1
|
Sun J, Wang X, He Y, Han M, Li M, Wang S, Chen J, Zhang Q, Yang B. Environmental fate of antibiotic resistance genes in livestock farming. Arch Microbiol 2025; 207:120. [PMID: 40214801 DOI: 10.1007/s00203-025-04320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
As emerging environmental pollutants, antibiotic resistance genes (ARGs) are prevalent in livestock farms and their surrounding environments. Although existing studies have focused on ARGs in specific environmental media, comprehensive research on ARGs within farming environments and their adjacent areas remains scarce. This review explores the sources, pollution status, and transmission pathways of ARGs from farms to the surrounding environment. Drawing on the "One Health" concept, it also discusses the potential risks of ARGs transmission from animals to human pathogens and the resulting impact on human health. Our findings suggest that the emergence of ARGs in livestock farming environments primarily results from intrinsic resistance and genetic mutations, while their spread is largely driven by horizontal gene transfer. The distribution of ARGs varies according to the type of resistance genes, seasonal changes, and the medium in which they are present. ARGs are disseminated into the surrounding environment via pathways such as manure application, wastewater discharge, and aerosol diffusion. They may be absorbed by humans, accumulating in the intestinal microbiota and subsequently affecting human health. The spread of ARGs is influenced by the interplay of microbial communities, antibiotics, heavy metals, emerging pollutants, and environmental factors. Additionally, we have outlined three control strategies: reducing the emergence of ARGs at the source, controlling their spread, and minimizing human exposure. This article provides a theoretical framework and scientific guidance for understanding the cross-media migration of microbial resistance in livestock farming environments.
Collapse
Affiliation(s)
- Jiali Sun
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Xiaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengting Han
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Jia Chen
- Shijiazhuang University, Shijiazhuang, 050035, China
| | - Qiang Zhang
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Alkorta I, Garbisu C. Expanding the focus of the One Health concept: links between the Earth-system processes of the planetary boundaries framework and antibiotic resistance. REVIEWS ON ENVIRONMENTAL HEALTH 2025; 40:159-173. [PMID: 38815132 DOI: 10.1515/reveh-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
The scientific community warns that our impact on planet Earth is so acute that we are crossing several of the planetary boundaries that demarcate the safe operating space for humankind. Besides, there is mounting evidence of serious effects on people's health derived from the ongoing environmental degradation. Regarding human health, the spread of antibiotic resistant bacteria is one of the most critical public health issues worldwide. Relevantly, antibiotic resistance has been claimed to be the quintessential One Health issue. The One Health concept links human, animal, and environmental health, but it is frequently only focused on the risk of zoonotic pathogens to public health or, to a lesser extent, the impact of contaminants on human health, i.e., adverse effects on human health coming from the other two One Health "compartments". It is recurrently claimed that antibiotic resistance must be approached from a One Health perspective, but such statement often only refers to the connection between the use of antibiotics in veterinary practice and the antibiotic resistance crisis, or the impact of contaminants (antibiotics, heavy metals, disinfectants, etc.) on antibiotic resistance. Nonetheless, the nine Earth-system processes considered in the planetary boundaries framework can be directly or indirectly linked to antibiotic resistance. Here, some of the main links between those processes and the dissemination of antibiotic resistance are described. The ultimate goal is to expand the focus of the One Health concept by pointing out the links between critical Earth-system processes and the One Health quintessential issue, i.e., antibiotic resistance.
Collapse
Affiliation(s)
- Itziar Alkorta
- Department of Biochemistry and Molecular Biology, 16402 University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Carlos Garbisu
- NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
3
|
Chen C, Li Y, Wu Z, Ruan Y, Long T, Wang X, Li W, Ren H, Liao X, Liu Y, Lian X, Sun J. Cat and dog feces as reservoirs of diverse novel antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2024; 261:119690. [PMID: 39068967 DOI: 10.1016/j.envres.2024.119690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Companion animals have the potential to greatly enhance the physical and mental health of humans, thus leading to an increased focus on the interactions between humans and pets. Currently, the inappropriate and excessive utilization of antimicrobial agents has become prevalent in veterinary clinical practice for pets. This antibiotic contamination phenomenon has a profound impact on the enrichment of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) in pets. However, the pet-associated resistome, especially the novel ARGs in pets, represents a relatively neglected area. In this study, we successfully constructed a total of 12 libraries using the functional metagenomics approach to assess the diversity of ARGs in pet cats and dogs from four pet hospitals. Through the integration of functional screening and high-throughput sequencing, a total of 122 antibiotic resistance determinants were identified, of which 15 were classified as putative novel ARGs originating from five classes. Functional assessment demonstrated that 6 novel ARGs including one β-lactam, two macrolides, two aminoglycosides, and one rifamycin (RIF), namely blaPF, ermPF, msrPF, aac(6')PF, aph(3')PF, and arrPF, exhibited functionally activity in conferring bacterial phenotypic resistance by increasing the minimum inhibitory concentrations (MICs) with a 4- to 128-fold. Genetic context analysis demonstrated that, with the exception of aac(6')PF and arrPF, the remaining four novel ARGs were found adjacent to mobile genetic elements (MGEs) including IS elements or transposases, which provided a prerequisite for horizontal transfer of these novel ARGs, thereby offering an explanation for their detection in diverse samples collected from various sampling sites. The current study has unveiled the significant role of cat and dog feces as one source of reservoirs of diverse novel ARGs, while also highlighting the potential adverse consequences of their further spread to medically significant pathogens and human commensal organisms.
Collapse
Affiliation(s)
- Caiping Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yali Ruan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Tengfei Long
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Xiran Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xinlei Lian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Ruan SY, Luo HW, Tang XR, Qi JY. Effects of 3-year organic farming management on soil antibiotic resistant genes and virulence factors in a double rice cropping system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173722. [PMID: 38839017 DOI: 10.1016/j.scitotenv.2024.173722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Investigating the antibiotic resistance genes (ARGs) and virulence factors (VFs) within soil microbial communities is crucial for understanding microbial ecology and the evolution of antibiotic resistance. However, the study of ARGs, VFs, and their predominant microbial hosts in soils under varying rice production management practices remains largely underexplored. To this end, a three-year field experiment was conducted under organic management within a double rice cropping system in South China. The study revealed that, in contrast to conventional management (CK), organic farming practices did not significantly alter the total reads of ARGs and VFs. However, there was a notable alteration in the ARGs abundance at the antibiotic class level, such as an increase (P < 0.05) in the abundance of Multidrug ARGs (by 1.7 %) and a decrease (P < 0.05) in Rifamycin (by 17.5 %) and Fosfomycin ARGs (by 15.3 %). Furthermore, a significant shift in VFs was observed under organic farming compared to CK, characterized by an increase (P < 0.05) in offensive VFs and a decrease (P < 0.05) in nonspecific VFs and the regulation of virulence-associated genes. Key microbial taxa identified as influencing ARGs and VFs in the tested soil samples, e.g., Proteobacteria. The findings highlight the need for more detailed attention to soil ecology within organic rice production systems in South China, particularly concerning the significant alterations observed in ARGs and VFs.
Collapse
Affiliation(s)
- Shao-Yi Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Hao-Wen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiang-Ru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| | - Jian-Ying Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| |
Collapse
|
5
|
Zhou Z, Zhu R, Song Y, Zhang W, Sun B, Zhang Z, Yao H. Penguin-Driven Dissemination and High Enrichment of Antibiotic Resistance Genes in Lake Sediments across Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39083437 DOI: 10.1021/acs.est.4c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Numerous penguins can propagate pathogens with antibiotic resistance genes (ARGs) into Antarctica. However, the effects of penguin dissemination on the lake ARGs still have received little attention via guano deposition. Here, we have profiled ARGs in ornithogenic sediments subject to penguin guano (OLS) and nonornithogenic sediments (NOLS) from 16 lakes across Antarctica. A total of 191 ARGs were detected in all sediment samples, with a much higher abundance and diversity in OLS than in NOLS. Surprisingly, highly diverse and abundant ARGs were found in the OLS with a detection frequency of >40% and an absolute abundance of (2.34 × 109)-(4.98 × 109) copies g-1, comparable to those in coastal estuarine sediments and pig farms. The strong correlations of identified resistance genes with penguin guano input amount, environmental factors, mobile genetic elements, and bacterial community, in conjunction with network and redundancy analyses, all indicated that penguins were responsible for the dissemination and high enrichment of ARGs in lake sediments via the guano deposition, which might greatly outweigh local human-activity effects. Our results revealed that ARGs could be carried into lakes across the Antarctica through penguin migration, food chains, and guano deposition, which were closely connected with the widespread pollution of ARGs at the global scale.
Collapse
Affiliation(s)
- Zeming Zhou
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yixin Song
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wanying Zhang
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bowen Sun
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, U.K
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
6
|
Suarez SA, Martiny AC. Intraspecific variation in antibiotic resistance potential within E. coli. Microbiol Spectr 2024; 12:e0316223. [PMID: 38661581 PMCID: PMC11237723 DOI: 10.1128/spectrum.03162-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Intraspecific genomic diversity brings the potential for an unreported and diverse reservoir of cryptic antibiotic resistance genes in pathogens, as cryptic resistance can occur without major mutations and horizontal transmission. Here, we predicted the differences in the types of antibiotics and genes that induce cryptic and latent resistance between micro-diverse Escherichia coli strains. For example, we hypothesize that known resistance genes will be the culprit of latent resistance within clinical strains. We used a modified functional metagenomics method to induce expression in eight E. coli strains. We found a total of 66 individual genes conferring phenotypic resistance to 11 out of 16 antibiotics. A total of 14 known antibiotic resistance genes comprised 21% of total identified genes, whereas the majority (52 genes) were unclassified cryptic resistance genes. Between the eight strains, 1.2% of core orthologous genes were positive (conferred resistance in at least one strain). Sixty-four percent of positive orthologous genes conferred resistance to only one strain, demonstrating high intraspecific variability of latent resistance genes. Cryptic resistance genes comprised most resistance genes among laboratory and clinical strains as well as natural, semisynthetic, and synthetic antibiotics. Known antibiotic resistance genes primarily conferred resistance to multiple antibiotics from varying origins and within multiple strains. Hence, it is uncommon for E. coli to develop cross-cryptic resistance to antibiotics from multiple origins or within multiple strains. We have uncovered prospective and previously unknown resistance genes as well as antibiotics that have the potential to trigger latent antibiotic resistance in E. coli strains from varying origins.IMPORTANCEIntraspecific genomic diversity may be a driving force in the emergence of adaptive antibiotic resistance. Adaptive antibiotic resistance enables sensitive bacterial cells to acquire temporary antibiotic resistance, creating an optimal window for the development of permanent mutational resistance. In this study, we investigate cryptic resistance, an adaptive resistance mechanism, and unveil novel (cryptic) antibiotic resistance genes that confer resistance when amplified within eight E. coli strains derived from clinical and laboratory origins. We identify the potential of cryptic resistance genes to confer cross-resistance to antibiotics from varying origins and within multiple strains. We discern antibiotic characteristics that promote latent resistance in multiple strains, considering intraspecific diversity. This study may help detect novel resistance genes and functional genes that could become responsible for cryptic resistance among diverse strains and antibiotics, thus also identifying potential novel antibiotic targets and mechanisms.
