1
|
Xing WY, Liu FH, Wang DD, Liu JM, Zheng WR, Liu JX, Wu L, Zhao YY, Xu HL, Li YZ, Wei YF, Huang DH, Li XY, Gao S, Ma QP, Gong TT, Wu QJ. Association between plasma perfluoroalkyl substances and high-grade serous ovarian cancer overall survival: A nested case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117825. [PMID: 39884014 DOI: 10.1016/j.ecoenv.2025.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Although evidence suggests that perfluoroalkyl and polyfluoroalkyl substances (PFASs) are positively correlated to several disease risks, no studies have proven if plasma PFASs are related to ovarian cancer survival. OBJECTIVE To explore the association between plasma PFASs and high-grade serous ovarian cancer (HGSOC) overall survival (OS) in the population who did not smoke. METHODS We conducted a nested case-control study within the Ovarian Cancer Follow-Up Study, matching 159 dead patients and 159 survival ones based on body mass index, sample date, and age at diagnosis. Nine plasma PFASs were extracted by solid phase extraction and measured using a liquid chromatography system coupled with tandem mass spectrometry. Baseline plasma concentrations of perfluorinated carboxylic acids (PFCAs) [perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroheptanoic acid (PFHpA)] and perfluorinated sulfonic acids (PFSAs) [perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)] were calculated. Odds ratios (ORs) and corresponding 95 % confidence intervals (CIs) were calculated via conditional logistic regression models. To elucidate the combined effects, Bayesian kernel machine (BKMR), and regression quantile g-computation (QGC) models were utilized. RESULT In full-adjusted model, significant differences were observed between HGSOC survival and perfluorobutane sulfonic acid, PFHpA, PFHxS, PFOS, PFCA, and PFSA. ORs and 95 %CIs were 2.74 (1.41-5.31), 1.97 (1.03-3.76), 2.13 (1.15-3.95), 2.28 (1.16-4.47), 3.74 (1.78-7.85), and 2.56 (1.31-5.01), respectively for the highest tertile compared with the lowest tertile. The QGC and BKMR models indicated that elevated concentrations of PFAS mixtures were associated with poor OS in HGSOC. CONCLUSIONS Both individual and mixed plasma PFASs may relate to poor OS of HGSOC. Further research is necessary to establish causality, and it is recommended to reinforce environmental risk mitigation strategies to minimize PFAS exposure.
Collapse
Affiliation(s)
- Wei-Yi Xing
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Dong Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Ming Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wen-Rui Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Xin Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yue-Yang Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Peng Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
2
|
Andrews DQ, Stoiber T, Temkin AM, Naidenko OV. Discussion. Has the human population become a sentinel for the adverse effects of PFAS contamination on wildlife health and endangered species? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165939. [PMID: 37769722 DOI: 10.1016/j.scitotenv.2023.165939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 10/03/2023]
Abstract
Global contamination with per- and polyfluoroalkyl substances (PFAS) poses a threat to both human health and the environment, with significant implications for ecological conservation policies. A growing list of peer-reviewed publications indicates that PFAS can harm wildlife health and that the adverse effects associated with PFAS exposure in wildlife are in concordance with human epidemiological studies. The correlation of cross-species data supports a unique perspective that humans can be regarded as a sentinel for PFAS effects in other species. The health harms due to PFAS are potentially most concerning for populations of endangered and threatened species that are simultaneously exposed to PFAS and other toxic pollutants, and also face threats to their survival due to habitat loss, degradation of ecosystems, and over-harvesting. Human epidemiological studies on the PFAS doses associated with health harm present a rich source of information about potential impacts on wildlife health due to PFAS. Our analysis suggests that national and international efforts to restrict the discharges of PFAS into the environment and to clean up PFAS-contaminated sites present an opportunity to protect wildlife from chemical pollution and to advance species conservation worldwide.
Collapse
Affiliation(s)
- David Q Andrews
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America.
| | - Tasha Stoiber
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America
| | - Alexis M Temkin
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America
| | - Olga V Naidenko
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America
| |
Collapse
|
3
|
Lukić Bilela L, Matijošytė I, Krutkevičius J, Alexandrino DAM, Safarik I, Burlakovs J, Gaudêncio SP, Carvalho MF. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: Raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. MARINE POLLUTION BULLETIN 2023; 194:115309. [PMID: 37591052 DOI: 10.1016/j.marpolbul.2023.115309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Collapse
Affiliation(s)
- Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Inga Matijošytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Jokūbas Krutkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Diogo A M Alexandrino
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Józefa Wybickiego 7 A, 31-261 Kraków, Poland.
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA Faculty for Sciences and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| | - Maria F Carvalho
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Xia Z, Idowu I, Halldorson T, Lucas AM, Stein C, Kaur M, Tomy T, Marvin C, Thomas PJ, Hebert CE, Smith RA, Dwyer-Samuel F, Provencher JF, Tomy GT. Microbead beating extraction of avian eggs for polycyclic aromatic compounds. CHEMOSPHERE 2023; 335:139059. [PMID: 37268236 DOI: 10.1016/j.chemosphere.2023.139059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Due to their relatively high trophic position and importance as a food source for many communities in the circumpolar north, seabird eggs are an important matrix for monitoring contaminant levels. In fact, many countries, including Canada, have established long-term seabird egg contaminant monitoring programs, with oil related compounds a contaminant of emerging concern for seabirds in several regions. Current approaches to measuring many contaminant burdens in seabird eggs are time-consuming and often require large volumes of solvent. Here we propose an alternative approach, based on the principle of microbead beating tissue extraction using custom designed stainless-steel extraction tubes and lids, to measure a suite of 75 polycyclic aromatic compounds (polycyclic aromatic hydrocarbons (PAHs), alkyl-PAHs, halogenated-PAHs and some heterocyclic compounds) comprising a wide-range of chemical properties. Our method was conducted in strict accordance with ISO/IEC 17025 guidelines for method validation. Accuracies for our analytes generally ranged from 70 to 120%, and intra and inter-day repeatability for most analytes were <30%. Limits of detection/quantitation for the 75 target analytes were <0.2/0.6 ng g-1. The level of contamination in our method blanks was significantly smaller in our stainless-steel tubes/lids relative to commercially available high-density plastic alternatives. Overall, our method meets our data quality objectives and results in a notable reduction in sample processing times relative to current approaches.
Collapse
Affiliation(s)
- Zhe Xia
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2.
| | - Ifeoluwa Idowu
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Thor Halldorson
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Amica-Mariae Lucas
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Claire Stein
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Manpreet Kaur
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Thane Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Chris Marvin
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, Canada, L7S 1A1
| | - Philippe J Thomas
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Craig E Hebert
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Reyd A Smith
- Carleton University, Department of Biology, Ottawa, ON, Canada K1S 5B6
| | | | - Jennifer F Provencher
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Gregg T Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|
5
|
Ye MX, Luo XJ, Liu Y, Zhu CH, Feng QJ, Zeng YH, Mai BX. Sex-Specific Bioaccumulation, Maternal Transfer, and Tissue Distribution of Legacy and Emerging Per- and Polyfluoroalkyl Substances in Snakes ( Enhydris chinensis) and the Impact of Pregnancy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4481-4491. [PMID: 36881938 DOI: 10.1021/acs.est.2c09063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The effects of sex and pregnancy on the bioaccumulation and tissue distribution of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Chinese water snakes were investigated. The bioaccumulation factor of PFASs showed a positive correlation with their protein-water partition coefficients (log KPW), and steric hindrance effects were observed when the molecular volume was > 357 Å3. PFAS levels in females were significantly lower than those in males. The chemical composition of pregnant females was significantly different from that of non-pregnant females and males. The maternal transfer efficiencies of perfluorooctane sulfonic acid were higher than those of other PFASs, and a positive correlation between the maternal transfer potential and log KPW was observed for other PFASs. Tissues with high phospholipid content exhibited higher concentrations of ∑PFASs. Numerous physiological changes occurred in maternal organ systems during pregnancy, leading to the re-distribution of chemicals among different tissues. The change in tissue distribution of PFASs that are easily and not-so-easily maternally transferred was in the opposite direction. The extent of compound transfer from the liver to the egg determined tissue re-distribution during pregnancy.
