1
|
Li Z, Jiang L, Yu H, Wang J. The hidden risk in high-temperature urban environments: assessment of metal elements and human health risks of particulate matter at street. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137475. [PMID: 39922074 DOI: 10.1016/j.jhazmat.2025.137475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
With the exacerbated urban heat island effect, urban populations are exposing to high temperatures and increased exposure to particulate matter (PM) during daily commutes (especially vulnerable groups). Under high-temperature urban environments, the traffic emissions and the individual respiratory rate would rise simultaneously, causing an elevated risk of air particulate exposure. Most previous studies on PM at bus stations have focused on concentration levels, while neglecting chemical analyses of metal elements or increased human respiratory intake in high-temperature environments. This study conducted PM sampling and physiological parameter measurements of waiting passengers under high temperature conditions at six distinct bus stations in Nanjing. The health risks associated with exposure to metallic elements were evaluated alongside the impact of elevated temperatures on human health, employing chemical analyses to substantiate these assessments. The results indicated that the average PM concentration at bus stations exceeded the urban background by approximately 15 μg/m³, while As, Cd, and Cr were identified as hazards posing significant health risks. Notably, under high-temperature conditions, the core body temperature of individuals reached 37.91 °C, with the health risk increasing by around 20-30 %. In view of the risk of human being exposed to high temperature environment, active and passive mitigation measures are proposed.
Collapse
Affiliation(s)
- Zixuan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lanfei Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hanhui Yu
- School of Architecture, Southeast University, Nanjing 210096, China; Jiangsu Province Engineering Research Center of Urban Heat and Pollution Control, Southeast University, Nanjing 210096, China
| | - Junqi Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; School of Architecture, Southeast University, Nanjing 210096, China; Jiangsu Province Engineering Research Center of Urban Heat and Pollution Control, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
Ndiaye A, Vienneau D, Flückiger B, Probst-Hensch N, Jeong A, Imboden M, Schmitz O, Lu M, Vermeulen R, Kyriakou K, Shen Y, Karssenberg D, de Hoogh K, Hoek G. Associations between long-term air pollution exposure and mortality and cardiovascular morbidity: A comparison of mobility-integrated and residential-only exposure assessment. ENVIRONMENT INTERNATIONAL 2025; 198:109387. [PMID: 40117687 DOI: 10.1016/j.envint.2025.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/07/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Epidemiological studies investigating the health effects of long-term air pollution exposure typically only consider the participants' residential addresses when determining exposure. Neglecting mobility may introduce measurement error, potentially leading to bias or reduced precision of exposure-health relationships in epidemiological studies. In this study we compared the exposure-health associations between residential-only and mobility-integrated air pollution exposures. We evaluated two major pollutants, NO2 and PM2.5, and four health outcomes, natural and cause-specific mortality and coronary and cerebrovascular events. Agent-based modeling (ABM) was used to simulate the mobility patterns of the participants in the EPIC-NL cohort in the Netherlands and the Swiss National Cohort (SNC) in Switzerland, based on travel survey information. To obtain mobility-integrated exposures, hourly air pollution surfaces were developed and overlaid with the time-dependent location data from the ABM. We used Cox proportional hazards models within each cohort separately to evaluate the association between residential-only and mobility-integrated exposure and mortality and cardiovascular events, adjusting for major individual and area-level covariates. The mobility-integrated exposure and the residential exposure showed very high correlations for both pollutants and cohorts (R2 > 0.97). The mean exposure was 1-2 % and the exposure contrast 10-20 % lower for the mobility-integrated exposure. For all health outcomes, both pollutants and both cohorts, there were only small differences between residential-only and mobility-integrated exposure effect estimates. For the SNC, Hazard ratios (HRs) for natural mortality were 1.04 (1.03 - 1.04) and 1.03 (1.03 - 1.04) per interquartile range (IQR) increase in NO2 for residential and mobility-integrated exposure, respectively. For PM2.5 the corresponding estimates were 1.01 (1.01 - 1.02) per IQR increase for both approaches. Our findings support the growing evidence that assessment of long-term air pollution exposure at the residential address only in epidemiological studies may not lead to substantial bias and loss of precision in health effects estimates.