Collapse
Affiliation(s)
- Stacy A. Suarez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Adam C. Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Department of Earth System Science, University of California, Irvine, California, USA
| |
Collapse
|
7
|
Zhang Y, He W, Shi X, Chen M, Bao C, Ji Y. Effects of earthworms on antibiotic resistance genes in different soil-plant systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33580-33590. [PMID: 38683428 DOI: 10.1007/s11356-024-33352-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Earthworms play an important role in the soil environment. To explore the difference in earthworms influence on various media in different soil-plant systems, the abundance of tetracycline, sulfonamide and quinolone resistance genes and the structure of the bacterial community were analysed from five different media including non-rhizosphere soil, rhizosphere soil, phyllosphere, root endophytes and earthworm intestine by real-time quantitative PCR and high-throughput 16S rRNA sequencing. Studies have shown that earthworms can reduce the absolute abundance of antibiotic resistance genes (ARGs) in non-rhizosphere soil. Root endophytes in the soil-cabbage system and rhizosphere soil in the soil-setaria system had the same findings. Earthworms can change the bacterial community structure, especially that of Proteobacteria and Cyanobacteria in the phyllosphere and root endophytes. Redundancy analysis (RDA) results that bacterial community change was the main factor affecting ARGs. In addition, earthworms increased the proportion of Cyanobacteria in root endophytes, and Cyanobacteria was significantly positively correlated with sul3. This study provides a scientific basis for controlling the migration and diffusion of ARGs and reducing environmental risks in soil-plant systems in the future.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Wencheng He
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xincheng Shi
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Minglong Chen
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Canxin Bao
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yan Ji
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
8
|
Li X, Zhu L, Zhang SY, Li J, Lin D, Wang M. Characterization of microbial contamination in agricultural soil: A public health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169139. [PMID: 38070547 DOI: 10.1016/j.scitotenv.2023.169139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Soil is widely recognized as a reservoir of microbial contaminants including antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs), which are major public health concerns. Although the risks associated with soil safety in different soil habitats have been studied, the results are not comprehensive. In this study, dryland soils used for vegetable, corn, and soybean planting, and submerged soils used for rice planting and crab farming were collected and subjected to metagenomic sequencing to characterize HBPs, ARGs, and virulence factor genes (VFGs). The results showed that submerged soils had a higher abundance of HBP than dryland soils. In addition, the submerged soil microbiome acquired significantly higher levels of high-risk ARGs than the dryland soil microbiome and these ARGs were mainly assigned to bacA, sul1, and aadA genes submerged. Network analysis revealed that 11 HBPs, including Yersinia enterocolitica, Vibrio cholerae, Escherichia coli, and Leptospira interrogans, were high-risk because of their close association with ARGs, VFGs, and mobile genetic elements (MGEs). Procrustes and network analyses showed that HBPs and ARGs were more closely linked in submerged soil. This study confirms that submerged field has higher ecological environment risk and human health risk than dryland soil.
Collapse
Affiliation(s)
- Xiaodi Li
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lin Zhu
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Si-Yu Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jingpeng Li
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Da Lin
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Meizhen Wang
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
9
|
Wang Y, Yang L, Ma J, Tang J, Chen M. Unraveling the antibiotic resistome in backwater zones of large cascade reservoirs: Co-occurrence patterns, horizontal transfer directions and health risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119144. [PMID: 37776796 DOI: 10.1016/j.jenvman.2023.119144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
The widespread occurrence of antibiotic resistant genes (ARGs) throughout aquatic environments has raised global concerns for public health. However, the profiles and patterns of antibiotic resistome in backwater zone of cascade reservoirs, where water flow is slowed down, are still poorly understood. Here, we proposed a metagenomic analysis framework to comprehensively reveal the diversity, abundance, co-occurrence patterns and transfer direction of ARGs in cascade reservoirs system and evaluated their health risks through a procedure based on contigs. A total of 364 ARGs subtypes conferring resistance to different antibiotics classes were detected in our water samples, and the dominant ARGs (macB, bacA, vanRA, bcrA) were similar in different reservoirs. Meanwhile, the distribution of ARGs was influenced by the presence of biotic factors such as metal resistant genes (MRGs) and mobile genetic elements (MGEs), as well as abiotic factors such as dissolved oxygen (DO) and pH. Remarkably, ARGs (vanR, rosB, MexT) co-occurred with plasmids and virulence factor genes (VFGs), which can lead to the emergence and spread of highly virulent and antibiotic resistant bacteria in microbial communities. Overall, this study helps administrators to better understand the complex patterns of ARGs in backwater zones of large cascade reservoirs and provides a proper procedure for detecting the presence of high-risk of ARGs.
Collapse
Affiliation(s)
- Yujie Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Liu Yang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jun Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jian Tang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
10
|
Tang Q, Sui Q, Wei Y, Shen P, Zhang J. Swine-manure composts induce the enrichment of antibiotic-resistant bacteria but not antibiotic resistance genes in soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118707. [PMID: 37536132 DOI: 10.1016/j.jenvman.2023.118707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Composting is a common and effective strategy for reducing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from animal manure. However, it is unclear whether the advantages of composting for the control of ARGs and ARB can be further increased in land application. This study investigated the fate of ARB and ARGs after land application of swine-manure composts (SMCs) to three different soil types (red soil, loess and black soil). The results showed that although the SMCs caused an increase in the abundance of total ARGs in the soil in the short period, they significantly reduced (p < 0.01) the abundance of total ARGs after 82 days compared to the control. The decay rate of ARGs reflected by the half-life times (t1/2) varied by soil type, with red soil being the longest. The SMCs mainly introduced ermF, tetG and tetX into the soils, while these ARGs quickly declined to the control level. Notably, SMCs increased the number of ARB in the soils, especially for cefotaxime-resistant bacteria. Although SMCs only affected the microbiome significantly during the early stage (p < 0.05), it took a much longer time for the microbiome to recover compared to the control. Statistical analysis indicated that changes in the microbial community contributed more to the fate of ARGs during SMCs land application than other factors. Overall, it is proposed that the advantages of ARGs control in the composting process for swine manure can be further increased in land application, but it can still bring some risks in regard to ARB.
Collapse
Affiliation(s)
- Qihe Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Life Science and Technology, Guangxi University, Nanning, 530005, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning, 530005, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Xiang Q, Fu CX, Lu CY, Sun AQ, Chen QL, Qiao M. Flooding drives the temporal turnover of antibiotic resistance gene in manure-amended soil-water continuum. ENVIRONMENT INTERNATIONAL 2023; 179:108168. [PMID: 37647704 DOI: 10.1016/j.envint.2023.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Rice paddy soil is a hotspot of antibiotic resistance genes (ARGs) due to the application of organic fertilizers. However, the temporal dynamics of ARGs in rice paddy soil and its flooded water during the growing season remain underexplored. In this study, a microcosm experiment was conducted to explore the ARG profiles in a long term (130 days) flooded two-phase manure-amended soil-water system. By using high-throughput quantitative PCR array, a total of 23-98 and 34-85 ARGs were detected in the soil and overlying water, respectively. Regression analysis exhibited significant negative correlations between ARG profile similarities and flooding duration, indicating that flooding significantly altered the resistome (P < 0.001). This finding was validated by the increased ARG abundance in the soil and the overlying water, for example, after 130 days flooding, the abundance of ARGs in CK soil was increased from 0.03 to 1.20 copies per 16S rRNA. The PCoA analysis further suggested pig manure application resulted in distinct ARG profiles in the soil-water continuum compared with those of the non-amended control (Adonis, P < 0.05). The Venn diagram showed that all ARGs detected in the pig manure were present in the treated soil. Twelve ARGs (e.g., sul1) were shared among the pig manure, manure-amended soil, and overlying water, indicating that certain manure- or soil-borne ARGs were readily dispersed from the soil to the overlying water. Moreover, the enhanced relationships between the ARGs and mobile genetic elements in pig manure applied soil-water continuum indicate that the application of organic matter could accelerate the emergence and dissemination of ARGs. These findings suggested that flooding represents a crucial pathway for dispersal of ARGs from the soil to the overlying water. Identification of highly mobile ARGs in the soil-water continuum is essential for assessing their potential risk to human health and promoting the development of sustainable agricultural practices to mitigate their spread.
Collapse
Affiliation(s)
- Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Chen-Xi Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Yi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - An-Qi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Xu F, Guan J, Zhou Y, Song Z, Shen Y, Liu Y, Jia X, Zhang B, Guo P. Effects of freeze-thaw dynamics and microplastics on the distribution of antibiotic resistance genes in soil aggregates. CHEMOSPHERE 2023; 329:138678. [PMID: 37059196 DOI: 10.1016/j.chemosphere.2023.138678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
This is the first study investigating the effects of freeze-thaw (FT) and microplastics (MPs) on the distribution of antibiotic resistance genes (ARGs) in soil aggregates (i.e., soil basic constituent and functional unit) via microcosm experiments. The results showed that FT significantly increased the total relative abundance of target ARGs in different aggregates due to the increase in intI1 and ARG host bacteria. However, polyethylene MPs (PE-MPs) hindered the increase in ARG abundance caused by FT. The host bacteria carrying ARGs and intI1 varied with aggregate size, and the highest number of hosts was observed in micro-aggregates (<0.25 mm). FT and MPs altered host bacteria abundance by affecting aggregate physicochemical properties and bacterial community and enhanced multiple antibiotic resistance via vertical gene transfer. Although the dominant factors affecting ARGs varied with aggregate size, intI1 was a co-dominant factor in various-sized aggregates. Furthermore, other than ARGs, FT, PE-MPs, and their integration promoted the proliferation of human pathogenic bacteria in aggregates. These findings suggested that FT and its integration with MPs significantly affected ARG distribution in soil aggregates. They amplified antibiotic resistance environmental risks, contributing to a profound understanding of soil antibiotic resistance in the boreal region.
Collapse
Affiliation(s)
- Fukai Xu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Yumei Zhou
- Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Ziwei Song
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Xiaohui Jia
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada.
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
13
|
Gschwind R, Ugarcina Perovic S, Weiss M, Petitjean M, Lao J, Coelho LP, Ruppé E. ResFinderFG v2.0: a database of antibiotic resistance genes obtained by functional metagenomics. Nucleic Acids Res 2023:7173762. [PMID: 37207327 DOI: 10.1093/nar/gkad384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Metagenomics can be used to monitor the spread of antibiotic resistance genes (ARGs). ARGs found in databases such as ResFinder and CARD primarily originate from culturable and pathogenic bacteria, while ARGs from non-culturable and non-pathogenic bacteria remain understudied. Functional metagenomics is based on phenotypic gene selection and can identify ARGs from non-culturable bacteria with a potentially low identity shared with known ARGs. In 2016, the ResFinderFG v1.0 database was created to collect ARGs from functional metagenomics studies. Here, we present the second version of the database, ResFinderFG v2.0, which is available on the Center of Genomic Epidemiology web server (https://cge.food.dtu.dk/services/ResFinderFG/). It comprises 3913 ARGs identified by functional metagenomics from 50 carefully curated datasets. We assessed its potential to detect ARGs in comparison to other popular databases in gut, soil and water (marine + freshwater) Global Microbial Gene Catalogues (https://gmgc.embl.de). ResFinderFG v2.0 allowed for the detection of ARGs that were not detected using other databases. These included ARGs conferring resistance to beta-lactams, cycline, phenicol, glycopeptide/cycloserine and trimethoprim/sulfonamide. Thus, ResFinderFG v2.0 can be used to identify ARGs differing from those found in conventional databases and therefore improve the description of resistomes.
