statistical data to discriminate different types of cancer based on urinary volatomic biosignature. Anal Chim Acta 2018; 1023:53-63. [PMID: 29754607 DOI: 10.1016/j.aca.2018.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022]
Abstract
The worldwide high cancer incidence and mortality demands for more effective and specific diagnostic strategies. In this study, we evaluated the efficiency of an innovative methodology, Needle Trap Microextraction (NTME), combined with gas chromatography-mass spectrometry (GC-MS), for the establishment of the urinary volatomic biosignature from breast (BC), and colon (CC) cancer patients as well as healthy individuals (CTL). To achieve this, 40 mL of the headspace of acidified urine (4 mL, 20% NaCl, pH = 2), equilibrated at 50 °C during 40 min, were loaded through the DVB/Car1000/CarX sorbent inside the NTD, and subjected to a GC-MS analysis. This allowed the identification of 130 VOMs from different chemical families that were further processed using discriminant analysis through the partial least squares method (PLS-DA). Several pathways are over activated in cancer patients, being phenylalanine pathway in BC and limonene and pinene degradation pathway in CC the most relevant. Butanoate metabolism is also highly activated in both cancers, as well as tyrosine metabolism in a lesser extension. In BC the xenobiotics metabolism by cytochrome P450 and fatty acid biosynthesis are also differentially activated. Different clusters corresponding to the groups recruited allowed to define sets of volatile organic metabolites (VOMs fingerprints) that exhibit high classification rates, sensitivity and specificity in the discrimination of the selected cancers. As far as we are aware, this is the first time that NTME is used for isolation urinary volatile metabolites, being the obtained results very promising.
Collapse
Affiliation(s)
- Priscilla Porto-Figueira
- CQM-UMa, Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jorge A M Pereira
- CQM-UMa, Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - José S Câmara
- CQM-UMa, Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; Faculdade das Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
8
|
Spycher BD, Lupatsch JE, Huss A, Rischewski J, Schindera C, Spoerri A, Vermeulen R, Kuehni CE. Parental occupational exposure to benzene and the risk of childhood cancer: A census-based cohort study. ENVIRONMENT INTERNATIONAL 2017; 108:84-91. [PMID: 28802171 DOI: 10.1016/j.envint.2017.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Previous studies on occupational exposures in parents and cancer risks in their children support a link between solvents and paints with childhood leukaemia. Few studies have focused specifically on benzene. OBJECTIVES To examine whether parental occupational exposure to benzene is associated with an increased cancer risk in a census-based cohort of children. METHODS From a census-based cohort study in Switzerland, we included children aged <16years at national censuses (1990, 2000). We retrieved parental occupations reported at census and assessed exposure to benzene using a job exposure matrix. We identified incident cancer cases through record linkage with the Swiss Childhood Cancer Registry. We fitted Cox proportional-hazards models to assess associations between exposures and the following outcomes: any cancer, leukaemia, acute lymphoid leukaemia (ALL), acute myeloid leukaemia (AML), lymphoma, non-Hodgkin lymphoma, central nervous system (CNS) tumours, and glioma. We adjusted models for a range of socio-economic, perinatal and environmental factors. RESULTS Analyses of maternal (paternal) exposure were based on 9.0 (13.2)millionperson years at risk and included 1004 (1520) cases of cancer, of which 285 (438) had leukaemia, 186 (281) lymphoma, 227 (339) a CNS tumour. Maternal exposure was associated with an increased risk of childhood leukaemia (hazard ratio 1.73, 95% CI 1.12-2.67) and ALL (1.88, 1.16-3.04). We found little evidence of an association for other outcomes or for paternal exposure. Adjusting for potential confounders did not materially affect the results. CONCLUSIONS This nationwide cohort study suggests an increased risk of leukaemia among children whose mothers were exposed to benzene at work.