Collapse
Affiliation(s)
- Aisha Ndiaye
- Institute of Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Oliver Schmitz
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Meng Lu
- Department of Geography, University of Bayreuth, Bayreuth, Germany
| | - Roel Vermeulen
- Institute of Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Kalliopi Kyriakou
- Institute of Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Youchen Shen
- Institute of Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Derek Karssenberg
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Gerard Hoek
- Institute of Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Bergmann ML, Taghavi Shahri SM, Tayebi S, Kerckhoffs J, Cole-Hunter T, Hoek G, Lim YH, Massling A, Vermeulen R, Loft S, Andersen ZJ, Amini H. Spatial and temporal variation of façade-level particle number concentrations using portable monitors in Copenhagen, Denmark. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125398. [PMID: 39603323 DOI: 10.1016/j.envpol.2024.125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/05/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Ultrafine particles (UFP), commonly expressed as particle number concentrations (PNC), have been associated with harm to human health yet are currently not regulated or routinely monitored in many places. This has limited the potential for studies of health effects of long-term exposure to UFP. The present study aims to understand the spatial and temporal variation in façade-level UFP exposures in Copenhagen, Denmark. We measured PNC at the façades of 27 residences across the city for approximately 72 h each in two campaigns and continuously at an urban background reference site for twelve consecutive months, using portable monitors (miniature diffusion size classifiers [DiSCminis]). We estimated annual means at the residential sites based on temporal adjustment using reference site data. Furthermore, we co-located the DiSCminis at a regulatory monitoring station on three occasions and compared daily means from our reference site to those from seven fixed-site monitoring stations throughout the city. Annual mean PNC at the reference site was 4715 (SD of hourly mean: 3001) pt/cm3, while annual means at 27 residences were slightly higher with a mean of 5201 pt/cm3 (SD: 807), ranging between 3735 and 6588 pt/cm3. The two individual adjusted campaign-specific means at 27 residential sites were weakly correlated (Spearman's correlation 0.11) and had an intra-class correlation coefficient of 0.06 (95%-confidence interval: -0.18, 0.28). Daily PNC at the reference site was highly correlated (R = 0.64-0.84) with PNC monitored at seven fixed-site stations throughout the city. We observed a seasonal trend at the reference site with the highest PNC in spring. Our measurement campaign revealed that façade-level PNC at residences in Copenhagen in 2021-2022 was relatively low with small spatial variability. The large variability in time suggests possibly longer and more frequent measurement campaigns to obtain more stable annual averages. Our study illustrates the challenges of UFP long-term exposure assessment.
Collapse
Affiliation(s)
- Marie L Bergmann
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | - Shali Tayebi
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Massling
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana J Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Heresh Amini
- Department of Environmental Medicine and Public Health, and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
4
|
Wood D, Evangelopoulos D, Kitwiroon N, Stewart G, Vu T, Smith J, Beevers S, Katsouyanni K. Personalised estimation of exposure to ambient air pollution and application in a longitudinal cohort analysis of cognitive function in London-dwelling older adults. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00745-7. [PMID: 39809977 DOI: 10.1038/s41370-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Accurate estimates of personal exposure to ambient air pollution are difficult to obtain and epidemiological studies generally rely on residence-based estimates, averaged spatially and temporally, derived from monitoring networks or models. Few epidemiological studies have compared the associated health effects of personal exposure and residence-based estimates. OBJECTIVE To evaluate the association between exposure to air pollution and cognitive function using exposure estimates taking mobility and location into account. METHODS Residence-based dispersion model estimates of ambient NO2, PM10 and PM2.5 were assigned to 768 London-dwelling participants of the English Longitudinal Study of Ageing. The London Hybrid Exposure Model was implemented to adjust estimates per pollutant to reflect the estimated time-activity patterns of each participant based on age and residential location. Single pollutant linear mixed-effects models were fit for both exposure assessment methods to investigate the associations between assigned pollutant concentrations and cognitive function over a follow-up period of up to 15 years. RESULTS Increased long-term exposures to residence-based ambient NO2 (IQR: 11.10 µg/m3), PM10 (2.35 µg/m3), and PM2.5 (2.50 µg/m3) were associated with decreases of -0.10 [95% CI: -0.20, 0.00], -0.07 [-0.11, -0.02] and -0.14 [-0.21, -0.06], respectively, in composite memory score. Similar decreases were observed for executive function scores (-0.38 [-0.58, -0.18], -0.11 [-0.20, -0.02] and -0.14 [-0.29, 0.01], respectively). When applying personalised exposure estimates, which were substantially lower, similar decreases were observed for composite memory score per IQR, but a consistent pattern of slightly more adverse effects with executive function score was evident. IMPACT STATEMENT The present study constructed a framework through which time-activity information derived from a representative sample could be applied to estimates of ambient air pollution concentrations assigned to individuals in epidemiological cohort studies, with the intention of adjusting commonly used residence-based estimates to reflect population mobility and time spent in various microenvironments. Estimates of exposure were markedly lower when incorporating time-activity, likely because people in European populations spend a large proportion of their time indoors, where their exposure to ambient air pollution may be reduced through infiltration, which is not taken into account in residence-based ambient estimates. Further work into such methods could provide insights into the efficacy of personalising exposure estimates.
Collapse
Affiliation(s)
- Dylan Wood
- Environmental Research Group, School of Public Health, Imperial College London, London, UK.
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK.