Collapse
Affiliation(s)
- Rémi Gschwind
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| | - Svetlana Ugarcina Perovic
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Maja Weiss
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby 2800, Denmark
| | - Marie Petitjean
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| | - Julie Lao
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Etienne Ruppé
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| |
Collapse
|
14
|
Zhang M, Li K, Wang P, Gu W, Huang H, Xie B. Comparative insight into the effects of different carbon source supplement on antibiotic resistance genes during whole-run and short-cut nitrification-denitrification processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27412-4. [PMID: 37249772 DOI: 10.1007/s11356-023-27412-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/30/2023] [Indexed: 05/31/2023]
Abstract
Mature landfill leachate is known for nitrogen-removal challenging and meantime was considered as an important sink of antibiotic resistance genes (ARGs). The added external carbon sources, enabling the short-cut nitrification and denitrification, may facilitate the proliferation of bacteria that possibly carry ARGs. However, this speculation has yet to be studied. Here, we explored the effects of glucose, sodium acetate, and methanol supplements on ARGs during whole-run and short-cut treatment processes. The results showed that sodium acetate supplement during short-cut process efficiently reduced the abundances of total ARGs (0.84-1.99 copies/16S rRNA) and integrons (0.59-1.20 copies/16S rRNA), which were highly enhanced by methanol addition during whole-run treatment process (total ARGs: 3.60-11.01 copies/16S rRNA, integrons: 1.20-4.69 copies/16S rRNA). Indirect gradient analysis showed that the variation of ARGs was not correlated with the supplement of different external carbon source. Correlation analysis indicated that dominant intl1 (55.99 ± 17.61% of integrons) showed positively significant correlations with all detected ARGs expect for sul2 and ermB (p < 0.05), suggesting the significant role on ARGs dissemination. Redundancy analysis illustrated that the potential hosts of intl1, intl2, sul1, tetQ, tetM, mefA, and mexF were dominant Bacteroidetes and Actinobacteria. Interestingly, the numbers and significant extent of correlations under the supplement of sodium acetate during short-cut denitrification process were obviously declined, and it was in accordance with ARGs reduced by sodium acetate supplement, suggesting sodium acetate displayed the efficient ARGs reduction during short-cut process. In summary, this study provides a comparative understanding of the effects on ARGs by different carbon source supplements during nitrification-denitrification processes of leachate; sodium acetate is the optimal carbon source.
Collapse
Affiliation(s)
- Meilan Zhang
- The State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Laogang Waste Disposal Co., Shanghai, 201302, People's Republic of China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Wenchao Gu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Huang Huang
- Shanghai Laogang Waste Disposal Co., Shanghai, 201302, People's Republic of China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
15
|
Cui H, Zhu D, Ding L, Wang Y, Su J, Duan G, Zhu Y. Co-occurrence of genes for antibiotic resistance and arsenic biotransformation in paddy soils. J Environ Sci (China) 2023; 125:701-711. [PMID: 36375951 DOI: 10.1016/j.jes.2022.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/16/2023]
Abstract
Paddy soils are potential hotspots of combined contamination with arsenic (As) and antibiotics, which may induce co-selection of antibiotic resistance genes (ARGs) and As biotransformation genes (ABGs), resulting in dissemination of antimicrobial resistance and modification in As biogeochemical cycling. So far, little information is available for these co-selection processes and specific patterns between ABGs and ARGs in paddy soils. Here, the 16S rRNA amplicon sequencing and high-throughput quantitative PCR and network analysis were employed to investigate the dynamic response of ABGs and ARGs to As stress and manure application. The results showed that As stress increased the abundance of ARGs and mobile genetic elements (MGEs), resulting in dissemination risk of antimicrobial resistance. Manure amendment increased the abundance of ABGs, enhanced As mobilization and methylation in paddy soil, posing risk to food safety. The frequency of the co-occurrence between ABGs and ARGs, the host bacteria carrying both ARGs and ABGs were increased by As or manure treatment, and remarkably boosted in soils amended with both As and manure. Multidrug resistance genes were found to have the preference to be co-selected with ABGs, which was one of the dominant co-occurring ARGs in all treatments, and manure amendment increased the frequency of Macrolide-Lincosamide-Streptogramin B resistance (MLSB) to co-occur with ABGs. Bacillus and Clostridium of Firmicutes are the dominant host bacteria carrying both ABGs and ARGs in paddy soils. This study would extend our understanding on the co-selection between genes for antibiotics and metals, also unveil the hidden environmental effects of combined pollution.
Collapse
Affiliation(s)
- Huiling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longjun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
16
|
Zhang Y, Hao X, Thomas BW, McAllister TA, Workentine M, Jin L, Shi X, Alexander TW. Soil antibiotic resistance genes accumulate at different rates over four decades of manure application. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130136. [PMID: 36444046 DOI: 10.1016/j.jhazmat.2022.130136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/11/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Manure can be a source of antibiotic resistance genes (ARGs) that enter the soil. However, previous studies assessing ARG persistence in soil have generally lacked continuity over sampling times, consistency of location, and assessing the impact of discontinuing manure application. We evaluated both short- and long-term ARG accumulation dynamics in soil with a 40-year known history of manure use. Manure application caused a greater abundance of tetracycline, macrolide, and sulfonamide ARGs in the soil. There was an initial spike in ARG abundance resulting from manure bacteria harboring ARGs being introduced to soil, followed by resident soil bacteria out-competing them, which led to ARG dissipation within a year. However, over four decades, annual manure application caused linear or exponential ARG accumulation, and bacteria associated with ARGs differed compared to those in the short term. Eleven years after discontinuing manure application, most soil ARG levels declined but remained elevated. We systematically explored the historical accumulation of ARGs in manured soil, and provide insight into factors that affect their persistence.
Collapse
Affiliation(s)
- Yuting Zhang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Xiying Hao
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Ben W Thomas
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, BC V0M 1A0, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Matthew Workentine
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Long Jin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Xiaojun Shi
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Academy of Agriculture Science, Southwest University, Chongqing 400716, China
| | - Trevor W Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada.
| |
Collapse
|
17
|
Zhang R, Li J, Zhou L, Zhuang H, Shen S, Wang Y. Effect of graphene and graphene oxide on antibiotic resistance genes during copper-contained swine manure anaerobic digestion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27863-27874. [PMID: 36394812 DOI: 10.1007/s11356-022-23741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Copper is an important selectors for antibiotic resistance genes (ARGs) transfer because of metal-antibiotic cross-resistance and/or coresistance. Due to carbon-based materials' good adsorption capacity for heavy metals, graphene and graphene oxide have great potential to reduce ARGs abundance in the environment with copper pollution. To figure out the mechanics, this study investigated the effects of graphene and graphene oxide on the succession of ARGs, mobile genetic elements (MGEs), heavy metal resistance genes (HMRGs), and bacterial communities during copper-contained swine manure anaerobic digestion. Results showed that graphene and graphene oxide could reduce ARGs abundance in varying degrees with the anaerobic reactors that contained a higher concentration of copper. Nevertheless, graphene decreased the abundance of ARGs more effectively than graphene oxide. Phylum-level bacteria such as Firmicutes, Bacteroidetes, Spirochaetes, and Verrucomicrobiaat were significantly positively correlated with most ARGs. Network and redundancy analyses demonstrated that alterations in the bacterial community are one of the main factors leading to the changes in ARGs. Firmicutes, Bacteroidetes, and Spirochaetes were enriched lower in graphene reactor than graphene oxide in anaerobic digestion products, which may be the main reason that graphene is superior to graphene oxide in reduced ARGs abundance. Additionally, ARGs were close to HMRGs than MGEs in the treatments with graphene, the opposite in graphene oxide reactors. Therefore, we speculate that the reduction of HMRGs in graphene may contribute to the result that graphene is superior to graphene oxide in reduced ARGs abundance in anaerobic digestion.
Collapse
Affiliation(s)
- Ranran Zhang
- School of Environmental and Natural Resource, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
- Recycling and Eco-Treatmentreatment of Waste Biomass of Zhejiang Provincial Key Laboratory, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Jimin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Liuyuan Zhou
- School of Environmental and Natural Resource, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Haifeng Zhuang
- School of Environmental and Natural Resource, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
- Recycling and Eco-Treatmentreatment of Waste Biomass of Zhejiang Provincial Key Laboratory, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Sihan Shen
- School of Environmental and Natural Resource, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China.
| |
Collapse
|
18
|
Murray AK, Zhang L, Snape J, Gaze WH. Functional metagenomic libraries generated from anthropogenically impacted environments reveal importance of metabolic genes in biocide and antibiotic resistance. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100184. [PMID: 36908773 PMCID: PMC9995290 DOI: 10.1016/j.crmicr.2023.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Anthropogenic activities result in the release of antimicrobial resistant bacteria and a cocktail of antimicrobial compounds into the environment that may directly select or indirectly co-select for antimicrobial resistance (AMR). Many studies use metagenome sequencing or qPCR-based approaches to study the environmental resistome but these methods are limited by a priori knowledge. In this study, a functional metagenomic approach was used to explore biocide resistance mechanisms in two contaminated environments and a pristine site, and to identify whether potentially novel genes conferring biocide resistance also conferred resistance or reduced susceptibility to antibiotics. Resistance was predominately mediated through novel mechanisms exclusive of the well-known qac efflux genes. UDP-galactose 4-epimerase (galE) -like genes were identified in both contaminated environments and were shown to confer cross-resistance to biocides and clinically important antibiotics for the first time (to our knowledge), compared to knockout mutants. GalE -like genes were also co-located with transposons, suggesting mobilisation potential. These results show that housekeeping genes may play a significant yet underappreciated role in AMR in environmental microbiomes.
Collapse
Affiliation(s)
- Aimee K. Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom
- Corresponding author.
| | - Lihong Zhang
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Jason Snape
- AstraZeneca Global Environment, Alderly Park, Macclesfield, United Kingdom
| | - William H. Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
19
|
Impact of Swine and Cattle Manure Treatment on the Microbial Composition and Resistome of Soil and Drainage Water. Microorganisms 2022; 11:microorganisms11010017. [PMID: 36677309 PMCID: PMC9865870 DOI: 10.3390/microorganisms11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Evaluating potential environmental and clinical impacts of industrial antibiotic use is critical in mitigating the spread of antimicrobial resistance. Using soil columns to simulate field application of swine or cattle manure and subsequent rain events, and a targeted qPCR-based approach, we tracked resistance genes from source manures and identified important differences in antimicrobial resistance gene transport and enrichment over time in the soil and water of artificially drained cropland. The source manures had distinct microbial community and resistance gene profiles, and these differences were also reflected in the soil columns after manure application. Antibiotic resistance genes (ARGs) were only significantly enriched in effluent samples following the first rain event (day 11) for both soil types compared to the control columns, illustrating the high background level of resistance present in the control soils chosen. For swine, the genes tetQ, tet(36), tet44, tetM, sul2 and ant(6)-ib persisted in the soil columns, whereas tetO, strB and sul1 persisted in effluent samples. Conversely, for cattle manure sul2 and strB persisted in both soil and effluent. The distinct temporal dynamics of ARG distribution between soil and effluent water for each manure type can be used to inform potential mitigation strategies in the future.