Collapse
Affiliation(s)
- Mei-Xia Ye
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Chu-Hong Zhu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qun-Jie Feng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
6
|
Gui SY, Qiao JC, Xu KX, Li ZL, Chen YN, Wu KJ, Jiang ZX, Hu CY. Association between per- and polyfluoroalkyl substances exposure and risk of diabetes: a systematic review and meta-analysis. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:40-55. [PMID: 35970987 DOI: 10.1038/s41370-022-00464-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors and may contribute to the etiology of diabetes. OBJECTIVES This study aimed to systematically review the epidemiological evidence on the associations of PFAS with mortality and morbidity of diabetes and to quantitatively evaluate the summary effect estimates of the existing literature. METHODS We searched three electronic databases for epidemiological studies concerning PFAS and diabetes published before April 1, 2022. Summary odds ratio (OR), hazard ratio (HR), or β and their 95% confidence intervals (CIs) were respectively calculated to evaluate the association between PFAS and diabetes using random-effects model by the exposure type, and dose-response meta-analyses were also performed when possible. We also assessed the risk of bias of the studies included and the confidence in the body of evidence. RESULTS An initial literature search identified 1969 studies, of which 22 studies were eventually included. The meta-analyses indicated that the observed statistically significant PFAS-T2DM associations were consistent in cohort studies, while the associations were almost non-significant in case-control and cross-sectional studies. Dose-response meta-analysis showed a "parabolic-shaped" association between perfluorooctanoate acid (PFOA) exposure and T2DM risk. Available evidence was rated with "low" risk of bias, and the level of evidence for PFAS and incident T2DM was considered "moderate". CONCLUSIONS Our findings suggest that PFAS exposure may increase the risk of incident T2DM, and that PFOA may exert non-monotonic dose-response effect on T2DM risk. Considering the widespread exposure, persistence, and potential for adverse health effects of PFAS, further cohort studies with improvements in expanding the sample size, adjusting the covariates, and considering different types of PFAS exposure at various doses, are needed to elucidate the putative causal associations and potential mode of action of different PFAS on diabetes. IMPACT STATEMENT A growing body of evidence suggests that per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors and may contribute to the development of diabetes. However, epidemiological evidence on the associations of PFAS and diabetes is inconsistent. We performed this comprehensive systematic review and meta-analysis to quantitatively synthesize the evidence. The findings of this study suggest that exposure to PFAS may increase diabetes risk among the general population. Reduced exposure to these "forever and everywhere chemicals" may be an important preventative approach to reducing the risk of diabetes across the population.
Collapse
Affiliation(s)
- Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ke-Xin Xu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ze-Lian Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Yue-Nan Chen
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ke-Jia Wu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
7
|
Ciesielski TM, Sonne C, Smette EI, Villanger GD, Styrishave B, Letcher RJ, Hitchcock DJ, Dietz R, Jenssen BM. Testosterone and persistent organic pollutants in east Greenland male polar bears (Ursus maritimus). Heliyon 2023; 9:e13263. [PMID: 37101474 PMCID: PMC10123070 DOI: 10.1016/j.heliyon.2023.e13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) are chemicals that undergo long-range transport to the Arctic. These chemicals possess endocrine disruptive properties raising concerns for development and reproduction. Here, we report the relationship between concentrations of testosterone (T) and persistent organic pollutant (POPs) in 40 East Greenland male polar bears (Ursus maritimus) sampled during January to September 1999-2001. The mean ± standard concentrations of blood T were 0.31 ± 0.49 (mean ± SD) ng/mL in juveniles/subadults (n = 22) and 3.58 ± 7.45 ng/mL in adults (n = 18). The ∑POP concentrations (mean ± SD) in adipose tissue were 8139 ± 2990 ng/g lipid weight (lw) in juveniles/subadults and 11,037 ± 3950 ng/g lw in adult males, respectively, of which Σpolychlorinated biphenyls (ΣPCBs) were found in highest concentrations. The variation in T concentrations explained by sampling date (season), biometrics and adipose tissue POP concentrations was explored using redundancy analysis (RDA). The results showed that age, body length, and adipose lipid content in adult males contributed (p = 0.02) to the variation in POP concentrations. However, although some significant relationships between individual organochlorine contaminants and T concentrations in both juveniles/subadults and adult polar bears were identified, no significant relationships (p = 0.32) between T and POP concentrations were identified by the RDAs. Our results suggest that confounders such as biometrics and reproductive status may mask the endocrine disruptive effects that POPs have on blood T levels in male polar bears, demonstrating why it can be difficult to detect effects on wildlife populations.
Collapse
Affiliation(s)
- Tomasz M. Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Corresponding author.
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
- Corresponding author.
| | - Eli I. Smette
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Gro Dehli Villanger
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Mental and Physical Health, Department of Child Health and Development, Norwegian Institute of Public Health, PO Box 222 Skoyen, NO-0213 Oslo, Norway
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Robert J. Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjørn M. Jenssen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
- Department of Arctic Technology, The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| |
Collapse
|
8
|
Li J, Yang L, He G, Wang B, Miao M, Ji H, Wen S, Cao W, Yuan W, Liang H. Association between prenatal exposure to perfluoroalkyl substances and anogenital distance in female neonates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114130. [PMID: 36182800 DOI: 10.1016/j.ecoenv.2022.114130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) have been reported to exert reproductive toxicity. Anogenital distance (AGD) is a biomarker of intrauterine androgen exposure and an indicator of genital development. An animal study reported that female neonatal rats exposed to perfluorooctanoic acid or perfluorooctane sulfonate (PFOS) during postnatal days 1-5 exhibited a longer AGD, while epidemiological studies have shown inconsistent results. This study aimed to examine the effects of prenatal exposure to PFASs on the AGD in female neonates. METHODS PFAS levels were measured in plasma samples obtained from pregnant women at 12-16 gestational weeks using high-performance liquid chromatography/mass spectrometry. The AGD of each female neonate was measured within 3 days after delivery. The anogenital index (AGI), calculated as AGD divided by weight, was also determined. A total of 362 motherinfant pairs were included in this study. A multivariate linear regression model was used to examine the association between prenatal ln-transformed concentrations of PFASs and AGD/AGI. In addition, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) models were used to assess the overall effects of a mixture of PFASs on the AGD/AGI and to identify important contributors to the overall effect. RESULTS There was a consistent pattern of association between maternal PFAS concentrations and increased AGDanus to posterior fourchette (AF), AGDanus to clitoris (AC), and AGIAF lengths at birth. Statistical significance was found between maternal ln-transformed concentrations of perfluorohexane sulfonate (PFHxS), perfluorododecanoic acid, and perfluorotridecanoic acid and AGDAF, with β values (95% confidence interval [CI]) of 0.83 (0.16, 1.51), 0.32 (0.05, 0.59), and 0.25 (0.00, 0.51) mm, respectively; between PFOS and AGDAC, with a β value (95% CI) of 0.63 (0.04, 1.21) mm; and between PFHxS and AGIAF, with a β value (95% CI) of 0.22 (0.02, 0.43) mm/kg. Similarly, the WQSR and BKMR models showed that an increase in the AGDAF/AGIAF at birth was associated with co-exposure to a mixture of PFASs. CONCLUSION High maternal concentrations of PFASs were associated with increased AGD in female neonates, indicating that PFASs may impair reproductive development in female offspring in early life.