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK.
| | - Dimitris Evangelopoulos
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| | - Nutthida Kitwiroon
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| | - Gregor Stewart
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| | - Tuan Vu
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| | | | - Sean Beevers
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| | - Klea Katsouyanni
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Ramel-Delobel M, Heydari S, de Nazelle A, Praud D, Salizzoni P, Fervers B, Coudon T. Air pollution exposure in active versus passive travel modes across five continents: A Bayesian random-effects meta-analysis. ENVIRONMENTAL RESEARCH 2024; 261:119666. [PMID: 39074774 DOI: 10.1016/j.envres.2024.119666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/31/2024]
Abstract
Epidemiological studies on health effects of air pollution usually estimate exposure at the residential address. However, ignoring daily mobility patterns may lead to biased exposure estimates, as documented in previous exposure studies. To improve the reliable integration of exposure related to mobility patterns into epidemiological studies, we conducted a systematic review of studies across all continents that measured air pollution concentrations in various modes of transport using portable sensors. To compare personal exposure across different transport modes, specifically active versus motorized modes, we estimated pairwise exposure ratios using a Bayesian random-effects meta-analysis. Overall, we included measurements of six air pollutants (black carbon (BC), carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter (PM10, PM2.5) and ultrafine particles (UFP)) for seven modes of transport (i.e., walking, cycling, bus, car, motorcycle, overground, underground) from 52 published studies. Compared to active modes, users of motorized modes were consistently the most exposed to gaseous pollutants (CO and NO2). Cycling and walking were the most exposed to UFP compared to other modes. Active vs passive mode contrasts were mostly inconsistent for other particle metrics. Compared to active modes, bus users were consistently more exposed to PM10 and PM2.5, while car users, on average, were less exposed than pedestrians. Rail modes experienced both some lower exposures (compared to cyclists for PM10 and pedestrians for UFP) and higher exposures (compared to cyclist for PM2.5 and BC). Ratios calculated for motorcycles should be considered carefully due to the small number of studies, mostly conducted in Asia. Computing exposure ratios overcomes the heterogeneity in pollutant levels that may exist between continents and countries. However, formulating ratios on a global scale remains challenging owing to the disparities in available data between countries.
Collapse
Affiliation(s)
- Marie Ramel-Delobel
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France; Ecole Centrale de Lyon, CNRS, Universite Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130 Ecully, France
| | - Shahram Heydari
- Department of Civil, Maritime and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Audrey de Nazelle
- Centre for Environmental Policy Imperial College London, London, United Kingdom; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Delphine Praud
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Pietro Salizzoni
- Ecole Centrale de Lyon, CNRS, Universite Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130 Ecully, France
| | - Béatrice Fervers
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France.
| |
Collapse
|
6
|
Ramel-Delobel M, Peruzzi C, Coudon T, De Vito S, Fattoruso G, Praud D, Fervers B, Salizzoni P. Exposure to airborne particulate matter during commuting using portable sensors: Effects of transport modes in a French metropolis study case. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121400. [PMID: 38936028 DOI: 10.1016/j.jenvman.2024.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Outdoor exposure to particulate matter (PM2.5 and PM10) in urban areas can vary considerably depending on the mode of transport. This study aims to quantify this difference in exposure during daily travel, by carrying out a micro-sensor measurement campaign. The pollutant exposure was assessed simultaneously over predefined routes in order to allow comparison between different transport modes having the same starting and ending points. During the six-week measurement campaign, the average reference values for PM background concentrations were 13.72 and 17.92μg/m3 for the PM2.5 and PM10, respectively. The results revealed that the mode with the highest exposure to PM2.5 adjusted to background concentration (PM2.5Norm) was the bus (1.65) followed by metro (1.51), walking (1.33), tramway (1.31), car (1.09) and finally the bike (1.06). For PM10Norm, the tramway had the highest exposure (1.86), followed by walking (1.68), metro (1.65), bus (1.61), bike (1.43) and finally the car (1.39). The level of urbanization around the route and the presence of preferential lanes for public transportation influenced the concentration to which commuters were exposed. For the active modes (bike and walking), we observed frequent variations in concentrations during the trip, characterized by punctual peaks in concentration, depending on the local characteristics of road traffic and urban morphology. Fluctuations in particulate matter inside public transport vehicles were partly explained by the opening and closing of doors during stops, as well as the passenger flows, influencing the re-suspension of particles. The car was one of the least exposed modes overall, with the lowest concentration variability, although these concentrations can vary greatly depending on the ventilation parameters used. These results encourage measures to move the most exposed users away from road traffic, by developing a network of lanes entirely dedicated to cycling and walking, particularly in densely populated areas, as well as encouraging the renewal of motorized vehicles to use less polluting fuels with efficient ventilation systems.