Collapse
|
20
|
Pillay S, Calderón-Franco D, Urhan A, Abeel T. Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. Front Microbiol 2022; 13:1066995. [PMID: 36532424 PMCID: PMC9755710 DOI: 10.3389/fmicb.2022.1066995] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 08/12/2023] Open
Abstract
The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance.
Collapse
Affiliation(s)
- Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | | | - Aysun Urhan
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
21
|
Hembach N, Bierbaum G, Schreiber C, Schwartz T. Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater: A molecular biology comparison. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120128. [PMID: 36089145 DOI: 10.1016/j.envpol.2022.120128] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Manure contains vast amounts of biological contaminants of veterinary origin. Only few studies analyse clinically critical resistance genes against reserve antibiotics in manure. In general, resistances against these high priority antibiotics involve a high potential health risk. Therefore, their spread in the soil as well as the aquatic environment has to be prevented. Manures of 29 different swine livestock were analysed. Abundances of facultative pathogenic bacteria including representatives of the clinically critical ESKAPE-pathogens (P. aeruginosa, K. pneumoniae, A. baumannii, E. faecium) and E. coli were investigated via qPCR. Antibiotic resistance genes against commonly used veterinary antibiotics (ermB, tetM, sul1) as well as various resistance genes against important (mecA, vanA) and reserve antibiotics (blaNDM, blaKPC3, mcr-1), which are identified by the WHO, were also obtained by qPCR analysis. The manures of all swine livestock contained facultative pathogenic bacteria and commonly known resistance genes against antibiotics used in veterinary therapies, but more important also a significant amount of clinically critical resistance genes against reserve antibiotics for human medicine. To illustrate the impact the occurrence of these clinically critical resistance genes, comparative measurements were taken of the total wastewater of a large tertiary care hospital (n = 8). Both manure as well as raw hospital wastewaters were contaminated with significant abundances of gene markers for facultative pathogens and with critical resistance genes of reserve antibiotics associated with genetic mobile elements for horizontal gene transfer. Hence, both compartments bear an exceptional potential risk for the dissemination of facultative pathogens and critical antibiotic resistance genes.
Collapse
Affiliation(s)
- Norman Hembach
- Karlsruhe Institute of Technology (KIT) Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christiane Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Thomas Schwartz
- Karlsruhe Institute of Technology (KIT) Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
22
|
Dong Z, Wang J, Wang L, Zhu L, Wang J, Zhao X, Kim YM. Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3343-3358. [PMID: 34559332 DOI: 10.1007/s10653-021-01102-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has become an increasingly serious global public health issue. This study investigated the distribution characteristics and influencing factors of ARB and ARGs in greenhouse vegetable soils with long-term application of manure. Five typical ARGs, four heavy metal resistance genes (MRGs), and two mobile genetic elements (MGEs) were quantified by real-time quantitative polymerase chain reaction (qPCR). The amount of ARB in manure-improved soil greatly exceeded that in control soil, and the bacterial resistance rate decreased significantly with increases in antibiotic concentrations. In addition, the resistance rate of ARB to enrofloxacin (ENR) was lower than that of tylosin (TYL). Real-time qPCR results showed that long-term application of manure enhanced the relative abundance of ARGs in vegetable soils, and the content and proportion of quinolone resistance genes were higher than those of macrolide resistance genes. Redundancy analysis (RDA) showed that qepA and qnrS significantly correlated with total and available amounts of Cu and Zn, highlighting that certain heavy metals can influence persistence of ARGs. Integrase gene intI1 correlated significantly with the relative abundance of qepA, qnrS, and ermF, suggesting that intI1 played an important role in the horizontal transfer of ARGs. Furthermore, there was a weakly but not significantly positive correlation between specific detected MRGs and ARGs and MGEs. The results of this study enhance understanding the potential for increasing ARGs in manure-applied soil, assessing ecological risk and reducing the spread of ARGs.
Collapse
Affiliation(s)
- Zikun Dong
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China.
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Xiang Zhao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
23
|
Mahdi I, Fahsi N, Hijri M, Sobeh M. Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Front Microbiol 2022; 13:999988. [PMID: 36204627 PMCID: PMC9530320 DOI: 10.3389/fmicb.2022.999988] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) are endowed with several attributes that can be beneficial for host plants. They opened myriad doors toward green technology approach to reduce the use of chemical inputs, improve soil fertility, and promote plants' health. However, many of these PGPB harbor antibiotic resistance genes (ARGs). Less attention has been given to multi-resistant bacterial bioinoculants which may transfer their ARGs to native soil microbial communities and other environmental reservoirs including animals, waters, and humans. Therefore, large-scale inoculation of crops by ARGs-harboring bacteria could worsen the evolution and dissemination of antibiotic resistance and aggravate the negative impacts on such ecosystem and ultimately public health. Their introduction into the soil could serve as ARGs invasion which may inter into the food chain. In this review, we underscore the antibiotic resistance of plant-associated bacteria, criticize the lack of consideration for this phenomenon in the screening and application processes, and provide some recommendations as well as a regulation framework relating to the development of bacteria-based biofertilizers to aid maximizing their value and applications in crop improvement while reducing the risks of ARGs invasion.
Collapse
Affiliation(s)
- Ismail Mahdi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Nidal Fahsi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mansour Sobeh
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
24
|
Sun W, Zheng Z. Research on removal of fluoroquinolones in rural domestic wastewater by vertical flow constructed wetlands under different hydraulic loads. CHEMOSPHERE 2022; 303:135100. [PMID: 35644233 DOI: 10.1016/j.chemosphere.2022.135100] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics had attracted more and more attention in recent years due to their harmfulness. Fluoroquinolones (FQs), one class of antibiotics widely used in human and veterinary medicine, were found in various water bodies in China. Therefore, in order to found an efficient method for removing FQs in rural domestic wastewater and optimize the process parameters, ceramsite and soil were applied in vertical flow constructed wetlands (VFCWs) to study the effects of different hydraulic loads and different substrates on the removal of FQs and conventional pollutants. The results showed the VFCW-D filled with 45 cm soil layer and 15 cm ceramasite layer had the highest removal efficiency of conventional pollutants and FQs under low hydraulic load. Nevertheless, the removal efficiency of conventional pollutants was significantly declined for the VFCWs which contained soil substrates under high hydraulic load due to the soil pores were clogged by the accumulation of organic matter. Finally, VFCW-A filled with 60 cm ceramasite layer revealed good ability to remove conventional pollutants and FQs under high hydraulic load. Deinococcus played a vital role here due to its excellent removal effect on conventional pollutants. The microbial composition in the substrate changed greatly after adding antibiotics under high hydraulic load. Devosia, Pseudorhodoferax, Cellvibrio, Bosea, Caulobacter, Acinetobacter, Zoogloea, Arcobacter, Dechloromonas, Flavobacterium, Nakamurella, Chloroplast, Clostridium_sensu_stricto_1, Pelosinus, UTCFX1 and Hypnocyclicus became the new dominated genera and were essential to remove pollutants. In summary, VFCW was an effective system to remove fluoroquinolones in rural domestic wastewater.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
25
|
Niu Q, Li K, Yang H, Zhu P, Huang Y, Wang Y, Li X, Li Q. Exploring the effects of heavy metal passivation under Fenton-like reaction on the removal of antibiotic resistance genes during composting. BIORESOURCE TECHNOLOGY 2022; 359:127476. [PMID: 35714777 DOI: 10.1016/j.biortech.2022.127476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
This study aims to explore the succession of microbes carrying antibiotic resistance genes (ARGs), the relationship between heavy metal speciation and ARGs via Fenton-like reaction during composting. The results indicated that the passivation of Cu and Ni was more prominent, and the Fenton-like reaction promoted exceptionally the passivation of Zn, Ni and Mn. The removals of macrolides-lincosamids-streptogramins (MLS), aminoglycoside and tetracycline resistance genes were induced with the composting process, but the relative abundance of bacitracin resistance genes increased. Additionally, Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were main carriers and disseminators of ARGs, and the Fenton-like reaction improved the contribution degree of Proteobacteria to bacitracin, tetracycline and aminoglycoside resistance genes. Redundancy analysis revealed the passivation of heavy metal contributed to the removal of tetracycline, MLS and aminoglycoside resistance genes. Conclusively, the Fenton-like reaction promoted the passivation of Zn, Ni and Mn, and controlled the abundance of bacitracin resistance genes in composting.
Collapse
Affiliation(s)
- Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
26
|
Wang F, Sun R, Hu H, Duan G, Meng L, Qiao M. The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154463. [PMID: 35276164 DOI: 10.1016/j.scitotenv.2022.154463] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Livestock manure, as a major source of antibiotic resistance genes (ARGs), could further transfer ARGs from soil to vegetables when it's used as fertilizer in field and then pose threat to human health. Meanwhile, manure inputs and vegetable planting also affect soil bacterial communities, but these effects on the transmission of ARGs from soil to vegetable is still lacking. Here, lettuce and endive were cultivated in manure-amended soils using pot experiment. The distribution of bacterial community, ARGs and intI1 gene were studied in manure-amended soil and vegetable roots and leaves at harvest. High-throughput sequencing analysis demonstrated that planting vegetables exerted significant effect on soil bacterial communities, which partly explained the decrease of certain ARGs and the intI1 gene in planted soil than in control soil. ARGs in vegetable and soil were interconnected. The bacterial community compositions among root endophyte, leaf endophyte, and phyllosphere were varied by Hierarchical clustering analysis. Higher abundance of shared bacterial taxa was found between root endophytes and soil microbes, which could lead to a relative higher detection frequency of ARGs in root endophyte. Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were dominant in the plant endophyte and phyllosphere microbes and had intensive correlations with ARGs. Taken together, our findings provided valuable insights into the role of bacterial community structure in the dissemination of ARGs from manure-amended soil to vegetables.
Collapse
Affiliation(s)
- Fenghua Wang
- Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Experimental Teaching Demonstrating Center of Geographical Science, School of Geographical Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruibo Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Hangwei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Shanghai Wetland Ecosystem National Observation and Research Station in the Eco-friendly Integration Demonstration Zone of the Yangtze River Delta, Shanghai 201722, China
| | - Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
27
|
Álvarez-Marín MT, Zarzuela L, Camacho EM, Santero E, Flores A. Detection by metagenomic functional analysis and improvement by experimental evolution of β-lactams resistance genes present in oil contaminated soils. Sci Rep 2022; 12:10059. [PMID: 35768448 PMCID: PMC9243250 DOI: 10.1038/s41598-022-13883-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
The spread of antibiotic resistance genes has become a global health concern identified by the World Health Organization as one of the greatest threats to health. Many of antimicrobial resistance determinants found in bacterial pathogens originate from environmental bacteria, so identifying the genes that confer resistance to antibiotics in different habitats is mandatory to better understand resistance mechanisms. Soil is one of the most diverse environments considered reservoir of antimicrobial resistance genes. The aim of this work is to study the presence of genes that provide resistance to antibiotics used in clinical settings in two oil contaminated soils by metagenomic functional analysis. Using fosmid vectors that efficiently transcribe metagenomic DNA, we have selected 12 fosmids coding for two class A β-lactamases, two subclass B1 and two subclass B3 metallo-β-lactamases, one class D β-lactamase and three efflux pumps that confer resistance to cefexime, ceftriaxone, meropenem and/or imipenem. In some of them, detection of the resistance required heterologous expression from the fosmid promoter. Although initially, these environmental genes only provide resistance to low concentrations of antibiotics, we have obtained, by experimental evolution, fosmid derivatives containing β-lactamase ORFs with a single base substitution, which substantially increase their β-lactamase activity and resistance level. None of the mutations affect β-lactamase coding sequences and are all located upstream of them. These results demonstrate the presence of enzymes that confer resistance to relevant β-lactams in these soils and their capacity to rapidly adapt to provide higher resistance levels.