Collapse
Affiliation(s)
- Jincan Li
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Limei Yang
- The First People's Hospital of Jiashan, Jiaxing Zhejiang Province 314199, China
| | - Gengsheng He
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Beijing 100081, China
| | - Maohua Miao
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Honglei Ji
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wencheng Cao
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wei Yuan
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Hong Liang
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China.
| |
Collapse
|
9
|
Viticoski RL, Wang D, Feltman MA, Mulabagal V, Rogers SR, Blersch DM, Hayworth JS. Spatial distribution and mass transport of Perfluoroalkyl Substances (PFAS) in surface water: A statewide evaluation of PFAS occurrence and fate in Alabama. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155524. [PMID: 35489494 DOI: 10.1016/j.scitotenv.2022.155524] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been previously detected near suspected sources in Alabama, but the overall extent of contamination across the state is unknown. This study evaluated the spatial distribution of 17 PFAS within the ten major river basins in Alabama and provided insights into their transport and fate through a mass flux analysis. Six PFAS were identified in 65 out of the 74 riverine samples, with mean ∑6PFAS levels of 35.2 ng L-1. The highest ∑6PFAS concentration of 237 ng L-1 was detected in the Coosa River, a transboundary river that receives discharges from multiple sources in Alabama and Georgia. PFAS distribution was not observed to be uniform across the state: while the Coosa, Alabama, and Chattahoochee rivers presented relatively high mean ∑6PFAS concentrations of 191, 100 and 28.8 ng L-1, respectively, PFAS were not detected in the Conecuh, Escatawpa, and Yellow rivers. Remaining river systems presented mean ∑6PFAS concentrations between 7.94 and 24.7 ng L-1. Although the short-chain perfluoropentanoic acid (PFPeA) was the most detected analyte (88%), perfluorobutanesulfonic acid (PFBS) was the substance with the highest individual concentration of 79.4 ng L-1. Consistent increases in the mass fluxes of PFAS were observed as the rivers flowed through Alabama, reaching up to 63.3 mg s-1, indicating the presence of numerous sources across the state. Most of the mass inputs would not have been captured if only aqueous concentrations were evaluated, since concentration is usually heavily impacted by environmental conditions. Results of this study demonstrate that mass flux is a simple and powerful complementary approach that can be used to broadly understand trends in the transport and fate of PFAS in large river systems.
Collapse
Affiliation(s)
- Roger L Viticoski
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States
| | - Danyang Wang
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States
| | - Meredith A Feltman
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States
| | - Vanisree Mulabagal
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States
| | - Stephanie R Rogers
- Department of Geosciences, Auburn University, Auburn, AL 36849, United States
| | - David M Blersch
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Joel S Hayworth
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
10
|
Choy ES, Elliott KH, Esparza I, Patterson A, Letcher RJ, Fernie KJ. Potential disruption of thyroid hormones by perfluoroalkyl acids in an Arctic seabird during reproduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119181. [PMID: 35378199 DOI: 10.1016/j.envpol.2022.119181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/12/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Arctic marine ecosystems are experiencing rapid change, such as ocean warming and enhanced pollutants. Perfluoroalkyl acids (PFAAs) arriving via long-range transport have been detected in Arctic wildlife, including seabirds which are considered sentinels of marine ecosystem health. There is evidence that PFAA exposure leads to the disruption of thyroid hormones (THs), such as thyroxine (T4) and triiodothyronine (T3), which play important roles in metabolism, incubation, and thermoregulation in seabirds. Here, we investigated relationships between PFAAs and THs [total T4 (TT4), free T4 (FT4), total T3 (TT3) and free T3 (FT3)] in blood plasma collected from 63 thick-billed murres (Uria lomvia) at a colony located in northern Hudson Bay (2016-2018). We then tested if PFAAs and TH levels were related to fitness-associated reproductive traits, such as body mass and hatch dates. PFUdA, PFOS, and PFTrDA were the dominant PFAAs in murre blood, accounting for approximately 77% of ∑PFAA. Females had higher PFAAs than males, possibly due to higher trophic feeding. While FT3 increased with PFOS, PFNA, PFDA, PFDoA, PFTeDA, ∑PFCA7, and ∑PFAA in murres, TT3 decreased with PFOS, PFDoA, and PFTeDA in males, but not females, suggesting thyroid disruption. TT3 increased with body mass, whereas several long-chain PFAAs were negatively correlated with body mass. Negative relationships between PFNA, PFDoA, PFTrDA, PFTeDA, and ∑PFAA with hatch dates may be the result of a disruption in incubation behaviour, resulting in earlier hatch dates. Consequently, TT3 concentrations were highest in males and females in 2018, a year in which PFAAs were lowest and hatch dates were delayed relative to 2017. As an Arctic seabird experiencing several indirect effects of climate change, the interaction of PFAAs on thyroid activity may cause additional stress to murres.
Collapse
Affiliation(s)
- Emily S Choy
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Ilse Esparza
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada
| | - Kim J Fernie
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada; Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada
| |
Collapse
|
11
|
Di Nisio A, Pannella M, Vogiatzis S, Sut S, Dall'Acqua S, Rocca MS, Antonini A, Porzionato A, De Caro R, Bortolozzi M, Toni LD, Foresta C. Impairment of human dopaminergic neurons at different developmental stages by perfluoro-octanoic acid (PFOA) and differential human brain areas accumulation of perfluoroalkyl chemicals. ENVIRONMENT INTERNATIONAL 2022; 158:106982. [PMID: 34781208 DOI: 10.1016/j.envint.2021.106982] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Perfluoroalkyl substances (PFASs) are synthetic chemicals widely used in industrial and consumer products. The environmental spreading of PFASs raises concerns for their impact on human health. In particular, the bioaccumulation in humans due to environmental exposure has been reported also in total brain samples and PFAS exposure has been associated with neurodevelopmental disorders. In this study we aimed to investigate the specific PFAS bioaccumulation in different brain areas. Our data reported major accumulation in the brainstem region, which is richly populated by dopaminergic neurons (DNs), in brain autopsy samples from people resident in a PFAS-polluted area of Italy. Since DNs are the main source of dopamine (DA) in the mammalian central nervous system (CNS), we evaluated the possible functional consequences of perfluoro-octanoic acid (PFOA) exposure in a human model of DNs obtained by differentiation of human induced pluripotent stem cells (hiPSCs). Particularly, we analyzed the specific effect of the exposure to PFOA for 24 h, at the concentration of 10 ng/ml, at 3 different steps of dopaminergic differentiation: the neuronal commitment phase (DP1), the neuronal precursor phase (DP2) and the mature dopaminergic differentiation phase (DP3). Interestingly, compared to untreated cells, exposure to PFOA was associated with a reduced expression of Tyrosine Hydroxylase (TH) and Neurofilament Heavy (NFH), both markers of dopaminergic maturation at DP2 phase. In addition, cells at DP3 phase exposed to PFOA showed a severe reduction in the expression of the Dopamine Transporter (DAT), functionally involved in pre-synaptic dopamine reuptake. In this proof-of-concept study we show a significant impact of PFOA exposure, mainly on the most sensitive stage of neural dopaminergic differentiation, prompting the way for further investigations more directly relevant to risk assessment of these chemicals.