Collapse
Affiliation(s)
- Marie Ramel-Delobel
- Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA), UMR5509, Université de Lyon, Ecole Centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, 36 Avenue Guy de Collonge, 69130 Ecully, France; Département Prévention Cancer Environnement, Centre Léon Bérard, 28 Rue Laënnec, 69008 Lyon, France; INSERM UMR1296 Radiations: Défense, Santé, Environnement, Centre Léon Bérard, Ministère des Armées, Service de Santé des Armées (SSA), 69008 Lyon, France.
| | - Cosimo Peruzzi
- Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA), UMR5509, Université de Lyon, Ecole Centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, 36 Avenue Guy de Collonge, 69130 Ecully, France
| | - Thomas Coudon
- Département Prévention Cancer Environnement, Centre Léon Bérard, 28 Rue Laënnec, 69008 Lyon, France; INSERM UMR1296 Radiations: Défense, Santé, Environnement, Centre Léon Bérard, Ministère des Armées, Service de Santé des Armées (SSA), 69008 Lyon, France
| | - Saverio De Vito
- Italian National Agency for New Technologies (ENEA), Division for Photovoltaic and Smart Devices (TERIN-FSD), Piazzale E. Fermi 1, 80055 Portici (NA), Italy
| | - Grazia Fattoruso
- Italian National Agency for New Technologies (ENEA), Division for Photovoltaic and Smart Devices (TERIN-FSD), Piazzale E. Fermi 1, 80055 Portici (NA), Italy
| | - Delphine Praud
- Département Prévention Cancer Environnement, Centre Léon Bérard, 28 Rue Laënnec, 69008 Lyon, France; INSERM UMR1296 Radiations: Défense, Santé, Environnement, Centre Léon Bérard, Ministère des Armées, Service de Santé des Armées (SSA), 69008 Lyon, France
| | - Béatrice Fervers
- Département Prévention Cancer Environnement, Centre Léon Bérard, 28 Rue Laënnec, 69008 Lyon, France; INSERM UMR1296 Radiations: Défense, Santé, Environnement, Centre Léon Bérard, Ministère des Armées, Service de Santé des Armées (SSA), 69008 Lyon, France
| | - Pietro Salizzoni
- Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA), UMR5509, Université de Lyon, Ecole Centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, 36 Avenue Guy de Collonge, 69130 Ecully, France; Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (TO), Italy
| |
Collapse
|
7
|
Wei L, Donaire-Gonzalez D, Helbich M, van Nunen E, Hoek G, Vermeulen RCH. Validity of Mobility-Based Exposure Assessment of Air Pollution: A Comparative Analysis with Home-Based Exposure Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10685-10695. [PMID: 38839422 PMCID: PMC11191597 DOI: 10.1021/acs.est.3c10867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Air pollution exposure is typically assessed at the front door where people live in large-scale epidemiological studies, overlooking individuals' daily mobility out-of-home. However, there is limited evidence that incorporating mobility data into personal air pollution assessment improves exposure assessment compared to home-based assessments. This study aimed to compare the agreement between mobility-based and home-based assessments with personal exposure measurements. We measured repeatedly particulate matter (PM2.5) and black carbon (BC) using a sample of 41 older adults in the Netherlands. In total, 104 valid 24 h average personal measurements were collected. Home-based exposures were estimated by combining participants' home locations and temporal-adjusted air pollution maps. Mobility-based estimates of air pollution were computed based on smartphone-based tracking data, temporal-adjusted air pollution maps, indoor-outdoor penetration, and travel mode adjustment. Intraclass correlation coefficients (ICC) revealed that mobility-based estimates significantly improved agreement with personal measurements compared to home-based assessments. For PM2.5, agreement increased by 64% (ICC: 0.39-0.64), and for BC, it increased by 21% (ICC: 0.43-0.52). Our findings suggest that adjusting for indoor-outdoor pollutant ratios in mobility-based assessments can provide more valid estimates of air pollution than the commonly used home-based assessments, with no added value observed from travel mode adjustments.
Collapse
Affiliation(s)
- Lai Wei
- Department
of Human Geography and Spatial Planning, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - David Donaire-Gonzalez
- Institute
for Risk Assessment Sciences, Utrecht University, 3584 CK Utrecht, The Netherlands
| | - Marco Helbich
- Department
of Human Geography and Spatial Planning, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Erik van Nunen
- Institute
for Risk Assessment Sciences, Utrecht University, 3584 CK Utrecht, The Netherlands
| | - Gerard Hoek
- Institute
for Risk Assessment Sciences, Utrecht University, 3584 CK Utrecht, The Netherlands
| | - Roel C. H. Vermeulen
- Institute
for Risk Assessment Sciences, Utrecht University, 3584 CK Utrecht, The Netherlands
- Julius
Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht University, 3584 CK Utrecht, The Netherlands
| |
Collapse
|
8
|
Michel S, Banwell N, Senn N. Mobility Infrastructures and Health: Scoping Review of studies in Europe. Public Health Rev 2024; 45:1606862. [PMID: 38841179 PMCID: PMC11150585 DOI: 10.3389/phrs.2024.1606862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Objectives Movement-friendly environments with infrastructure favouring active mobility are important for promoting physical activity. This scoping literature review aims at identifying the current evidence for links between mobility infrastructures and (a) behaviour regarding active mobility, (b) health outcomes and (c) co-benefits. Method This review was conducted in accordance with the PRISMA scoping review guidelines using PubMed and EMBASE databases. Studies included in this review were conducted in Europe, and published between 2000 and March 2023. Results 146 scientific articles and grey literature reports were identified. Connectivity of sidewalks, walkability, and accessibility of shops, services and work are associated with walking. Cycling is positively associated with cycle-paths, separation of cycling from traffic and proximity to greenspaces, and negatively associated with traffic danger. Increased active transportation has a protective effect on cardiovascular and respiratory health, obesity, fitness, and quality of life. Co-benefits result from the reduction of individual motorized transportation including reduced environmental pollution and projected healthcare expenditure. Conclusion Mobility infrastructure combined with social and educational incentives are effective in promoting active travel and reducing future healthcare expenses. A shift to active transportation would increase both individual and community health and decrease greenhouse gas emissions.