Collapse
Affiliation(s)
- M Teresa Álvarez-Marín
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Laura Zarzuela
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Eva M Camacho
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Amando Flores
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
28
|
Wang S, Wei L, Gao Y, Rong Y, Zha Z, Lv Y, Feng Z. Novel amikacin resistance genes identified from human gut microbiota by functional metagenomics. J Appl Microbiol 2022; 133:898-907. [PMID: 35543338 DOI: 10.1111/jam.15615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this study was to evaluate the diversity and potential for horizontal transfer of amikacin resistance genes from the human gut. METHODS AND RESULTS A library of human fecal microbiota was constructed and subjected to functional screening for amikacin resistance. In total, five amikacin resistance genes that conferred relatively high amikacin resistance, with minimum inhibitory concentrations (MICs) ranging from 64 to >512, were identified from the library, including a novel aminoglycoside acetyltransferase gene and a 16S rRNA methyltransferase (MTase) gene, labeled aac(6')-Iao and rmtI respectively. AAC(6')-Iao showed the highest identity of 48% to AAC(6')-Ian from a clinical isolate Serratia marcescens, whereas RmtI shared the closest amino acid identity of 32% with ArmA from Klebsiella pneumonia. The MICs of these five subclones to six commonly used aminoglycosides were determined. Susceptibility analysis indicated that RmtI was associated with high resistance phenotype to 4,6-disubstituted 2-DOS aminoglycosides, whereas AAC(6')-Iao conferred resistance to amikacin and kanamycin. In addition, kinetic parameters of AAC(6')-Iao were determined, suggesting a strong catalytic effect on amikacin and kanamycin. CONCLUSIONS Antibiotic resistance genes with low identity to known sequences can be uncovered by functional metagenomics. In addition, the diversity and prevalence of amikacin resistance genes merit further investigation in extended habitats, especially the 16S rRNA MTase gene that might have been underestimated in previous cognition. SIGNIFICANCE AND IMPACT OF STUDY Two novel amikacin resistance genes were identified in this study, including a 16S rRNA methyltransferase gene rmtI and an aminoglycoside acetyltransferase gene aac(6')-Iao. This work would contribute to the in-depth study of the diversity and horizontal transfer potential of amikacin resistance genes in the microbiome of the human gut.
Collapse
Affiliation(s)
- Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lin Wei
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuejiao Gao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yufeng Rong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhengqi Zha
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yunbin Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Yang LY, Zhou SYD, Lin CS, Huang XR, Neilson R, Yang XR. Effects of biofertilizer on soil microbial diversity and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153170. [PMID: 35051473 DOI: 10.1016/j.scitotenv.2022.153170] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Spread of antibiotic resistance or the presence of antibiotic resistance genes (ARGs) in pathogens is a globally recognized threat to human health. Numerous studies have shown that application of organic fertilizers may increase the risk of ARGs, however, the risk of resistance genes associated with biofertilizers is largely unknown. To investigate whether biofertilizer application introduces ARGs to the soil, we used high-throughput quantitative polymerization chain reaction (HT-qPCR) to explore the effect of biofertilizer application over three years on soil ARGs in three orchards with different locations in China. Redundancy analysis showed specific and significant differences in the beta diversity of soil bacteria and fungi between treatments (fertilizer vs. no fertilizer). One-way ANOVA analysis revealed findings of the main driver of the significant difference in microbial community structure between fertilizer and control treatment was the change in soil properties following the application of biofertilizer. A total of 139 ARGs and 27 MGEs (mobile genetic elements), and 46 ARGs and 6 MGEs from 11 major taxa were detected in biofertilizer and soil samples, respectively. Only the samples from Guangxi had significant differences in the detected number of ARGs and MGEs between fertilization and control. Through structural equation modeling (SEM), we found that soil properties indirectly affected ARGs by shaping bacterial diversity, while bacterial abundance directly affected ARGs. Biofertilizer application did not significantly alter the relative abundance of ARGs in soil due to the complexity of the soil environment and competition between exogenous and native microorganisms. This study provided new insights into the spread of the antibiotic resistome of the soil through biofertilizer applications.
Collapse
Affiliation(s)
- Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chen-Shuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin-Rong Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; College of Life Sciences, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
30
|
Mware NA, Hall MC, Rajendran S, Gilley JE, Schmidt AM, Bartelt-Hunt SL, Zhang Y, Li X. Resistome and mobilome in surface runoff from manured soil as affected by setback distance. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128278. [PMID: 35065306 DOI: 10.1016/j.jhazmat.2022.128278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Land application of livestock manure introduces antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) into the soil environment. The objectives of this study were to examine the changes of resistome and mobilome in runoff and soil as a function of setback distance, i.e., the distance between manured soil and surface water, and to quantify the contributions of manure and background soil to the ARGs and MGEs in surface runoff. The resistome and mobilome in runoff and soil from a field-scale plot study were characterized using a high throughput quantitative polymerase chain reaction (HT-qPCR) array. It was estimated that a setback distance of ~40 m is required to reduce the total abundance of ARGs and MGEs in runoff from amended plots to that in control runoff. The resistome and mobilome of the soil in the setback region was not affected by manure-borne ARGs and MGEs. SourceTracker analyses revealed that background soil gradually became the predominant source of the ARGs and MGEs in runoff as setback distance increased. The results demonstrate how manure-borne ARGs and MGEs dissipated in agricultural runoff with increasing setback distance and had limited impacts on the resistome and mobilome of soil within the setback region.
Collapse
Affiliation(s)
- Noelle A Mware
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, USA
| | - Maria C Hall
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, USA
| | - Selvakumar Rajendran
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, USA; Department of Nanobiotechnology, PSG Institute of Advanced Studies, Tamil Nadu, India
| | - John E Gilley
- Agricultural Research Service, United States Department of Agriculture, USA
| | - Amy M Schmidt
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, USA
| | | | - Yifan Zhang
- Department of Nutrition and Food Science, Wayne State University, USA
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, USA.
| |
Collapse
|
31
|
Zhang Y, Chen J, Chen H, Liu L, Liu C, Teng Y. An integrated multidisciplinary-based framework for characterizing environmental risks of heavy metals and their effects on antibiotic resistomes in agricultural soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128113. [PMID: 34952501 DOI: 10.1016/j.jhazmat.2021.128113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
In this study, a new integrated multidisciplinary-based framework has been proposed to better understand the environmental risks of heavy metals (HMs) in agricultural soils. The source apportionment results revealed by a multilinear engine model were incorporated into the geochemical indexes and the probabilistic health risk assessment models for identifying the source-oriented risks of HMs in the environment. High-throughput sequencing-based metagenomic assembly analysis was used for characterizing the prevalence and dissemination risk of antibiotic resistomes and their associations with the geochemical enrichment of HMs in the soils. Results showed agricultural and industrial activities were the main sources of HMs in the environment. Although the soils were contaminated moderately by HMs and the health risks posed by soil metals were negligible for both adult and children, source-oriented risk evaluation suggested agricultural activities contributed relatively higher contamination and health risks than the other sources. Notably, abundant and diverse antibiotic resistant genes, mobile gene elements, virulence factors, and antibiotic-resistant bacterial pathogens were identified in the agricultural soils, as well as their co-occurrences on the same contigs, implying a non-negligible resistome risk. Further, statistical and network analyses showed the geochemical enrichment of HMs exerted significant effects on the antibiotic resistomes in the environment.
Collapse
Affiliation(s)
- Yuxin Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Jinping Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Linmei Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Chang Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
32
|
Characteristics changes on Applications of Antibiotics and Current Approaches to Enhance Productivity with Soil Microbiome. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contamination of environmental sully with antibiotics is regarded as a major problem today and predictable to attain more recognition in near future. However, human intervention resulting in antibiotic consumption is being enhancing all around the world. Our review of literature revealed the role of microbiome in sully and how antibiotic resistant genes raised. The structure of antibiotics basically influenced by natural components such as biotic and abiotic push which shifts based on different soils. Therefore, management of microbiome in soil and their expression studies were distinctively revealed. The assessment of antibiotic resistance genes with help of next generation sequencing provided a clear comprehension on genome and transcriptome of the bacterial genes. Thus, interaction of microbiome with soil can also be well understood. The current findings in our study will guide every researcher to follow logical protocol in analyzing microbiota composition is covered as well and also to understand its metagenomic and sequenced with next-generation sequencer which helps to comprehend the diverse micro-flora present in soil and its operation. Finally, later progresses in bioinformatics computer program, flow of work, and applications for analyzing metagenomic information are put in a nutshell.
Collapse
|
33
|
Zhao X, Shen JP, Shu CL, Jin SS, Di HJ, Zhang LM, He JZ. Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150781. [PMID: 34624280 DOI: 10.1016/j.scitotenv.2021.150781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Scarab larvae (Protaetia brevitarsis) could transform large quantities of agricultural waste into compost, providing a promising bio-fertilizer for soil management. There is an urgent need to assess the risk of antibiotic resistance genes (ARGs) in soil-vegetable system with application of compost derived from P. brevitarsis larvae. We conducted a pot experiment to compare the changes of ARGs in the soil and lettuce by adding four types of manure, livestock manure (chicken and swine manure) and the corresponding larval frass. Significantly low numbers of ARGs and mobile genetic elements (MGEs) were detected in both larval frass compared with the corresponding livestock manure. Pot experiment showed that the detected numbers of ARGs and MGEs in bulk soil, rhizosphere soil, and root endophytes were significantly lower in the frass-amended treatments than the raw manure-amended treatments. Furthermore, the relative abundance of ARGs and MGEs with application of chicken-frass was significant lower in rhizosphere soil and leaf endophyte. Using non-metric multidimensional scaling analysis, the patterns of soil ARGs and MGEs with chicken-frass application were more close to those from the bulk soil in the control. Structural equation models indicated that livestock manure addition was the main driver shaping soil ARGs with raw manure application, while MGEs were the key drivers in frass-amended treatments. These findings demonstrated that application of livestock manure vermicomposting via scarab larvae (P. brevitarsis) may be at low risk in spreading manure-borne ARGs through soil-plant system, providing an alternative technique for reducing ARGs in organic waste.