Collapse
Affiliation(s)
- Ben Daniel Spycher
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.
| | - Judith Eva Lupatsch
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; INSERM U1153, Epidemiology and Biostatistics Sorbonne Paris Cité CRESS-EPICEA, University Paris-Descartes, Paris, France
| | - Anke Huss
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Johannes Rischewski
- Department of Oncology/Haematology, Children's Hospital, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Christina Schindera
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Adrian Spoerri
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Claudia Elisabeth Kuehni
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Children's University Hospital of Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Jayawardena I, Godakumbura PI, Prashantha MAB. Migration of BTEX and phthalates from natural rubber latex balloons obtained from the Sri Lankan market. SPRINGERPLUS 2016; 5:20. [PMID: 26759759 PMCID: PMC4703597 DOI: 10.1186/s40064-015-1660-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/28/2015] [Indexed: 11/10/2022]
Abstract
The current study evaluates the migration of benzene, toluene, ethylbenzene, xylene (BTEX) and phthalates into artificial saliva from natural rubber latex (NRL) balloons available for sale in Sri Lanka. It was discovered that at least one BTEX compound migrated from almost all the brands. The migration of four phthalates; diethyl phthalate, dibutyl phthalate, di-isobutyl phthalate and butyl benzyl phthalate were also observed. Migratory levels of BTEX and phthalates in most of the balloon brands were above the permissible levels set by the European Union. Assessment of factors affecting the migratory levels indicated migration under active mouthing conditions and migration from the neck region of the balloons were significantly higher. The migratory levels were observed to decrease with storage time, and in certain brands the BTEX levels decreased below the permissible level. One-way ANOVA indicated no significant differences (p ≥ 0.05) in migratory levels of each individual compound within the same brand for both BTEX and phthalates. When compared among different brands, BTEX levels indicated significant differences (p ≤ 0.05), while phthalate levels were observed to not be significantly different (p ≥ 0.05). A significant difference was also observed (p ≤ 0.05) among the migratory levels of compounds under each test condition evaluated as factors affecting the migratory level. Furthermore, the solvent based colorants added to color the latex were found to be the source of BTEX and phthalates in the NRL balloons.
Collapse
Affiliation(s)
- Imanda Jayawardena
- Department of Chemistry, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Pahan I Godakumbura
- Department of Chemistry, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - M A B Prashantha
- Department of Chemistry, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
10
|
Salviano dos Santos VP, Medeiros Salgado A, Guedes Torres A, Signori Pereira K. Benzene as a Chemical Hazard in Processed Foods. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2015; 2015:545640. [PMID: 26904662 PMCID: PMC4745501 DOI: 10.1155/2015/545640] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 11/18/2022]
Abstract
This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1-10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food.
Collapse
Affiliation(s)
- Vânia Paula Salviano dos Santos
- Laboratório de Sensores Biológicos, Escola de Química, Universidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2030, CT, Bloco E, Sala E-122, Ilha do Fundão, 21941-598 Rio de Janeiro, RJ, Brazil
| | - Andréa Medeiros Salgado
- Laboratório de Sensores Biológicos, Escola de Química, Universidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2030, CT, Bloco E, Sala E-122, Ilha do Fundão, 21941-598 Rio de Janeiro, RJ, Brazil
| | - Alexandre Guedes Torres
- Laboratório de Bioquímica Nutricional e de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, CT, Bloco A, Sala 528A, Ilha Fundão, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Karen Signori Pereira
- Laboratório de Microbiologia de Alimentos, Escola de Química, Universidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2030, CT, Bloco E, Sala E-104, Ilha do Fundão, 21941-598 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