Collapse
Affiliation(s)
- Sarah Michel
- Department of Family Medicine, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Nicola Banwell
- Interdisciplinary Centre for Research in Ethics (CIRE), University of Lausanne, Lausanne, Switzerland
| | - Nicolas Senn
- Department of Family Medicine, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Wong PY, Su HJ, Candice Lung SC, Liu WY, Tseng HT, Adamkiewicz G, Wu CD. Explainable geospatial-artificial intelligence models for the estimation of PM 2.5 concentration variation during commuting rush hours in Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123974. [PMID: 38615837 DOI: 10.1016/j.envpol.2024.123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
PM2.5 concentrations are higher during rush hours at background stations compared to the average concentration across these stations. Few studies have investigated PM2.5 concentration and its spatial distribution during rush hours using machine learning models. This study employs a geospatial-artificial intelligence (Geo-AI) prediction model to estimate the spatial and temporal variations of PM2.5 concentrations during morning and dusk rush hours in Taiwan. Mean hourly PM2.5 measurements were collected from 2006 to 2020, and aggregated into morning (7 a.m.-9 a.m.) and dusk (4 p.m.-6 p.m.) rush-hour mean concentrations. The Geo-AI prediction model was generated by integrating kriging interpolation, land-use regression, machine learning, and a stacking ensemble approach. A forward stepwise variable selection method based on the SHapley Additive exPlanations (SHAP) index was used to identify the most influential variables. The performance of the Geo-AI models for morning and dusk rush hours had accuracy scores of 0.95 and 0.93, respectively and these results were validated, indicating robust model performance. Spatially, PM2.5 concentrations were higher in southwestern Taiwan for morning rush hours, and suburban areas for dusk rush hours. Key predictors included kriged PM2.5 values, SO2 concentrations, forest density, and the distance to incinerators for both morning and dusk rush hours. These PM2.5 estimates for morning and dusk rush hours can support the development of alternative commuting routes with lower concentrations.
Collapse
Affiliation(s)
- Pei-Yi Wong
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chun Candice Lung
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Liu
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Hsiao-Ting Tseng
- Department of Information Management, National Central University, Taoyuan, Taiwan
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chih-Da Wu
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan; Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Domínguez A, Koch S, Marquez S, de Castro M, Urquiza J, Evandt J, Oftedal B, Aasvang GM, Kampouri M, Vafeiadi M, Mon-Williams M, Lewer D, Lepeule J, Andrusaityte S, Vrijheid M, Guxens M, Nieuwenhuijsen M. Childhood exposure to outdoor air pollution in different microenvironments and cognitive and fine motor function in children from six European cohorts. ENVIRONMENTAL RESEARCH 2024; 247:118174. [PMID: 38244968 DOI: 10.1016/j.envres.2024.118174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Exposure to air pollution during childhood has been linked with adverse effects on cognitive development and motor function. However, limited research has been done on the associations of air pollution exposure in different microenvironments such as home, school, or while commuting with these outcomes. OBJECTIVE To analyze the association between childhood air pollution exposure in different microenvironments and cognitive and fine motor function from six European birth cohorts. METHODS We included 1301 children from six European birth cohorts aged 6-11 years from the HELIX project. Average outdoor air pollutants concentrations (NO2, PM2.5) were estimated using land use regression models for different microenvironments (home, school, and commute), for 1-year before the outcome assessment. Attentional function, cognitive flexibility, non-verbal intelligence, and fine motor function were assessed using the Attention Network Test, Trail Making Test A and B, Raven Colored Progressive Matrices test, and the Finger Tapping test, respectively. Adjusted linear regressions models were run to determine the association between each air pollutant from each microenvironment on each outcome. RESULTS In pooled analysis we observed high correlation (rs = 0.9) between air pollution exposures levels at home and school. However, the cohort-by-cohort analysis revealed correlations ranging from low to moderate. Air pollution exposure levels while commuting were higher than at home or school. Exposure to air pollution in the different microenvironments was not associated with working memory, attentional function, non-verbal intelligence, and fine motor function. Results remained consistently null in random-effects meta-analysis. CONCLUSIONS No association was observed between outdoor air pollution exposure in different microenvironments (home, school, commute) and cognitive and fine motor function in children from six European birth cohorts. Future research should include a more detailed exposure assessment, considering personal measurements and time spent in different microenvironments.