Collapse
Affiliation(s)
- Xiang Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju-Pei Shen
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| | - Chang-Long Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sheng-Sheng Jin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Hong J Di
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, Canterbury 7674, New Zealand
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Zheng He
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
34
|
Syuhada NH, Merican F, Zaki S, Broady PA, Convey P, Muangmai N. Strong and widespread cycloheximide resistance in Stichococcus-like eukaryotic algal taxa. Sci Rep 2022; 12:1080. [PMID: 35058560 PMCID: PMC8776791 DOI: 10.1038/s41598-022-05116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
This study was initiated following the serendipitous discovery of a unialgal culture of a Stichococcus-like green alga (Chlorophyta) newly isolated from soil collected on Signy Island (maritime Antarctica) in growth medium supplemented with 100 µg/mL cycloheximide (CHX, a widely used antibiotic active against most eukaryotes). In order to test the generality of CHX resistance in taxa originally identified as members of Stichococcus (the detailed taxonomic relationships within this group of algae have been updated since our study took place), six strains were studied: two strains isolated from recent substrate collections from Signy Island (maritime Antarctica) ("Antarctica" 1 and "Antarctica" 2), one isolated from this island about 50 years ago ("Antarctica" 3) and single Arctic ("Arctic"), temperate ("Temperate") and tropical ("Tropical") strains. The sensitivity of each strain towards CHX was compared by determining the minimum inhibitory concentration (MIC), and growth rate and lag time when exposed to different CHX concentrations. All strains except "Temperate" were highly resistant to CHX (MIC > 1000 µg/mL), while "Temperate" was resistant to 62.5 µg/mL (a concentration still considerably greater than any previously reported for algae). All highly resistant strains showed no significant differences in growth rate between control and treatment (1000 µg/mL CHX) conditions. Morphological examination suggested that four strains were consistent with the description of the species Stichococcus bacillaris while the remaining two conformed to S. mirabilis. However, based on sequence analyses and the recently available phylogeny, only one strain, "Temperate", was confirmed to be S. bacillaris, while "Tropical" represents the newly erected genus Tetratostichococcus, "Antarctica 1" Tritostichococcus, and "Antarctica 2", "Antarctica 3" and "Arctic" Deuterostichococcus. Both phylogenetic and CHX sensitivity analyses suggest that CHX resistance is potentially widespread within this group of algae.
Collapse
Affiliation(s)
- Nur Hidayu Syuhada
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
- National Antarctic Research Centre, University of Malaya, Kuala Lumpur, Malaysia.
| | - Syazana Zaki
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Paul A Broady
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Peter Convey
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
35
|
Fatoba DO, Amoako DG, Akebe ALK, Ismail A, Essack SY. Genomic analysis of antibiotic-resistant Enterococcus spp. reveals novel enterococci strains and the spread of plasmid-borne Tet(M), Tet(L) and Erm(B) genes from chicken litter to agricultural soil in South Africa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114101. [PMID: 34800768 DOI: 10.1016/j.jenvman.2021.114101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Manure from food animals exposed to antibiotics is often used as soil fertiliser, potentially releasing antibiotic-resistant bacteria (ARB) with diverse antibiotic-resistance genes (ARGs) into the soil. To determine the impact of chicken litter application on the soil resistome, Enterococcus spp. isolated from chicken litter and soil samples collected before and after the soil amendment were characterised, using whole-genome sequencing and bioinformatics tools. Nineteen Enterococcus spp. isolates from the three sources were sequenced on Illumina Miseq platform to ascertain the isolates' resistome, mobilome, virulome, clonality, and phylogenomic relationships. Multilocus sequence typing (MLST) analysis revealed eight novel sequence types (STs) (ST1700, ST1752, ST1753, ST1754, ST1755, ST1756, ST1004, and ST1006). The isolates harboured multiple resistance genes including those conferring resistance to inter alia macrolides-lincosamide-streptogramin (erm(B), lnu(B), lnu(G), lsaA, lsaE, eat(A), msr(C)), tetracycline (tet(M), tet(L), tet(S)), aminoglycosides (aac(6')-Ii, aac(6')-Iih, ant(6)-Ia, aph(3')-III, ant(9)-Ia), fluoroquinolones (efmA, and emeA), vancomycin (VanC {VanC-2, VanXY, VanXYC-3, VanXYC-4, VanRC}), and chloramphenicol (cat). The litter-amended soil harboured new ARB (particularly E. faecium) and ARGs (ant(6)-Ia, aac(6')-Ii, aph(3')-III), lnu(G), msr(C), and eat(A), efmA) that were not previously detected in the soil. The identified ARGs were associated with diverse mobile genetic elements (MGEs) such as insertion sequences (IS6, ISL3, IS256, IS30), transposons (Tn3 and Tn916) and plasmids (repUS43, repUS1, rep9b, and rep 22). Twenty-eight virulence genes encoding adherence/biofilm formation (ebpA, ebpB, ebpC), antiphagocytosis (elrA) and bacterial sex pheromones (Ccf10, cOB1, cad, and camE), were detected in the genomes of the isolates. Phylogenomic analysis revealed a close relationship between a few isolates from litter-amended soil and the chicken litter isolates. The differences in the ARG and ARB profiles in the soil before and after the litter amendment and their association with diverse MGEs indicate the mobilisation and transmission of ARGs and ARB from the litter to the soil.
Collapse
Affiliation(s)
- Dorcas Oladayo Fatoba
- Antimicrobial Research Unit, College of Health Science, University of KwaZulu-Natal, Durban, South Africa.
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Science, University of KwaZulu-Natal, Durban, South Africa; Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Abia Luther King Akebe
- Antimicrobial Research Unit, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
36
|
Wang H, Su X, Su J, Zhu Y, Ding K. Profiling the antibiotic resistome in soils between pristine and human-affected sites on the Tibetan Plateau. J Environ Sci (China) 2022; 111:442-451. [PMID: 34949372 DOI: 10.1016/j.jes.2021.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 06/14/2023]
Abstract
With increasing pressure from anthropogenic activity in pristine environments, the comprehensive profiling of antibiotic resistance genes (ARGs) is essential to evaluate the potential risks from human-induced antibiotic resistance in these under-studied places. Here, we characterized the microbial resistome in relatively pristine soil samples collected from four distinct habitats on the Tibetan Plateau, using a Smart chip based high-throughput qPCR approach. We compared these to soils from the same habitats that had been subjected to various anthropogenic activities, including residential sewage discharge, animal farming, atmospheric deposition, and tourism activity. Compared to pristine samples, an average of 23.7% more ARGs were detected in the human-affected soils, and the ARGs enriched in these soils mainly encoded resistances to aminoglycoside and beta-lactam. Of the four habitats studied, soils subjected to animal farming showed the highest risks of ARG enrichment and dissemination. As shown, the number of ARGs enriched (a total of 42), their fold changes (17.6 fold on average), and the co-occurrence complexity between ARGs and mobile genetic elements were all the highest in fecal-polluted soils. As well as antibiotics themselves, heavy metals also influenced ARG distributional patterns in Tibetan environments. However, compared to urban areas, the Tibetan Plateau had a low potential for ARG selection and exhibited low carriage of ARGs by mobile genetic elements, even in environments impacted by humans, suggesting that these ARGs have a limited capacity to disseminate. The present study examined the effects of multiple anthropogenic activities on the soil resistomes in relatively pristine environments.
Collapse
Affiliation(s)
- Hang Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China; National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China
| | - Xiaoxuan Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jianqiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yongguan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Ding
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
37
|
Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli. Microbiol Spectr 2021; 9:e0028921. [PMID: 34756069 PMCID: PMC8579933 DOI: 10.1128/spectrum.00289-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activation of unrecognized antibiotic resistance genes in the bacterial cell can give rise to antibiotic resistance without the need for major mutations or horizontal gene transfer. We hypothesize that bacteria harbor an extensive array of diverse cryptic genes that can be activated in response to antibiotics via adaptive resistance. To test this hypothesis, we developed a plasmid assay to randomly manipulate gene copy numbers in Escherichia coli cells and identify genes that conferred resistance when amplified. We then tested for cryptic resistance to 18 antibiotics and identified genes conferring resistance. E. coli could become resistant to 50% of the antibiotics tested, including chloramphenicol, d-cycloserine, polymyxin B, and 6 beta-lactam antibiotics, following this manipulation. Known antibiotic resistance genes comprised 13% of the total identified genes, where 87% were unclassified (cryptic) antibiotic resistance genes. These unclassified genes encoded cell membrane proteins, stress response/DNA repair proteins, transporters, and miscellaneous or hypothetical proteins. Stress response/DNA repair genes have a broad antibiotic resistance potential, as this gene class, in aggregate, conferred cryptic resistance to nearly all resistance-positive antibiotics. We found that antibiotics that are hydrophilic, those that are amphipathic, and those that inhibit the cytoplasmic membrane or cell wall biosynthesis were more likely to induce cryptic resistance in E. coli. This study reveals a diversity of cryptic genes that confer an antibiotic resistance phenotype when present in high copy number. Thus, our assay can identify potential novel resistance genes while also describing which antibiotics are prone to induce cryptic antibiotic resistance in E. coli. IMPORTANCE Predicting where new antibiotic resistance genes will rise is a challenge and is especially important when new antibiotics are developed. Adaptive resistance allows sensitive bacterial cells to become transiently resistant to antibiotics. This provides an opportune time for cells to develop more efficient resistance mechanisms, such as tolerance and permanent resistance to higher antibiotic concentrations. The biochemical diversity harbored within bacterial genomes may lead to the presence of genes that could confer resistance when timely activated. Therefore, it is crucial to understand adaptive resistance to identify potential resistance genes and prolong antibiotics. Here, we investigate cryptic resistance, an adaptive resistance mechanism, and identify unknown (cryptic) antibiotic resistance genes that confer resistance when amplified in a laboratory strain of E. coli. We also pinpoint antibiotic characteristics that are likely to induce cryptic resistance. This study may help detect novel antibiotic resistance genes and provide the foundation to help develop more effective antibiotics.
Collapse
|
38
|
Abundance and Dynamic Distribution of Antibiotic Resistance Genes in the Environment Surrounding a Veterinary Antibiotic Manufacturing Site. Antibiotics (Basel) 2021; 10:antibiotics10111361. [PMID: 34827299 PMCID: PMC8614685 DOI: 10.3390/antibiotics10111361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Antibiotics releasing from the manufacturing sites to the surrounding environment has been identified as a risk factor for the development of antibiotic resistance of bacterial pathogens. However, the knowledge of the abundance and distribution of antibiotic resistance genes (ARGs) influenced by antibiotic pollution is still limited. Methods: In this work, the contamination by resistance genes of the environmental media including an urban river and soil along the river located near the sewage outlet of a veterinary antibiotic manufacturing site in Shijiazhuang, China, was assessed. The abundance and dynamic distribution of ARGs in different sampling points and during different seasons were analyzed using fluorescent quantitative PCR method (qPCR). Results: A total of 11 resistance genes, one integron and one transposon were detected in water and soils around the pharmaceutical factory, and among which, the sulfonamide resistance genes sul1 and β-lactam resistance genes blaSHV were the most abundant genes. The relative abundance of ARGs in both river water and soil samples collected at the downstream of the sewage outlet was higher than that of samples collected at the upstream, non-polluted areas (p < 0.05). The mobile genetic elements (MGEs) integron in river was significantly correlated (p < 0.05) with the relative abundance of ARGs. Conclusions: The results indicate that the discharge of waste from antibiotic manufacturing site may pose a risk of horizontal transfer of ARGs.