Collapse
Affiliation(s)
| | | | - Stefania Vogiatzis
- Venetian Institute of Molecular Medicine - VIMM, Department of Physics and Astronomy, University of Padova, Italy
| | - Stefania Sut
- Department of Medicine, University of Padova, Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padova, Italy
| | | | | | - Mario Bortolozzi
- Venetian Institute of Molecular Medicine - VIMM, Department of Physics and Astronomy, University of Padova, Italy
| | - Luca De Toni
- Department of Medicine, University of Padova, Padova, Italy.
| | - Carlo Foresta
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Ding N, Karvonen-Gutierrez CA, Herman WH, Calafat AM, Mukherjee B, Park SK. Associations of perfluoroalkyl and polyfluoroalkyl substances (PFAS) and PFAS mixtures with adipokines in midlife women. Int J Hyg Environ Health 2021; 235:113777. [PMID: 34090141 DOI: 10.1016/j.ijheh.2021.113777] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) exposure have been associated with obesity and related comorbidities, possibly through disrupting signaling pathways of adipokines. Both leptin and adiponectin can modulate metabolic processes. However, the effects of PFAS on adipokines are not well understood. OBJECTIVE We determined if serum PFAS concentrations were associated with adipokine profiles in midlife women. METHODS We examined 1245 women aged 45-56 years from the Study of Women's Health Across the Nation. Concentrations of 11 PFAS were quantified in baseline serum samples collected in 1999-2000. Linear and branched perfluorooctane sulfonic acid isomers (n-PFOS and Sm-PFOS) and their sum (PFOS), linear perfluorooctanoic acid (n-PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), 2-(N-methyl-perfluorooctane sulfonamido) acetic acid (MeFOSAA), and 2-(N-ethyl-perfluorooctane sulfonamido) acetic acid (EtFOSAA) with detection frequencies >60% were included in the analysis. Adipokines including leptin, soluble leptin receptor (sOB-R), free leptin index (FLI, the ratio of leptin to sOB-R), total and high molecular weight (HMW) adiponectin were assessed in 2002-2003. We utilized multivariable linear regressions and Bayesian kernel machine regression (BKMR) to assess individual and overall joint effects of PFAS on adipokines with adjustment for age, race/ethnicity, study site, education, smoking status, physical activity, menopausal status, and waist circumference. RESULTS A doubling of PFAS concentrations was associated with 7.8% (95% CI: 2.5%, 13.4%) higher FLI for PFOS, 9.4% (95% CI: 3.7%, 15.3%) for n-PFOA, 5.5% (95% CI: 2.2%, 9.0%) for EtFOSAA and 7.4% (95% CI: 2.8%, 12.2%) for MeFOSAA. Similar associations were found for leptin. Only EtFOSAA was associated with lower sOB-R concentrations (-1.4%, 95% CI: -2.7%, -0.1%). Results remained in women with overweight or obesity but not those with normal weight or underweight. No statistically significant associations were observed with total or HMW adiponectin, except for PFNA with total and HMW adiponectin observed in women with normal weight or underweight. In BKMR analysis, women with PFAS concentrations at the median and the 90th percentile had 30.9% (95% CI: 15.6%, 48.3%) and 52.1% (95% CI: 27.9%, 81.0%) higher FLI, respectively, compared with those with concentrations fixed at the 10th percentile. CONCLUSION Some PFAS may alter circulating levels of leptin. Understanding associations between PFAS and adipokines may help elucidate whether PFAS can influence obesity and metabolic disease.
Collapse
Affiliation(s)
- Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - William H Herman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Wang Y, Aimuzi R, Nian M, Zhang Y, Luo K, Zhang J. Perfluoroalkyl substances and sex hormones in postmenopausal women: NHANES 2013-2016. ENVIRONMENT INTERNATIONAL 2021; 149:106408. [PMID: 33548847 DOI: 10.1016/j.envint.2021.106408] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Although an alteration in sex hormones has been linked to perfluoroalkyl substances (PFAS) in premenopausal women and girls, whether such associations exist in postmenopausal women remains uncertain. OBJECTS To examine the associations between serum PFAS concentrations and sex hormone levels in postmenopausal women. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) 2013-2016 waves were used. A total of 706 postmenopausal women with information on serum PFAS [perfluorohexane sulfonic acid (PFHxS), pefluorodecanoic acid (PFDA); perfluorononanoic acid (PFNA); linear perfluorooctanoate (n-PFOA); linear perfluorooctane sulfonate (n-PFOS); monomethyl branched isomers of PFOS (Sm-PFOS)], sex hormones indicators [e.g., total testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG)] as well as selected covariates were included. An indicator of circulating free testosterone (FT), and ratio of TT to E2 (TT/E2) were generated. Multiple linear regression accounting for the primary sampling unit, strata, and environmental sampling weights of PFAS was used for association analyses. Effect modification by obesity and type of menopause was explored via stratified analyses as well as the testing of interaction terms. Principal component analysis (PCA) and Bayesian kernel machine regression (BKMR) were conducted to assess these relationships in a multiple PFAS exposure setting. RESULTS After adjusting for potential confounders, total perfluorooctanoate (TPFOA: n-PFOA + Sb-PFOA) and total perfluorooctane sulfonate (TPFOS: n-PFOS + Sm-PFOS), and their linear and branched isomers were positively associated with two androgen indicators (i.e., TT and FT). PCA results revealed that the principal component (PC) composed of n-PFOA was positively associated with ln (TT) [β = 0.09, 95% confidential interval (CI): 0.02, 0.16; per ln-ng/mL increase in exposure], and ln (FT) (β = 0.12, 95% CI: 0.05, 0.2) in overweight/obese [body mass index (BMI) ≥ 25 kg/m2] women, but not in those with BMI < 25 kg/m2. Additionally, among overweight/obese women, PFHxS was positively associated with androgens and negatively with ln (SHBG) (β = -0.06, 95% CI: -0.12, -0.01). The PC composed of Sm-PFOS, n-PFOS, and PFHxS was positively associated with ln (TT) levels among overweight/obese women. Results from BKMR also confirmed the findings on n-PFOA and PFHxS. CONCLUSIONS Our study indicates that n-PFOA and PFHxS were positively associated with levels of several androgen indicators in postmenopausal women, particularly among overweight/obese ones. Given the higher risk of cardiometabolic diseases associated with elevated levels of androgens in postmenopausal women, future studies are needed to explore the potential underlying mechanisms.
Collapse
Affiliation(s)
- Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ruxianguli Aimuzi
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Averina M, Brox J, Huber S, Furberg AS. Exposure to perfluoroalkyl substances (PFAS) and dyslipidemia, hypertension and obesity in adolescents. The Fit Futures study. ENVIRONMENTAL RESEARCH 2021; 195:110740. [PMID: 33460636 DOI: 10.1016/j.envres.2021.110740] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Prevalence of obesity, hypertension and dyslipidemia has been increasing in children and adolescents worldwide. Exposure to environmental pollutants may contribute to this development. Our aim was to study associations between perfluoroalkyl substances (PFAS) and dyslipidemia, hypertension and obesity in a population-based sample of adolescents. METHODS Serum PFAS concentrations were measured in 940 adolescents, mean age 16.4 (SD 1.3) years, from the cross-sectional Fit Futures study by the UHPLC-MS/MS method. The following endpoints were used: hypertension (systolic blood pressure over 130 mmHg and/or diastolic blood pressure over 80 mmHg); obesity (body mass index over 2 z-score, WHO charts for adolescents); dyslipidemia (total cholesterol ≥ 5.17 mmol/L, and/or LDL-cholesterol ≥ 3.36 mmol/l, and/or apolipoprotein B ≥ 1.10 g/L). RESULTS Perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), perfluorodecanoate (PFDA) and perfluoroundecanoate (PFUnDA) serum concentrations were positively associated with apolipoprotein B, total- and LDL cholesterol. The highest vs. lowest quartiles of total PFAS (∑PFAS), PFNA and PFDA concentrations were positively associated with the risk of dyslipidemia: OR 2.24 (95% CI 1.10-4.54), OR 2.30 (95% CI 1.16-4.57) and 2.36 (95% CI 1.08-5.16), respectively. The highest vs. lowest quartiles of ∑PFAS, perfluorohexane sulfonate (PFHxS), PFOS, perfluorooctanoate (PFOA) concentrations were positively associated with the risk of hypertension: OR 1.91 (95% CI 1.12-3.26), OR 2.06 (95% CI 1.16-3.65), 1.86 (95% CI 1.08-3.19) and 2.08 (95% CI 1.17-3.69) respectively. PFHxS and perfluoroheptane sulfonate (PFHpS) concentrations were positively associated with obesity. CONCLUSIONS This cross-sectional study showed a possible link between several PFAS and dyslipidemia, hypertension and obesity in Norwegian adolescents.