de Lacy Costello B, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, Osborne D, Ratcliffe NM. A review of the volatiles from the healthy human body. J Breath Res 2014; 8:014001. [PMID: 24421258 DOI: 10.1088/1752-7155/8/1/014001] [Citation(s) in RCA: 556] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A compendium of all the volatile organic compounds (VOCs) emanating from the human body (the volatolome) is for the first time reported. 1840 VOCs have been assigned from breath (872), saliva (359), blood (154), milk (256), skin secretions (532) urine (279), and faeces (381) in apparently healthy individuals. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been grouped into tables according to their chemical class or functionality to permit easy comparison. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces. Careful use of the database is needed. The numbers may not be a true reflection of the actual VOCs present from each bodily excretion. The lack of a compound could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from blood compared to a large number on VOCs in breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. collecting excretions on glass beads and then heating to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this database will not only be a useful database of VOCs listed in the literature, but will stimulate further study of VOCs from healthy individuals. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- B de Lacy Costello
- Institute of Biosensor Technology, University of the West of England, Bristol BS16 1QY, UK
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Beamer PI, Luik CE, Abrell L, Campos S, Martínez ME, Sáez AE. Concentration of trichloroethylene in breast milk and household water from Nogales, Arizona. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9055-61. [PMID: 22827160 PMCID: PMC3699401 DOI: 10.1021/es301380d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The United States Environmental Protection Agency has identified quantification of trichloroethylene (TCE), an industrial solvent, in breast milk as a high priority need for risk assessment. Water and milk samples were collected from 20 households by a lactation consultant in Nogales, Arizona. Separate water samples (including tap, bottled, and vending machine) were collected for all household uses: drinking, bathing, cooking, and laundry. A risk factor questionnaire was administered. Liquid-liquid extraction with diethyl ether was followed by GC-MS for TCE quantification in water. Breast milk underwent homogenization, lipid hydrolysis, and centrifugation prior to extraction. The limit of detection was 1.5 ng/mL. TCE was detected in 7 of 20 mothers' breast milk samples. The maximum concentration was 6 ng/mL. TCE concentration in breast milk was significantly correlated with the concentration in water used for bathing (ρ = 0.59, p = 0.008). Detection of TCE in breast milk was more likely if the infant had a body mass index <14 (RR = 5.2, p = 0.02). Based on average breast milk consumption, TCE intake for 5% of the infants may exceed the proposed U.S. EPA Reference Dose. Results of this exploratory study warrant more in depth studies to understand risk of TCE exposures from breast milk intake.
Collapse
Affiliation(s)
- Paloma I Beamer
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Tucson, Arizona 85724, United States.
| | | | | | | | | | | |
Collapse
|
13
|
Perharic L, Vracko P. Development of national human biomonitoring programme in Slovenia. Int J Hyg Environ Health 2012; 215:180-4. [DOI: 10.1016/j.ijheh.2011.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/16/2011] [Accepted: 10/18/2011] [Indexed: 10/14/2022]
|
14
|
Determination of benzene in different food matrices by distillation and isotope dilution HS-GC/MS. Anal Chim Acta 2010; 672:124-9. [DOI: 10.1016/j.aca.2010.04.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/19/2010] [Accepted: 04/25/2010] [Indexed: 11/21/2022]
|
15
|
Blount BC, McElprang DO, Chambers DM, Waterhouse MG, Squibb KS, LaKind JS. Methodology for collecting, storing, and analyzing human milk for volatile organic compounds. ACTA ACUST UNITED AC 2010; 12:1265-73. [DOI: 10.1039/b927022a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Wilbur S, Wohlers D, Paikoff S, Keith LS, Faroon O. ATSDR evaluation of health effects of benzene and relevance to public health. Toxicol Ind Health 2009; 24:263-398. [PMID: 19022880 DOI: 10.1177/0748233708090910] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As part of its mandate, the Agency for Toxic Substances and Disease Registry (ATSDR) prepares toxicological profiles on hazardous chemicals found at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) sites that have the greatest public health impact. These profiles comprehensively summarize toxicological and environmental information. This article constitutes the release of portions of the Toxicological Profile for Benzene. The primary purpose of this article is to provide public health officials, physicians, toxicologists, and other interested individuals and groups with an overall perspective on the toxicology of benzene. It contains descriptions and evaluations of toxicological studies and epidemiological investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health.
Collapse
Affiliation(s)
- S Wilbur
- Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Department of Health and Human Services, Atlanta, Georgia 30333, USA.