Collapse
|
39
|
Cheng JH, Tang XY, Su JQ, Liu C. Field aging alters biochar's effect on antibiotic resistome in manured soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117719. [PMID: 34243084 DOI: 10.1016/j.envpol.2021.117719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/29/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Current understanding of biochar's effect on antibiotic resistance genes (ARGs) in soil is limited, and whether the effect could change after long-term field aging remains largely unknown. In this study, we employed high-throughput quantitative PCR to assess the effect of biochar amendment on soil resistome as affected by three years of field aging. Application of fresh biochar significantly elevated the number and abundance of ARGs in the manured soil, but did not show such effect under pakchoi cultivation. The presence of aged biochar caused a marked reduction of ARGs only in the planted manured soil. Results of principal coordinate analysis and structural equation modeling indicate that biochar's effect on soil ARG profile was changed by field aging through altering soil microbial composition. These results highlight the necessity of considering aging effect of biochar during its on-farm application to mitigate soil antibiotic resistance.
Collapse
Affiliation(s)
- Jian-Hua Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiang-Yu Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chen Liu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
40
|
Wang L, Zheng J, Huang X. Co-composting materials can further affect the attenuation of antibiotic resistome in soil application. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:329-337. [PMID: 34597969 DOI: 10.1016/j.wasman.2021.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effects of representative co-substrate (corncob particles) and additive (brick granules) alone on antibiotic resistome of swine manure during composting and subsequent compost application. For relative abundances, four antibiotic resistance gene (ARG) types encoding resistance to aminoglycoside, multidrug, florfenicol-chloramphenicol-amphenicol-fluoroquinolone-quinolone, and sulfonamide increased remarkably during composting, whereas all the ARG types decreased after compost application. Interestingly, much more ARG subtypes (50.1% in total) were reduced in corncob addition treatment. Meanwhile, the addition of corncob particles lowered the relative abundance and diversity of ARGs more significantly. Microbial community exhibited conspicuous changes across the manure, compost, and soil samples where the dominant genera were completely different. Procrustes test proved the co-occurrence and driving effect of microbial community on resistome variation, especially in corncob addition treatment during composting. Network analysis demonstrated that the dissipation of the dominant genera such as Ruminofilibacter, Luteimonas, and Pseudidiomarina in the composts after application contributed greatly to the reduction in ARG relative abundance. Besides, the low abundance of mobile genetic elements (MGEs) in soil also accounted for the attenuation of ARGs to some extent. Our findings clearly proved that co-composting materials can further affect the attenuation of antibiotic resistome in soil application, which can help in understanding the spread and control of ARGs during agricultural process.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Environmental Monitoring in Universities of Fujian Province, Xiamen Huaxia University, Xiamen 361024, China
| | - Jialun Zheng
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xu Huang
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
41
|
Ding J, Zhu D, Wang Y, Wang H, Liang A, Sun H, Chen Q, Lassen SB, Lv M, Chen L. Exposure to heavy metal and antibiotic enriches antibiotic resistant genes on the tire particles in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148417. [PMID: 34144237 DOI: 10.1016/j.scitotenv.2021.148417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The widespread occurrence of tire particles (TPs) in soils has attracted considerable attention due to their potential threats. The assemblage of bacteria and associated antibiotic resistant genes (ARGs) on TPs is yet largely unknown, especially under the stress of soil pollutants. In the present study, TPs were incubated in soils with or without the stress of heavy metal (Cu2+) or/and antibiotic (tetracycline), and bacterial community and ARG profile on TPs and in soils were explored using high-throughput sequencing and high-throughput quantitative PCR. Results indicated that bacterial community structure on TPs was significantly different from the surrounding soils, with a lower diversity, and significantly shifted by heavy metal and antibiotic exposure. Additionally, a diverse set of ARGs were detected on TPs, and their abundances were significantly increased under the stress of heavy metal and antibiotic, revealing a strong synergistic effect. Moreover, a good fit was observed for the correlation between bacterial community and ARG profile on TPs. Taken together, this study, for the first time, demonstrates that TPs can provide a novel niche for soil bacteria and soil resistome, and heavy metal and antibiotic exposure may potentially increase the abundance of ARGs on TPs, threatening soil ecosystems and human health.
Collapse
Affiliation(s)
- Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Yang Wang
- Department of Galactophore Surgery, Weifang People's Hospital, 151 Guangwen Road, Weifang 261041, China
| | - Hongtao Wang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Henan University, Kaifeng 475004, China
| | - Aiping Liang
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Qinglin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Simon Bo Lassen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai 264003, China
| |
Collapse
|
42
|
He LY, He LK, Gao FZ, Wu DL, Zou HY, Bai H, Zhang M, Ying GG. Dissipation of antibiotic resistance genes in manure-amended agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147582. [PMID: 33992936 DOI: 10.1016/j.scitotenv.2021.147582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/25/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Soil antibiotic resistance due to animal manure application is of great concern in recent years. Little is known about the fate of antibiotic resistance genes (ARGs) in agricultural soils associated with long-term manure application. Here we used soil microcosms to investigate the dissipation of ARGs and the change of bacterial community in agricultural soil originated from a vegetable field which had received 24 years' swine manure application. Soil microcosms were conducted at different soil moistures and with or without biochar over a testing period of two years in lab. Results showed that continuous manure application induced an accumulation of ARGs in soil, wherein the dissipation of ARGs differed from those in non-manure amended soil. ARGs persisted in soils at least two years, although their abundance declined gradually. Meanwhile, soil moisture and biochar had significant impact on the fate of ARGs. ARGs dissipated faster in soil with higher moisture. Biochar amendment contributed to the maintenance of bacterial diversity. Within the two years of simulation experiment, biochar enhanced soil ARG retention as they dissipated slowly in the soil amended with biochar. Succession of microbial community may have sustained the transfer and resilience of ARGs. This study provides insight into the dissipation of antibiotic resistance genes in manure-applied agricultural soil.
Collapse
Affiliation(s)
- Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lun-Kai He
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
43
|
Zhang Y, Cheng D, Zhang Y, Xie J, Xiong H, Wan Y, Zhang Y, Chen X, Shi X. Soil type shapes the antibiotic resistome profiles of long-term manured soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147361. [PMID: 33971610 DOI: 10.1016/j.scitotenv.2021.147361] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Animal manure fertilization facilitates the proliferation and dissemination of antibiotic resistance genes (ARGs) in soil, posing high risks to humans and ecosystem health. Although studies suggest that soil types could shape the ARG profiles in greenhouse soil, there is still a lack of comparative studies on the fate of ARGs in different types of manured soils under field trials. Thus, a metagenomic approach was used to decipher the fate of ARGs in 12-year long-term fertilized (inorganic fertilizer, compost manure and a mix of them) acidic, near-neutral and alkaline soils. A total of 408 unique ARG subtypes with multidrug, glycopeptide, beta-lactam and aminoglycoside resistance genes were identified as the most universal ARG types in all soil samples. Genes conferred to beta-lactam was the predominant ARG type in all the manure-amended soils. Genomic and statistical analyses showed that manure application caused the enrichment of 98 and 91 ARG subtypes in acidic and near-neutral soils, respectively, and 8 ARG subtypes in alkaline soil. The abundances of Proteobacteria (acidic and near-neutral soils) and Actinobacteria (alkaline soil), which are the potential hosts of ARGs, were clearly increased in manured soils. Random forest modelling and Pearson correlation analysis revealed that the soil properties (pH and bio-available Zn) and mobile genetic elements had considerable impacts on the transmission of ARGs. A structural equation model further indicated that soil types shaped the ARG profiles by significantly (P < 0.01) influencing the soil properties, bacterial abundance and bacterial diversity, where bacterial abundance was the major factor influencing the ARG profiles. This study systematically explored the mechanisms shaping the ARG profiles of long-term manured soils, and this information could support strategies to manage the dissemination of ARGs in different soil types.
Collapse
Affiliation(s)
- Yu Zhang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuting Zhang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jun Xie
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Huaye Xiong
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yu Wan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yueqiang Zhang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
44
|
Kaze M, Brooks L, Sistrom M. Genomic Sequence Analysis of Methicillin- and Carbapenem-Resistant Bacteria Isolated from Raw Sewage. Microbiol Spectr 2021; 9:e0012821. [PMID: 34132566 PMCID: PMC8552737 DOI: 10.1128/spectrum.00128-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/07/2023] Open
Abstract
Antibiotic resistance is one of the largest threats facing global health. Wastewater treatment plants are well-known hot spots for interaction between diverse bacteria, genetic exchange, and antibiotic resistance. Nonpathogenic bacteria theoretically act as reservoirs of antibiotic resistance subsequently transferring antibiotic resistance genes to pathogens, indicating that evolutionary processes occur outside clinical settings and may drive patterns of drug-resistant infections. We isolated and sequenced 100 bacterial strains from five wastewater treatment plants to analyze regional dynamics of antibiotic resistance in the California Central Valley. The results demonstrate the presence of a wide diversity of pathogenic and nonpathogenic bacteria, with an arithmetic mean of 5.1 resistance genes per isolate. Forty-three percent of resistance genes were located on plasmids, suggesting that large levels of gene transfer between bacteria that otherwise may not co-occur are facilitated by wastewater treatment. One of the strains detected was a Bacillus carrying pX01 and pX02 anthrax-like plasmids and multiple drug resistance genes. A correlation between resistance genes and taxonomy indicates that taxon-specific evolutionary studies may be useful in determining and predicting patterns of antibiotic resistance. Conversely, a lack of geographic correlation may indicate that landscape genetic studies to understand the spread of antibiotic resistance genes should be carried out at broader scales. This large data set provides insights into how pathogenic and nonpathogenic bacteria interact in wastewater environments and the resistance genes which may be horizontally transferred between them. This can help in determining the mechanisms leading to the increasing prevalence of drug-resistant infections observed in clinical settings. IMPORTANCE The reasons for the increasing prevalence of antibiotic-resistant infections are complex and associated with myriad clinical and environmental processes. Wastewater treatment plants operate as nexuses of bacterial interaction and are known hot spots for genetic exchange between bacteria, including antibiotic resistance genes. We isolated and sequenced 100 drug-resistant bacteria from five wastewater treatment plants in California's Central Valley, characterizing widespread gene sharing between pathogens and nonpathogens. We identified a novel, multiresistant Bacillus carrying anthrax-like plasmids. This empirical study supports the likelihood of evolutionary and population processes in the broader environment affecting the prevalence of clinical drug-resistant infections and identifies several taxa that may operate as reservoirs and vectors of antibiotic resistance genes.