Collapse
Affiliation(s)
- Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, 9038, Tromsø, Norway; Department of Community Medicine, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Jan Brox
- Department of Laboratory Medicine, University Hospital of North Norway, 9038, Tromsø, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, 9038, Tromsø, Norway
| | - Anne-Sofie Furberg
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Faculty of Health and Social Sciences, Molde University College, Molde, Norway
| |
Collapse
|
15
|
Bonato M, Corrà F, Bellio M, Guidolin L, Tallandini L, Irato P, Santovito G. PFAS Environmental Pollution and Antioxidant Responses: An Overview of the Impact on Human Field. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:8020. [PMID: 33143342 PMCID: PMC7663035 DOI: 10.3390/ijerph17218020] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
Due to their unique properties, perfluorinated substances (PFAS) are widely used in multiple industrial and commercial applications, but they are toxic for animals, humans included. This review presents some available data on the PFAS environmental distribution in the world, and in particular in Europe and in the Veneto region of Italy, where it has become a serious problem for human health. The consumption of contaminated food and drinking water is considered one of the major source of exposure for humans. Worldwide epidemiological studies report the negative effects that PFAS have on human health, due to environmental pollution, including infertility, steroid hormone perturbation, thyroid, liver and kidney disorders, and metabolic disfunctions. In vitro and in vivo researches correlated PFAS exposure to oxidative stress effects (in mammals as well as in other vertebrates of human interest), produced by a PFAS-induced increase of reactive oxygen species formation. The cellular antioxidant defense system is activated by PFAS, but it is only partially able to avoid the oxidative damage to biomolecules.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Irato
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| | - Gianfranco Santovito
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| |
Collapse
|
16
|
Ding N, Park SK. Perfluoroalkyl substances exposure and hearing impairment in US adults. ENVIRONMENTAL RESEARCH 2020; 187:109686. [PMID: 32474307 PMCID: PMC7331829 DOI: 10.1016/j.envres.2020.109686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are widely applied in consumer and industrial products such as nonstick cookware, waterproof clothing, food packaging materials, and fire-fighting foams. These "forever chemicals" are hypothesized to impact neurobehavioral functions. Yet no previous study has explored the role of PFAS on audiometrically determined hearing impairment (HI). OBJECTIVES To investigate the associations of serum concentrations of perfluoroalkyl substances with low-frequency HI (LFHI) and high-frequency HI (HFHI) in US adults. METHODS We evaluated the cross-sectional associations in 2371 adults aged 20-69 years who participated in the National Health and Nutrition Examination Survey (NHANES) 2003-2004, 2011-2012 and 2015-2016; and 449 adults aged ≥70 years from NHANES 2005-2006 and 2009-2010. Serum concentrations of perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), were measured using solid-phase extraction coupled to High Performance Liquid Chromatography-Turbo Ion Spray ionization-tandem Mass Spectrometry. LFHI was defined as a pure-tone average (PTA) of thresholds across 0.5-1-2 kHz >25 dB; HFHI defined as a PTA across 3-4-6 kHz >25 dB in the worse ear. Survey-weighted logistic regression models were used to compute odds ratios (ORs) and 95% confidence intervals (CIs) with adjustment for age, age-squared, sex, race/ethnicity, education, poverty-to-income ratio, body mass index, smoking status, exposures to occupational, recreational and firearm noises, and NHANES cycles. RESULTS There were no significant associations when perfluoroalkyl variables were fitted as a linear (log-transformed) term. However, statistically significant associations of HFHI with PFNA (OR = 1.70, 95% CI: 1.13-2.56) and PFDA (OR = 1.75, 95% CI: 1.00-3.05) were observed when comparing participants with serum concentrations ≥90th vs. <90th percentiles of PFNA (90th percentile = 1.8 ng/mL) and PFDA (90th percentile = 0.5 ng/mL), respectively, in adults aged 20-69 years. No significant associations were observed for other compounds in adults aged 20-69 years and for all compounds in adults ≥70 years. CONCLUSIONS Our study does not provide strong evidence to support the ototoxicity of PFAS exposure. Non-linear threshold dose-response associations between serum concentrations of PFNA and PFDA and HFHI need further investigation.
Collapse
Affiliation(s)
- Ning Ding
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Villanger GD, Kovacs KM, Lydersen C, Haug LS, Sabaredzovic A, Jenssen BM, Routti H. Perfluoroalkyl substances (PFASs) in white whales (Delphinapterus leucas) from Svalbard - A comparison of concentrations in plasma sampled 15 years apart. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114497. [PMID: 32302893 DOI: 10.1016/j.envpol.2020.114497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The objective of the present study was to investigate recent concentrations of perfluoroalkyl substances (PFASs) in white whales (Delphinapterus leucas) from Svalbard and compare them to concentrations found in white whales sampled from that same area 15 years ago. Plasma collected from live-captured white whales from two time periods (2013-2014, n = 9, and 1996-2001, n = 11) were analysed for 19 different PFASs. The 11 PFASs detected included seven C8-C14 perfluoroalkyl carboxylates (PFCAs) and three C6-C8 perfluoroalkyl sulfonates (PFSAs) as well as perfluorooctane sulfonamide (FOSA). Recent plasma concentrations (2013-2014) of the dominant PFAS in white whales, perfluorooctane sulfonate (PFOS; geometric mean = 22.8 ng/mL), was close to an order of magnitude lower than reported in polar bears (Ursus maritimus) from Svalbard. PFOS concentrations in white whales were about half the concentrations in harbour (Phoca vitulina) and ringed (Pusa hispida) seals, similar to hooded seals (Cystophora cristata) and higher than in walruses (Odobenus rosmarus) from that same area. From 1996 to 2001 to 2013-2014, plasma concentrations of PFOS decreased by 44%, whereas four C9-12 PFCAs and total PFCAs increased by 35-141%. These results follow a similar trend to what has been reported in other studies of Arctic marine mammals from Svalbard. The most dramatic change has been the decline of PFOS concentrations since 2000, corresponding to the production phase-out of PFOS and related compounds in many countries around the year 2000 and a global restriction on these substances in 2009. Still, the continued dominance of PFOS in white whales, and increasing concentration trends for several PFCAs, even though exposure is relatively low, calls for continued monitoring of concentrations of both PFCAs and PFSAs and investigation of biological effects.
Collapse
Affiliation(s)
- Gro D Villanger
- Norwegian Institute of Public Health, Oslo, Norway; Norwegian Polar Institute, Tromsø, Norway.
| | | | | | - Line S Haug
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
18
|
Zhang L, Meng Z, Chen L, Zhang G, Zhang W, Tian Z, Wang Z, Yu S, Zhou Z, Diao J. Perfluorooctanoic acid exposure impact a trade-off between self-maintenance and reproduction in lizards (Eremias argus) in a gender-dependent manner. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114341. [PMID: 32182535 DOI: 10.1016/j.envpol.2020.114341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
The trade-off between self-maintenance and reproduction has been explored wildly in reptiles. However, the effects of exogenous pollutants on the life history traits of reptiles have not been paid attention to. In the current study, lizards (Eremias argus), living in the soil polluted by perfluorooctanoic acid (PFOA) were selected as the main focus. Bodyweight, survival rate, clutch characteristics and biochemical analysis (immune response, lipid accumulation, sex steroid secretion, antioxidant level, and metabolomics) were investigated and the results revealed that lizards' life-history trade-offs are gender-dependent: females were more inclined to choose a "Conservative" life-history strategy. After 60 days of exposure to PFOA, larger body weight, higher survival rate, stronger immune response, and lighter egg mass in females suggested that their trade-offs are more biased towards self-maintenance. Whereas, the "Risk" strategy would more popular among males: reduced body weight and survival rate, and suffering from oxidative damage indicated that males made little investment in self-maintenance.