| | | | | | | | | |
Collapse
|
17
|
Koning S, Janssen HG, Brinkman UAT. Modern Methods of Sample Preparation for GC Analysis. Chromatographia 2009. [DOI: 10.1365/s10337-008-0937-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Ademollo N, Ferrara F, Delise M, Fabietti F, Funari E. Nonylphenol and octylphenol in human breast milk. ENVIRONMENT INTERNATIONAL 2008; 34:984-7. [PMID: 18410965 DOI: 10.1016/j.envint.2008.03.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/21/2008] [Accepted: 03/05/2008] [Indexed: 05/20/2023]
Abstract
Human milk is the most important form of nourishment for newborn children. Its consumption is strongly recommended by health authorities also for other important advantages. Unfortunately, in the last three decades a great number of investigations have shown the occurrence of several environmental contaminants in human milk, especially those with lipophilic properties. This study investigates the presence of nonylphenol, octylphenol (OP), nonylphenol monoethoxylate (NP1EO) and two octylphenol ethoxylates (OPEOs) (namely OP1EO and OP2EO), in human breast milk of Italian women. NP was the contaminant found at the highest levels with mean concentrations of 32 ng/mL, about two orders of magnitude higher than OP (0.08 ng/mL), OP1EO (0.07 ng/mL) and OP2EO (0.16 ng/mL). In the group of study a positive correlation among fish consumption and levels of NP in the milk was observed, in accordance with the evidence that seafood represents one of the most important sources of exposure to this group of contaminants in Italy. On the basis of the concentrations found in the breast milk samples, a maximum NP daily intake of 3.94 microg/kg/day can be calculated, which is close to the Tolerable Daily Intake (TDI) of 5 microg/kg body weight (bw) proposed by the Danish Institute of Safety and Toxicology. In the cases of OP no TDI is available, but its intake is at least six orders of magnitude lower than the NOAEL of 10 mg/kg/day derived from a two generation study on rats.
Collapse
Affiliation(s)
- N Ademollo
- Dipartimento di Ambiente e Connessa Prevenzione Primaria, Istituto Superiore di Sanità, Viale Regina Elena, 299-00161 Rome, Italy
| | | | | | | | | |
Collapse
|
19
|
Wilbur S, Wohlers D, Paikoff S, Keith LS, Faroon O. ATSDR evaluation of potential for human exposure to benzene. Toxicol Ind Health 2008; 24:399-442. [DOI: 10.1177/0748233708095772] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As part of its mandate, the Agency for Toxic Substances and Disease Registry (ATSDR) prepares toxicological profiles on hazardous chemicals found at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) sites that have the greatest public health impact. These profiles comprehensively summarize toxicological and environmental information. This article constitutes the release of portions of the toxicological profile for benzene. The primary purpose of this article is to provide interested individuals with environmental information on benzene that includes production data, environmental fate, potential for human exposure, analytical methods, and a listing of regulations and advisories.
Collapse
Affiliation(s)
- S Wilbur
- Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - D Wohlers
- Syracuse Research Corporation, Syracuse, New York, USA
| | - S Paikoff
- Syracuse Research Corporation, Syracuse, New York, USA
| | - LS Keith
- Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - O Faroon
- Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Kim SR, Halden RU, Buckley TJ. Volatile organic compounds in human milk: methods and measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:1662-7. [PMID: 17396657 DOI: 10.1021/es062362y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The present study was conducted to optimize methods for measurement of volatile organic compounds (VOCs) by use of headspace solid-phase microextraction (HS-SPME) and to provide a preliminary assessment of levels in human milk. MTBE (methyl tert-butyl ether), chloroform, benzene, and toluene were measured from two sources of milk: a North Carolina milk bank (n = 5) and multiple samples from three women within nonsmoking households in inner-city Baltimore, MD (n = 8). In Baltimore, indoor air VOC concentrations in the respective households were also measured by active sampling and thermal desorption gas chromatography/mass spectrometry in selective ion monitoring (GC/MS/SIM) over each of the 3 days of milk collection. By application of these optimized methods, we observed median VOC concentrations in Baltimore human milk of 0.09, 0.55, 0.12, and 0.46 ng/mL for MTBE, chloroform, benzene, and toluene, respectively. For benzene, toluene, and MTBE, milk levels trended with observed indoor air concentrations. On the basis of measured concentrations in air and milk, infant average daily dose by inhalation exceeded ingestion rates by 25-135-fold. Thus, VOC exposure from breast milk is vastly exceeded by that from indoor air in nonsmoking households. Accordingly, strategies to mitigate infant VOC exposure should focus on the indoor air inhalation pathway of exposure.
Collapse
Affiliation(s)
- Sung R Kim
- Department of Environmental Health Sciences (Room W7014), Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|