Collapse
Affiliation(s)
- Alan Domínguez
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sarah Koch
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Marquez
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jose Urquiza
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jorun Evandt
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Bente Oftedal
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Gunn Marit Aasvang
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Mariza Kampouri
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Mark Mon-Williams
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Dan Lewer
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, IAB, 38000, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Martine Vrijheid
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mark Nieuwenhuijsen
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
11
|
Ilenič A, Pranjić AM, Zupančič N, Milačič R, Ščančar J. Fine particulate matter (PM 2.5) exposure assessment among active daily commuters to induce behaviour change to reduce air pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169117. [PMID: 38065488 DOI: 10.1016/j.scitotenv.2023.169117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Fine particulate matter (PM2.5), a detrimental urban air pollutant primarily emitted by traffic and biomass burning, poses disproportionately significant health risks at relatively limited exposure during commuting. Previous studies have mainly focused on fixed locations when assessing PM2.5 exposure, while neglecting pedestrians and cyclists, who often experience higher pollution levels. In response, this research aimed to independently validate the effectiveness of bicycle-mounted low-cost sensors (LCS) adopted by citizens, evaluate temporal and spatial PM2.5 exposure, and assess associated health risks in Ljubljana, Slovenia. The LCS quality assurance results, verified by co-location field tests by air quality monitoring stations (AQMS), showed comparable outcomes with an average percentage difference of 21.29 %, attributed to humidity-induced nucleation effects. The colder months exhibited the highest air pollution levels (μ = 32.31 μg/m3) due to frequent thermal inversions and weak wind circulation, hindering vertical air mixing and the adequate dispersion of pollutants. Additionally, PM2.5 levels in all sampling periods were lowest in the afternoon (μ = 12.09 μg/m3) and highest during the night (μ = 61.00 μg/m3) when the planetary boundary layer thins, leading to the trapping of pollutants near the surface, thus significantly affecting diurnal and seasonal patterns. Analysis of exposure factors revealed that cyclists were approximately three times more exposed than pedestrians. However, the toxicological risk assessment indicated a minimal potential risk of PM2.5 exposure. The collaborative integration of data from official AQMS and LCS can enhance evidence-based policy-making processes and facilitates the realignment of effective regulatory frameworks to reduce urban air pollution.
Collapse
Affiliation(s)
- Anja Ilenič
- Slovenian National Building and Civil Engineering Institute (ZAG), Dimičeva ulica 12, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Alenka Mauko Pranjić
- Slovenian National Building and Civil Engineering Institute (ZAG), Dimičeva ulica 12, 1000 Ljubljana, Slovenia.
| | - Nina Zupančič
- University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva 12, 1000 Ljubljana, Slovenia; ZRC SAZU Ivan Rakovec Institute of Paleontology, Novi trg 2, 1000 Ljubljana, Slovenia
| | - Radmila Milačič
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Institute Jožef Stefan, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Janez Ščančar
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Institute Jožef Stefan, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Lim S, Said B, Zurba L, Mosler G, Addo-Yobo E, Adeyeye OO, Arhin B, Evangelopoulos D, Fapohunda VT, Fortune F, Griffiths CJ, Hlophe S, Kasekete M, Lowther S, Masekela R, Mkutumula E, Mmbaga BT, Mujuru HA, Nantanda R, Mzati Nkhalamba L, Ngocho JS, Ojo OT, Owusu SK, Shaibu S, Ticklay I, Grigg J, Barratt B. Characterising sources of PM 2·5 exposure for school children with asthma: a personal exposure study across six cities in sub-Saharan Africa. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:17-27. [PMID: 38000380 PMCID: PMC10716619 DOI: 10.1016/s2352-4642(23)00261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Air pollution is the second largest risk to health in Africa, and children with asthma are particularly susceptible to its effects. Yet, there is a scarcity of air pollution exposure data from cities in sub-Saharan Africa. We aimed to identify potential exposure reduction strategies for school children with asthma living in urban areas in sub-Saharan Africa. METHODS This personal exposure study was part of the Achieving Control of Asthma in Children in Africa (ACACIA) project. Personal exposure to particulate matter (PM) was monitored in school children in six cities in sub-Saharan Africa (Blantyre, Malawi; Durban, South