Collapse
Affiliation(s)
- Luyao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Guiting Zhang
- Department of Industrial Development, China Crop Protection Industry Association, Rm.918,Building 16, An Hui Li Forth Section, Chaoyang, Beijing, 100723, China
| | - Wenjun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhongnan Tian
- Institute for Environmental Reference Materials of Ministry of Ecology and Environment, Beijing,State Environmental Protection Key Laboratory of Environmental Pollutant Metrology and Reference Materials, Beijing, 100029, PR China
| | - Zikang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Simin Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Jinling Diao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
19
|
Routti H, Atwood TC, Bechshoft T, Boltunov A, Ciesielski TM, Desforges JP, Dietz R, Gabrielsen GW, Jenssen BM, Letcher RJ, McKinney MA, Morris AD, Rigét FF, Sonne C, Styrishave B, Tartu S. State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1063-1083. [PMID: 30901781 DOI: 10.1016/j.scitotenv.2019.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
The polar bear (Ursus maritimus) is among the Arctic species exposed to the highest concentrations of long-range transported bioaccumulative contaminants, such as halogenated organic compounds and mercury. Contaminant exposure is considered to be one of the largest threats to polar bears after the loss of their Arctic sea ice habitat due to climate change. The aim of this review is to provide a comprehensive summary of current exposure, fate, and potential health effects of contaminants in polar bears from the circumpolar Arctic required by the Circumpolar Action Plan for polar bear conservation. Overall results suggest that legacy persistent organic pollutants (POPs) including polychlorinated biphenyls, chlordanes and perfluorooctane sulfonic acid (PFOS), followed by other perfluoroalkyl compounds (e.g. carboxylic acids, PFCAs) and brominated flame retardants, are still the main compounds in polar bears. Concentrations of several legacy POPs that have been banned for decades in most parts of the world have generally declined in polar bears. Current spatial trends of contaminants vary widely between compounds and recent studies suggest increased concentrations of both POPs and PFCAs in certain subpopulations. Correlative field studies, supported by in vitro studies, suggest that contaminant exposure disrupts circulating levels of thyroid hormones and lipid metabolism, and alters neurochemistry in polar bears. Additionally, field and in vitro studies and risk assessments indicate the potential for adverse impacts to polar bear immune functions from exposure to certain contaminants.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Thea Bechshoft
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Andrei Boltunov
- Marine Mammal Research and Expedition Center, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Department of Arctic Technology, University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - Robert J Letcher
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Adam D Morris
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen OE, Denmark
| | - Sabrina Tartu
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
20
|
Donat-Vargas C, Bergdahl IA, Tornevi A, Wennberg M, Sommar J, Kiviranta H, Koponen J, Rolandsson O, Åkesson A. Perfluoroalkyl substances and risk of type II diabetes: A prospective nested case-control study. ENVIRONMENT INTERNATIONAL 2019; 123:390-398. [PMID: 30622063 DOI: 10.1016/j.envint.2018.12.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) have drawn much attention due to bioaccumulation potential and their current omnipresence in human blood. We assessed whether plasma PFAS, suspected to induce endocrine-disrupting effects, were prospectively associated with clinical type 2 diabetes (T2D) risk. METHODS We established a nested case-control study within the Swedish prospective population-based Västerbotten Intervention Programme cohort. Several PFAS were measured in plasma from a subset of 124 case-control pairs at baseline (during 1990-2003) and at 10-year follow-up. T2D cases were matched (1:1) according to gender, age and sample date with participants without T2D (controls). Conditional logistic regressions were used to prospectively assess risk of T2D by baseline PFAS plasma concentrations. Associations between long-term PFAS plasma levels (mean of baseline and follow-up) and insulin resistance (HOMA2-IR) and beta-cell function (HOMA2-B%) at follow-up were prospectively explored among 178 and 181 controls, respectively, by multivariable linear regressions. RESULTS After adjusting for gender, age, sample year, diet and body mass index, the odds ratio of T2D for the sum of PFAS (Σ z-score PFAS) was 0.52 (95% confidence interval, CI: 0.20, 1.36), comparing third with first tertile; and 0.92 (95% CI: 0.84, 1.00) per one standard deviation increment of sum of log-transformed PFAS. Among the controls, the adjusted β of HOMA2-IR and HOMA-B% for the sum of PFAS were -0.26 (95% CI: -0.52, -0.01) and -9.61 (95% CI: -22.60, 3.39) respectively comparing third with first tertile. CONCLUSIONS This prospective nested case-control study yielded overall inverse associations between individual PFAS and risk of T2D, although mostly non-significant. Among participants without T2D, long-term PFAS exposure was prospectively associated with lower insulin resistance.
Collapse
Affiliation(s)
- Carolina Donat-Vargas
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingvar A Bergdahl
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Andreas Tornevi
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Johan Sommar
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Hannu Kiviranta
- Department for Health Security, Environmental Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Jani Koponen
- Department for Health Security, Environmental Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Agneta Åkesson
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Averina M, Brox J, Huber S, Furberg AS. Perfluoroalkyl substances in adolescents in northern Norway: Lifestyle and dietary predictors. The Tromsø study, Fit Futures 1. ENVIRONMENT INTERNATIONAL 2018; 114:123-130. [PMID: 29500988 DOI: 10.1016/j.envint.2018.02.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/18/2018] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Perfluoroalkyl substances (PFASs) are environmentally persistent chemicals widely used in many consumer products due to water and oil proofing and fire-resistant properties. Several PFASs are recognized as environmental pollutants. This study investigated serum concentrations of 18 different PFASs and their associations with diet and lifestyle variables in 940 adolescents (age 15-19 years) who participated in the Fit Futures 1 study in the Troms arctic district of Norway. Serum concentrations of PFASs were analyzed by ultrahigh pressure liquid chromatography coupled to a triple quadrupole mass spectrometer (UHPLC-MS/MS). The most abundant PFASs in this population were perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) that were found in 99% of the participants. Perfluoroheptane sulfonate (PFHpS) was found in 98% of the participants. Median concentrations were: PFOS 6.20 ng/mL, PFOA 1.92 ng/mL, PFHxS 0.71 ng/mL, PFNA 0.50 ng/mL, PFDA 0.21 ng/mL and PFHpS 0.15 ng/mL. Median of PFASs sum concentration (∑PFAS) was 10.7 ng/mL, the concentration range was 2.6-200.8 ng/mL. Intake of fat fish, fish liver, seagull eggs, reindeer meat and drinks with sugar were the main dietary predictors of several PFASs. Intake of junk food (pizza, hamburger, sausages) was positively associated with PFNA, intake of canned food was positively associated with PFHxS. Intake of fruits and vegetables, milk products, snacks and candy was not associated with PFASs concentrations. Lean fish intake was positively associated with PFUnDA, but not with other PFASs. There was a positive association of ∑PFAS, PFHxS, PFOA, PFNA and PFDA with chewed tobacco use.