Collapse
Affiliation(s)
- Mo Kaze
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| | | | - Mark Sistrom
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| |
Collapse
|
45
|
Xu Y, Li H, Shao Z, Li X, Zheng X, Xu J. Fate of antibiotic resistance genes in farmland soil applied with three different fertilizers during the growth cycle of pakchoi and after harvesting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112576. [PMID: 33865023 DOI: 10.1016/j.jenvman.2021.112576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) in the soil environment poses a serious threat to crop safety and even public health. In this study, the fate of ARGs in the soil was investigated during the growth period of pakchoi and after harvesting with the application of different kinds of fertilizers. The result showed that increasing rate of soil ARGs during the growth period of pakchoi followed the order of composted manure > commercial fertilizer > mineral fertilizer. After harvesting, soil ARGs abundance treated with mineral fertilizer, commercial fertilizer or composted manure significantly increased by 0.63, 3.19 and 8.65 times (p < 0.05), respectively, compared with the non-fertilized soil. The ARGs abundance in the pakchoi treated with composted manure was significantly higher than that of treatments with mineral fertilizer and commercial organic fertilizer. These findings indicated the application of composted pig manure would significantly increase the pollution load of ARGs in farmland soil and plant, and also promote the proliferation of farmland ARGs. Principal component analysis suggested that bacterial communities might have a significant influence on ARGs changes during the growth period of pakchoi. Network analysis further indicated ARGs changes may be mainly related to their host bacteria (including Gammaproteobacteria, Flavobacteriia and Bacilli). The results provided a proper method and useful information on reducing transmission risk of ARGs and control the propagation of ARGs in agricultural activities.
Collapse
Affiliation(s)
- Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhenlu Shao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
46
|
Wind L, Krometis LA, Hession WC, Pruden A. Cross-comparison of methods for quantifying antibiotic resistance in agricultural soils amended with dairy manure and compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144321. [PMID: 33477102 DOI: 10.1016/j.scitotenv.2020.144321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Agricultural soils are often amended with livestock manure, making them a key reservoir of antibiotic resistance genes (ARGs). Given that soils are among the most microbially-diverse environments on the planet; effective characterization and quantification of the effects of manure-derived amendments on soil resistomes is a major challenge. This study examined the effects of dairy manure-derived amendments on agricultural soils via two strategies: quantification of anthropogenic ARG markers via qPCR and shotgun metagenomic resistome profiling; and these strategies were compared to a previously published antibiotic resistant fecal coliform dataset. Soil samples were collected throughout a 120 day complete block field experiment to compare the effects of amendment type on antibiotic resistance. Results of all three measurements were consistent with the hypothesis that the application of composted manure reduced antibiotic resistance in soil relative to the application of raw manure, although some differences were noted in comparing the patterns of the three measurements with time. Raw dairy manure-amended soils yielded high sul1 and tet(W) relative abundances on Day 0 (following amendment application), but significantly decreased to background levels by Day 67 (harvest) and Day 120 (study completion). Shotgun metagenomics similarly detected a decrease in the relative abundances of sulfonamide and tetracycline-associated ARGs over time in the raw manure- and compost-amended soils; however, these levels were significantly lower than those estimated by qPCR. Interestingly, although patterns of sulfonamide and tetracycline resistance among culturable fecal coliforms echoed those observed via qPCR and metagenomics; erythromycin resistant coliforms were directly recovered by culture in amended soils, but corresponding ARGs were not detected by qPCR or metagenomics. This study supports both composting and time restrictions as means of reducing the potential for antibiotic resistance in manure to spread via soil application. Results suggest some differences in finer conclusions drawn depending on which antibiotic resistance monitoring target is selected.
Collapse
Affiliation(s)
- Lauren Wind
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA.
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA
| | - W Cully Hession
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, 1145 Perry St, Durham Hall RM 403, Blacksburg, VA 24061, USA
| |
Collapse
|
47
|
Liu W, Ling N, Guo J, Ruan Y, Wang M, Shen Q, Guo S. Dynamics of the antibiotic resistome in agricultural soils amended with different sources of animal manures over three consecutive years. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123399. [PMID: 32763695 DOI: 10.1016/j.jhazmat.2020.123399] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
The application of animal manure is generally considered an important transmission pathway for antibiotic resistance genes (ARGs) in soil. Nevertheless, the fate of ARGs in soil where manure from different sources has been repeatedly implemented is not fully understood. Thus, the succession of ARGs and bacterial communities following the repeated application of three types of animal manures (pig, chicken, and cow manure) to agricultural soil were investigated using Illumina sequencing analysis and high-throughput qPCR. Results showed that manure application remarkably increased the abundance of soil ARGs by increasing the enrichment of indigenous ARGs and introducing extrinsic ARGs. There were no prominent differences in the abundance or diversity of ARGs among the three different manured soils. The abundance and diversity of ARGs in manured soils increased over three consecutive years. Additionally, the abundance of mobile gene elements (MGEs) and bacteria were positively correlated with ARGs, while the changes in the ARG profiles were dramatically associated with the MGEs and bacterial communities. These findings imply that repeated manure application may facilitate to the accumulation and persistence of the soil resistome by regulation of the bacterial community and horizontal gene transfer, providing better insights into the temporal dynamics of soil ARGs in agro-ecosystems.
Collapse
Affiliation(s)
- Wenbo Liu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junjie Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Ruan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
48
|
Molavi F, Ehrampoush MH, Ebrahimi AA, Nabi-Meibodi M, Mokhtari M. Evaluating changes in microbial population and earthworms weight during vermicomposting of cow manure containing co-trimoxazole. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:403-412. [PMID: 33312569 PMCID: PMC7721917 DOI: 10.1007/s40201-019-00404-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/24/2019] [Indexed: 06/12/2023]
Abstract
BACKGROUND Transmission of pathogens such as fecal coliforms is regarded as a significant concern about using livestock manure in agricultural applications. PURPOSE The aim of this study was to evaluate the effects of vermicomposting on fecal coliforms in cow manure containing co-trimoxazole as a widely used drug for cow diseases in animal husbandry. METHODS Adaptation process of earthworms was carried out in two phases for 6 weeks; then, the main process was fulfilled in 9 weeks. The final weight of cow manure per reactor was 3.5 kg. 120 g of earthworms added to each reactor (approximately 280-300 numbers in the reactor). Co-trimoxazole was also prepared with a purity of 99% from Pakdarou Co., Iran, and added to the reactors at concentrations of 10, 20, 50, and100mg/kg. Organic carbon, total Kjeldahl nitrogen (TKN), carbon-to-nitrogen (C:N) ratio, as well as phosphorus content of the reactors were measured. Fecal coliforms and parasite eggs were counted using standard laboratory methods (i.e. the Iranian Compost Standard) for 8 weeks. RESULTS The results revealed a decrease in organic carbon, C:N ratio, and co-trimoxazole content but a rising trend in TKN and phosphorus levels. The weight of earthworms also increased at the end of the process in all reactors, except for one case. A significant reduction was observed in fecal coliforms and parasite eggs at the end of the vermicomposting. CONCLUSIONS According to the results, earthworms could be active in cow manure vermicomposting including 10-100 mg/kg concentration of co-trimoxazole antibiotic. The vermicomposting seems to be an effective method for reducing fecal coliforms and parasites in cow manure. As well, co-trimoxazole in common concentration could not have any effects on the ability of earthworms. At the end of the vermicomposting, all parameters were placed within the ICS (National) - Grade 1.
Collapse
Affiliation(s)
- Fereshteh Molavi
- Environmental Science and Technology Research Center, Department of Waste Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160 Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Waste Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160 Iran
| | - Ali Asghar Ebrahimi
- Environmental Science and Technology Research Center, Department of Waste Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160 Iran
| | - Mohsen Nabi-Meibodi
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Waste Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160 Iran
| |
Collapse
|
49
|
Zhang L, Li C, Zhai Y, Feng L, Bai K, Zhang Z, Huang Y, Li T, Li D, Li H, Cui P, Chen D, Wang H, Yang X. Analysis of the vaginal microbiome of giant pandas using metagenomics sequencing. Microbiologyopen 2020; 9:e1131. [PMID: 33205903 PMCID: PMC7755806 DOI: 10.1002/mbo3.1131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
In this study, a total of 14 vaginal samples (GPV1‐14) from giant pandas were analyzed. These vaginal samples were divided into two groups as per the region and age of giant pandas. All the vaginal samples were analyzed using metagenomic sequencing. As per the outcomes of metagenomic analysis, Proteobacteria (39.04%), Firmicutes (5.27%), Actinobacteria (2.94%), and Basidiomycota (2.77%) were found to be the dominant phyla in the microbiome of the vaginal samples. At the genus level, Pseudomonas (21.90%) was found to be the most dominant genus, followed by Streptococcus (3.47%), Psychrobacter (1.89%), and Proteus (1.38%). Metastats analysis of the microbial species in the vaginal samples of giant pandas from Wolong Nature Reserve, Dujiangyan and Ningbo Youngor Zoo, and Ya'an Bifengxia Nature Reserve was found to be significantly different (p < 0.05). Age groups, that is, AGE1 (5‐10 years old) and AGE2 (11‐16 years old), also demonstrated significantly different inter‐group microbial species (p < 0.05). For the first time, Chlamydia and Neisseria gonorrhoeae were detected in giant pandas’ reproductive tract. GPV3 vaginal sample (2.63%) showed highest Chlamydia content followed by GPV14 (0.91%), and GPV7 (0.62%). GPV5 vaginal sample (7.17%) showed the highest Neisseria gonorrhoeae content, followed by GPV14 (7.02%), and GPV8 (6.50%). Furthermore, we employed eggNOG, CAZy, KEGG, and NCBI databases to investigate the functional significance of giant panda's vaginal microbial community. The outcomes indicated that giant panda's vaginal microbes were involved in biological processes. The data from this study will help in improving the reproductive health of giant pandas.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Caiwu Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Yaru Zhai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Lan Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Keke Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Zhizhong Zhang
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Ti Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Desheng Li
- China Conservation and Research Center for the Giant Panda, Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, PR China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Pengfei Cui
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Danyu Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| |
Collapse
|
50
|
Wang P, Qiao Z, Li X, Wu D, Xie B. Fate of integrons, antibiotic resistance genes and associated microbial community in food waste and its large-scale biotreatment systems. ENVIRONMENT INTERNATIONAL 2020; 144:106013. [PMID: 32771831 DOI: 10.1016/j.envint.2020.106013] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The prevalence and dissemination of antibiotic resistance genes (ARGs) have been globally gained increasing concerns. However, the fate and spread of ARGs in food waste (FW) and its large-scale biotreatment systems are seldomly understood. Here, we investigated the initial and biologically treated FW in two major FW treatment systems of aerobic fermentation (AF) and anaerobic co-digestion (AcoD) processes. The total relative abundances of integrons and ARGs significantly increased from initial FW to treated FW. Among targeted ARGs, ermB and strB were predominant ARGs, which accounted for 52.58-95.28% of total abundance across all samples. Mantel test indicated that integrons (intl1 and intl2) were positively and significantly correlated with detected ARGs (Mantel test, r = 0.24, p < 0.05), suggesting integrons display significant contributions on driving ARG alteration during FW treatment processes. RDA results indicated that blaOXA, strB and blaTEM were more likely to be proliferated by potential host of Firmicutes (96.55-99.77%) in initial FW, while blaCTX-M and mefA were potentially enriched by Proteobacteria (17.12-49.82%) in AF system and ermB, sul1, aadA and tetQ were possibly enhanced by Bacteroidetes (27.43-43.71%) in AcoD system. Consideration of the higher enriched abundance of total ARGs (66.88 ± 87.34 times) and the used inoculum sludge in AcoD-treated system, the resource utilization of anaerobically digested products should draw our more attentions. These findings would deepen our understanding of prevalence and proliferation of ARGs in FW treatment systems and serve as a foundation for guiding the application of biologically treated FW.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ziru Qiao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|