Africa; Harare, Zimbabwe; Kumasi, Ghana; Lagos, Nigeria; and Moshi, Tanzania). Participants were selected if they were aged 12-16 years and had symptoms of asthma. Monitoring was conducted between June 21, and Nov 26, 2021, from Monday morning (approximately 1000 h) to Friday morning (approximately 1000 h), by use of a bespoke backpack with a small air pollution monitoring unit with an inbuilt Global Positioning System (GPS) data logger. Children filled in a questionnaire detailing potential sources of air pollution during monitoring and exposures were tagged into three different microenvironments (school, commute, and home) with GPS coordinates. Mixed-effects models were used to identify the most important determinants of children's PM2·5 (PM <2·5 μm in diameter) exposure. FINDINGS 330 children were recruited across 43 schools; of these, 297 had valid monitoring data, and 1109 days of valid data were analysed. Only 227 (20%) of 1109 days monitored were lower than the current WHO 24 h PM2·5 exposure health guideline of 15 μg/m3. Children in Blantyre had the highest PM2·5 exposure (median 41·8 μg/m3), whereas children in Durban (16·0 μg/m3) and Kumasi (17·9 μg/m3) recorded the lowest exposures. Children had significantly higher PM2·5 exposures at school than at home in Kumasi (median 19·6 μg/m3vs 14·2 μg/m3), Lagos (32·0 μg/m3vs 18·0 μg/m3), and Moshi (33·1 μg/m3vs 23·6 μg/m3), while children in the other three cities monitored had significantly higher PM2·5 exposures at home and while commuting than at school (median 48·0 μg/m3 and 43·2 μg/m3vs 32·3 μg/m3 in Blantyre, 20·9 μg/m3 and 16·3 μg/m3vs 11·9 μg/m3 in Durban, and 22·7 μg/m3 and 25·4 μg/m3vs 16·4 μg/m3 in Harare). The mixed-effects model highlighted the following determinants for higher PM2·5 exposure: presence of smokers at home (23·0% higher exposure, 95% CI 10·8-36·4), use of coal or wood for cooking (27·1%, 3·9-56·3), and kerosene lamps for lighting (30·2%, 9·1-55·2). By contrast, 37·2% (95% CI 22·9-48·2) lower PM2·5 exposures were found for children who went to schools with paved grounds compared with those whose school grounds were covered with loose dirt. INTERPRETATION Our study suggests that the most effective changes to reduce PM2·5 exposures in these cities would be to provide paving in school grounds, increase the use of clean fuel for cooking and light in homes, and discourage smoking within homes. The most efficient way to improve air quality in these cities would require tailored interventions to prioritise different exposure-reduction policies in different cities. FUNDING UK National Institute for Health and Care Research.
Collapse
Affiliation(s)
- Shanon Lim
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK; Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Bibie Said
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kibong'oto Infectious Disease Hospital, Hai, Tanzania
| | | | - Gioia Mosler
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emmanuel Addo-Yobo
- Department of Child Health, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Olayinka Olufunke Adeyeye
- Department of Medicine, Lagos State University College of Medicine, and Lagos State University Teaching Hospital, Ikeja Lagos, Nigeria
| | | | - Dimitris Evangelopoulos
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK
| | - Victoria Temitope Fapohunda
- Department of Medicine, Lagos State University College of Medicine, and Lagos State University Teaching Hospital, Ikeja Lagos, Nigeria
| | - Farida Fortune
- Centre for Oral immunobiology and Regenerative Medicine, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Chris J Griffiths
- Asthma UK Centre for Applied Research, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sbekezelo Hlophe
- Department of Paediatrics and Child Health, Nelson R Mandela School of Clinical Medicine, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Marian Kasekete
- University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | | | - Refiloe Masekela
- Department of Paediatrics and Child Health, Nelson R Mandela School of Clinical Medicine, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | | | - Blandina Theophil Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Hilda Angela Mujuru
- University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Rebecca Nantanda
- Makerere University Lung Institute, Makerere College of Health Sciences, Kampala Uganda
| | | | - James S Ngocho
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Oluwafemi Tunde Ojo
- Department of Medicine, Lagos State University College of Medicine, and Lagos State University Teaching Hospital, Ikeja Lagos, Nigeria
| | | | - Sunshine Shaibu
- Department of Medicine, Lagos State University College of Medicine, and Lagos State University Teaching Hospital, Ikeja Lagos, Nigeria
| | - Ismail Ticklay
- University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Jonathan Grigg
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Benjamin Barratt
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, UK; NIHR NPRU in Environmental Exposures and Health, Imperial College London, London, UK.