Collapse
Affiliation(s)
- Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø.
| | - Jan Brox
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Anne-Sofie Furberg
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø; Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
22
|
Tartu S, Aars J, Andersen M, Polder A, Bourgeon S, Merkel B, Lowther AD, Bytingsvik J, Welker JM, Derocher AE, Jenssen BM, Routti H. Choose Your Poison-Space-Use Strategy Influences Pollutant Exposure in Barents Sea Polar Bears. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3211-3221. [PMID: 29363970 DOI: 10.1021/acs.est.7b06137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Variation in space-use is common within mammal populations. In polar bears, Ursus maritimus, some individuals follow the sea ice (offshore bears) whereas others remain nearshore yearlong (coastal bears). We studied pollutant exposure in relation to space-use patterns (offshore vs coastal) in adult female polar bears from the Barents Sea equipped with satellite collars (2000-2014, n = 152). First, we examined the differences in home range (HR) size and position, body condition, and diet proxies (nitrogen and carbon stable isotopes, n = 116) between offshore and coastal space-use. Second, we investigated how HR, space-use, body condition, and diet were related to plasma concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) ( n = 113), perfluoroalkyl substances (PFASs; n = 92), and hydroxylated-PCBs ( n = 109). Offshore females were in better condition and had a more specialized diet than did coastal females. PCBs, OCPs, and hydroxylated-PCB concentrations were not related to space-use strategy, yet PCB concentrations increased with increasing latitude, and hydroxylated-PCB concentrations were positively related to HR size. PFAS concentrations were 30-35% higher in offshore bears compared to coastal bears and also increased eastward. On the basis of the results we conclude that space-use of Barents Sea female polar bears influences their pollutant exposure, in particular plasma concentrations of PFAS.
Collapse
Affiliation(s)
- Sabrina Tartu
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Jon Aars
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Magnus Andersen
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Anuschka Polder
- Norwegian University of Life Science , Campus Adamstua , Oslo NO-1432 , Norway
| | - Sophie Bourgeon
- UiT-The Arctic University of Norway , Department of Arctic and Marine Biology , Tromsø NO-9010 , Norway
| | - Benjamin Merkel
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Andrew D Lowther
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | | | - Jeffrey M Welker
- Department of Biological Sciences , University of Alaska-Anchorage , Anchorage , Alaska 99508 , United States
- Department of Arctic Technology , University Center in Svalbard , Longyearbyen, Svalbard NO-9171 , Norway
| | - Andrew E Derocher
- Department of Biological Sciences , University of Alberta , Edmonton T6G 2R3 , Canada
| | - Bjørn Munro Jenssen
- Department of Arctic Technology , University Center in Svalbard , Longyearbyen, Svalbard NO-9171 , Norway
- Department of Biology , Norwegian University of Science and Technology , Trondheim NO-7491 , Norway
| | - Heli Routti
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| |
Collapse
|
23
|
Tian H, Gu C. Effects of different factors on photodefluorination of perfluorinated compounds by hydrated electrons in organo-montmorillonite system. CHEMOSPHERE 2018; 191:280-287. [PMID: 29040942 DOI: 10.1016/j.chemosphere.2017.10.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/23/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
Perfluorinated compounds (PFCs) are considered as the most recalcitrant organic contaminants. Our previous research has shown that PFCs can be completely defluorinated in the UV/organoclay/3-indole acetic acid system, however, the factors that could affect the degradation of PFCs, are still not clear. In this study, we further investigated the effect of different indole derivatives and organo-modified montmorillonite on the degradation of perfluooctanoic acid (PFOA). Based on multiple linear regression analysis, our results clearly indicate that hydrated electron yields of indole derivatives, adsorption of PFOA and indole derivatives on organo-montmorillonite contributed independently to the degradation of PFOA. In addition, the results also show that the presence of humic substance (even at 10 mg C L-1) would not significantly suppress the degradation process due to the strong adsorption of humic substance on the organo-montmorillonite surface. This study would provide more information to design an efficient and environment-friendly system for degradation of PFCs, and this technique will have great potential for treatment of persistent contaminants under mild reaction conditions.
Collapse
Affiliation(s)
- Haoting Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Shandong Provincial Key Laboratory of Water and Soil Conservation & Environmental Protection, College of Resource and Environment, Linyi University, Linyi 276005, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
24
|
Sonne C, Letcher RJ, Jenssen BM, Desforges JP, Eulaers I, Andersen-Ranberg E, Gustavson K, Styrishave B, Dietz R. A veterinary perspective on One Health in the Arctic. Acta Vet Scand 2017; 59:84. [PMID: 29246165 PMCID: PMC5732494 DOI: 10.1186/s13028-017-0353-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/08/2017] [Indexed: 11/22/2022] Open
Abstract
Exposure to long-range transported industrial chemicals, climate change and diseases is posing a risk to the overall health and populations of Arctic wildlife. Since local communities are relying on the same marine food web as marine mammals in the Arctic, it requires a One Health approach to understand the holistic ecosystem health including that of humans. Here we collect and identify gaps in the current knowledge of health in the Arctic and present the veterinary perspective of One Health and ecosystem dynamics. The review shows that exposure to persistent organic pollutants (POPs) is having multiple organ-system effects across taxa, including impacts on neuroendocrine disruption, immune suppression and decreased bone density among others. Furthermore, the warming Arctic climate is suspected to influence abiotic and biotic long-range transport and exposure pathways of contaminants to the Arctic resulting in increases in POP exposure of both wildlife and human populations. Exposure to vector-borne diseases and zoonoses may increase as well through range expansion and introduction of invasive species. It will be important in the future to investigate the effects of these multiple stressors on wildlife and local people to better predict the individual-level health risks. It is within this framework that One Health approaches offer promising opportunities to survey and pinpoint environmental changes that have effects on wildlife and human health.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Robert James Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 Canada
| | - Bjørn Munro Jenssen
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Arctic Technology, The University Centre in Svalbard, PO Box 156, 9171 Longyearbyen, Norway
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Emilie Andersen-Ranberg
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Kim Gustavson
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| |
Collapse
|
25
|
Multiple-stressor effects in an apex predator: combined influence of pollutants and sea ice decline on lipid metabolism in polar bears. Sci Rep 2017; 7:16487. [PMID: 29184161 PMCID: PMC5705648 DOI: 10.1038/s41598-017-16820-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
There is growing evidence from experimental and human epidemiological studies that many pollutants can disrupt lipid metabolism. In Arctic wildlife, the occurrence of such compounds could have serious consequences for seasonal feeders. We set out to study whether organohalogenated compounds (OHCs) could cause disruption of energy metabolism in female polar bears (Ursus maritimus) from Svalbard, Norway (n = 112). We analyzed biomarkers of energy metabolism including the abundance profiles of nine lipid-related genes, fatty acid (FA) synthesis and elongation indices in adipose tissue, and concentrations of lipid-related variables in plasma (cholesterol, high-density lipoprotein, triglycerides). Furthermore, the plasma metabolome and lipidome were characterized by low molecular weight metabolites and lipid fingerprinting, respectively. Polychlorinated biphenyls, chlordanes, brominated diphenyl ethers and perfluoroalkyl substances were significantly related to biomarkers involved in lipid accumulation, FA metabolism, insulin utilization, and cholesterol homeostasis. Moreover, the effects of pollutants were measurable at the metabolome and lipidome levels. Our results indicate that several OHCs affect lipid biosynthesis and catabolism in female polar bears. Furthermore, these effects were more pronounced when combined with reduced sea ice extent and thickness, suggesting that climate-driven sea ice decline and OHCs have synergistic negative effects on polar bears.
Collapse
|
26
|
Routti H, Aars J, Fuglei E, Hanssen L, Lone K, Polder A, Pedersen ÅØ, Tartu S, Welker JM, Yoccoz NG. Emission Changes Dwarf the Influence of Feeding Habits on Temporal Trends of Per- and Polyfluoroalkyl Substances in Two Arctic Top Predators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11996-12006. [PMID: 28918622 DOI: 10.1021/acs.est.7b03585] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We monitored concentrations of per- and polyfluoroalkyl substances (PFASs) in relation to climate-associated changes in feeding habits and food availability in polar bears (Ursus maritimus) and arctic foxes (Vulpes lagopus) (192 plasma and 113 liver samples, respectively) sampled from Svalbard, Norway, during 1997-2014. PFASs concentrations became greater with increasing dietary trophic level, as bears and foxes consumed more marine as opposed to terrestrial food, and as the availability of sea ice habitat increased. Long-chained perfluoroalkyl carboxylates (PFCAs) in arctic foxes decreased with availability of reindeer carcasses. The ∼9-14% yearly decline of C6-8 perfluoroalkyl sulfonates (PFSAs) following the cease in C6-8 PFSA precursor production in 2001 indicates that the peak exposure was mainly a result of atmospheric transport of the volatile precursors. However, the stable PFSA concentrations since 2009-2010 suggest that Svalbard biota is still exposed to ocean-transported PFSAs. Long-chain ocean-transported PFCAs increased 2-4% per year and the increase in C12-14 PFCAs in polar bears tended to level off since ∼2009. Emerging short-chain PFASs showed no temporal changes. Climate-related changes in feeding habits and food availability moderately affected PFAS trends. Our results indicate that PFAS concentrations in polar bears and arctic foxes are mainly affected by emissions.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute , Fram Centre, Tromsø, Norway
| | - Jon Aars
- Norwegian Polar Institute , Fram Centre, Tromsø, Norway
| | - Eva Fuglei
- Norwegian Polar Institute , Fram Centre, Tromsø, Norway
| | - Linda Hanssen
- Norwegian Institute for Air Research , Fram Centre, Tromsø, Norway
| | - Karen Lone
- Norwegian Polar Institute , Fram Centre, Tromsø, Norway
| | - Anuschka Polder
- Norwegian University of Life Sciences , Campus Adamstua, Oslo, Norway
| | | | - Sabrina Tartu
- Norwegian Polar Institute , Fram Centre, Tromsø, Norway
| | - Jeffrey M Welker
- University of Alaska Anchorage , Department of Biological Sciences, Anchorage, Alaska 99508, United States
| | - Nigel G Yoccoz
- UiT-The Arctic University of Norway , Department of Arctic and Marine Biology, Tromsø, Norway
| |
Collapse
|
27
|
Cardenas A, Gold DR, Hauser R, Kleinman KP, Hivert MF, Calafat AM, Ye X, Webster TF, Horton ES, Oken E. Plasma Concentrations of Per- and Polyfluoroalkyl Substances at Baseline and Associations with Glycemic Indicators and Diabetes Incidence among High-Risk Adults in the Diabetes Prevention Program Trial. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:107001. [PMID: 28974480 PMCID: PMC5933403 DOI: 10.1289/ehp1612] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Several per- and polyfluoroalkyl substances (PFAS) are ubiquitous anthropogenic pollutants almost universally detected in humans. Experimental evidence indicates that PFAS alter glucose metabolism and insulin secretion. However, epidemiological studies have yielded inconsistent results. OBJECTIVE We sought to examine associations between plasma PFAS concentrations, glycemic indicators, and diabetes incidence among high-risk adults. METHODS Within the Diabetes Prevention Program (DPP), a trial for the prevention of type 2 diabetes among high-risk individuals, we quantified baseline plasma concentrations of nine PFAS among 957 participants randomized to a lifestyle intervention or placebo. We evaluated adjusted associations for plasma PFAS concentrations with diabetes incidence and key glycemic indicators measured at baseline and annually over up to 4.6 y. RESULTS Plasma PFAS concentrations were similar to those reported in the U.S. population in 1999-2000. At baseline, in cross-sectional analysis, a doubling in plasma perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) concentrations was associated with higher homeostatic model assessment of insulin resistance (HOMA-IR) [βPFOS=0.39; 95% confidence interval (CI): 0.13, 0.66; βPFOA=0.64; 95% CI: 0.34, 0.94], β-cell function (HOMA-β) (βPFOS=9.62; 95% CI: 1.55, 17.70; βPFOA=15.93; 95% CI: 6.78, 25.08), fasting proinsulin (βPFOS=1.37 pM; 95% CI: 0.50, 2.25; βPFOA=1.71 pM; 95% CI: 0.72, 2.71), and glycated hemoglobin (HbA1c) (βPFOS=0.03%; 95% CI: 0.002, 0.07; βPFOA=0.04%; 95% CI: 0.001, 0.07). There was no strong evidence of associations between plasma PFAS concentrations and diabetes incidence or prospective changes in glycemic indicators during the follow-up period. CONCLUSIONS At baseline, several PFAS were cross-sectionally associated with small differences in markers of insulin secretion and β-cell function. However, there was limited evidence suggesting that PFAS concentrations are associated with diabetes incidence or changes in glycemic indicators during the follow-up period. https://doi.org/10.1289/EHP1612.
Collapse
Affiliation(s)
- Andres Cardenas
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim HealthCare Institute , Boston, Massachusetts, USA
| | - Diane R Gold
- Channing Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ken P Kleinman
- Department of Biostatistics, School of Public Health and Human Sciences, University of Massachusetts Amherst , Amherst, Massachusetts, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim HealthCare Institute , Boston, Massachusetts, USA
- Diabetes Unit , Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia, USA
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health , Boston, Massachusetts, USA
| | - Edward S Horton
- Joslin Diabetes Center, Harvard Medical School , Boston, Massachusetts, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim HealthCare Institute , Boston, Massachusetts, USA
| |
Collapse
|
28
|
Tartu S, Bourgeon S, Aars J, Andersen M, Lone K, Jenssen BM, Polder A, Thiemann GW, Torget V, Welker JM, Routti H. Diet and metabolic state are the main factors determining concentrations of perfluoroalkyl substances in female polar bears from Svalbard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:146-158. [PMID: 28587979 DOI: 10.1016/j.envpol.2017.04.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/05/2017] [Accepted: 04/29/2017] [Indexed: 05/26/2023]
Abstract
Perfluoroalkyl substances (PFASs) have been detected in organisms worldwide, including Polar Regions. The polar bear (Ursus maritimus), the top predator of Arctic marine ecosystems, accumulates high concentrations of PFASs, which may be harmful to their health. The aim of this study was to investigate which factors (habitat quality, season, year, diet, metabolic state [i.e. feeding/fasting], breeding status and age) predict PFAS concentrations in female polar bears captured on Svalbard (Norway). We analysed two perfluoroalkyl sulfonates (PFSAs: PFHxS and PFOS) and C8-C13 perfluoroalkyl carboxylates (PFCAs) in 112 plasma samples obtained in April and September 2012-2013. Nitrogen and carbon stable isotope ratios (δ15N, δ13C) in red blood cells and plasma, and fatty acid profiles in adipose tissue were used as proxies for diet. We determined habitat quality based on movement patterns, capture position and resource selection functions, which are models that predict the probability of use of a resource unit. Plasma urea to creatinine ratios were used as proxies for metabolic state (i.e. feeding or fasting state). Results were obtained from a conditional model averaging of 42 general linear mixed models. Diet was the most important predictor of PFAS concentrations. PFAS concentrations were positively related to trophic level and marine diet input. High PFAS concentrations in females feeding on the eastern part of Svalbard, where the habitat quality was higher than on the western coast, were likely related to diet and possibly to abiotic factors. Concentrations of PFSAs and C8-C10 PFCAs were higher in fasting than in feeding polar bears and PFOS was higher in females with cubs of the year than in solitary females. Our findings suggest that female polar bears that are exposed to the highest levels of PFAS are those 1) feeding on high trophic level sea ice-associated prey, 2) fasting and 3) with small cubs.
Collapse
Affiliation(s)
- Sabrina Tartu
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway.
| | - Sophie Bourgeon
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway; UiT-The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | | | - Karen Lone
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - Bjørn Munro Jenssen
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Anuschka Polder
- Norwegian University of Life Science, Campus Adamstua, Oslo, Norway
| | | | - Vidar Torget
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Jeffrey M Welker
- University of Alaska Anchorage, Department of Biological Sciences, Anchorage, AK, USA; University Center in Svalbard, Longyearbyen, Svalbard, Norway
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| |
Collapse
|