| |
Collapse
|
13
|
Li Z, Che W, Hossain MS, Fung JCH, Lau AKH. Relative contributions of ambient air and internal sources to multiple air pollutants in public transportation modes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122642. [PMID: 37783415 DOI: 10.1016/j.envpol.2023.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Commuters are often exposed to relatively high air pollutant concentrations in public transport microenvironments (TMEs) because of their proximity to emission sources. Previous studies have mainly focused on assessing the concentrations of air pollutants in TMEs, but few studies have distinguished between the contributions of ambient air and internal sources to the exposure of commuters to air pollutants. The main objective of this study was to quantify the contributions of ambient air and internal sources to the measured particulate matter and gaseous pollutant concentrations in selected TMEs in Hong Kong, a high-rise, high-density city in Asia. A sampling campaign was conducted to measure air pollutant concentrations in TMEs in Hong Kong in July and November 2018 using portable air quality monitors. We measured the concentrations of each pollutant in different TMEs and quantified the infiltration of particulate matter into these TMEs. The double-decker bus had the lowest particulate matter concentrations (mean PM1, PM2.5, and PM10 concentrations of 5.1, 9.5, and 13 μg/m3, respectively), but higher concentrations of CO (0.9 ppm), NO (422 ppb), and NO2 (100 ppb). For all the TMEs, about half of the PM2.5 were PM1 particles. The Mass Transit Railway (MTR) subway system had a PM2.5/PM10 ratio of about 0.90, whereas the PM2.5/PM10 ratio was about 0.60-0.70 for the other TMEs. The MTR had infiltration factor estimates <0.4 for particulate matter, lower than those of the double-decker bus and minibus. The MTR had the highest contribution from internal sources (mean PM1, PM2.5, and PM10 concentrations of 4.6, 13.4, and 15.8 μg/m3, respectively). This study will help citizens to plan commuting routes to reduce their exposure to air pollution and help policy-makers to prioritize effective exposure reduction strategies.
Collapse
Affiliation(s)
- Zhiyuan Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Wenwei Che
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Environmental Protection Department, Revenue Tower, 5 Gloucester Road, Wan Chai, Hong Kong, China.
| | - Md Shakhaoat Hossain
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh.
| | - Jimmy C H Fung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
14
|
Schulte K, Hudson B. A cross-sectional study of inequalities in digital air pollution information access and exposure reducing behavior uptake in the UK. ENVIRONMENT INTERNATIONAL 2023; 181:108236. [PMID: 37832262 DOI: 10.1016/j.envint.2023.108236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Air pollution is a pervasive global environmental challenge that presents substantial and differential risk across populations. Individual-level pollution exposure is a function of varying factors, including but not limited to geographic location, proximity to point sources, ventilation, and behavioral patterns. Mounting evidence suggests that informational interventions can play a substantial role in mediating exposures for specific population subgroups and reduce downstream adverse health outcomes. The literature has yet to address whether access to air quality information is sociodemographically stratified, and whether such access correlates with increased uptake of exposure reducing behaviors at the population level. This study represents a first step in answering these questions by analysing responses from the "Clean Air Public Insight Tracker" nationally representative survey (n = 1,993) of the UK population, administered by UK charity Global Action Plan. Results from logistic regression and zero-inflated negative binomial models estimate 28% of the population have accessed air pollution information, while the odds of younger individuals (ages 18-36), men, and non-white individuals of accessing digitally available air quality information are greater that those outside these categories. Additionally, the odds of behavior uptake is greater if an individual accesses digital information sources like the internet, mobile apps or social media, has a higher education qualification or cares for someone with a health condition. These findings contribute to the growing literature surrounding which population groups engage with environmental and health-relevant information channels, and what connects engagement with air quality channels and uptake of exposure reducing behaviors. These results reinforce the need for additional research around air pollution informational alerts and exploring causal links between specific exposure reducing behaviours and improved health outcomes. It can also help inform the flow of resources and targeting of informational campaigns towards sociodemographic groups that are less likely to engage with air quality information.
Collapse
Affiliation(s)
- Kayla Schulte
- Environmental Research Group, MRC Centre for Environment and Health, Faculty of Medicine, Imperial College London, United Kingdom; Leverhulme Centre for Demographic Science, University of Oxford, United Kingdom.
| | | |
Collapse
|
15
|
Bergmann ML, Andersen ZJ, Massling A, Kindler PA, Loft S, Amini H, Cole-Hunter T, Guo Y, Maric M, Nordstrøm C, Taghavi M, Tuffier S, So R, Zhang J, Lim YH. Short-term exposure to ultrafine particles and mortality and hospital admissions due to respiratory and cardiovascular diseases in Copenhagen, Denmark. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122396. [PMID: 37595732 DOI: 10.1016/j.envpol.2023.122396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Ultrafine particles (UFP; particulate matter <0.1 μm in diameter) may be more harmful to human health than larger particles, but epidemiological evidence on their health effects is still limited. In this study, we examined the association between short-term exposure to UFP and mortality and hospital admissions in Copenhagen, Denmark. Daily concentrations of UFP (measured as particle number concentration in a size range 11-700 nm) and meteorological variables were monitored at an urban background station in central Copenhagen during 2002-2018. Daily counts of deaths from all non-accidental causes, as well as deaths and hospital admissions from cardiovascular and respiratory diseases were obtained from Danish registers. Mortality and hospital admissions associated with an interquartile range (IQR) increase in UFP exposure on a concurrent day and up to six preceding days prior to the death or admission were examined in a case-crossover study design. Odds ratios (OR) with 95% confidence intervals (CI) per one IQR increase in UFP were estimated after adjusting for temperature and relative humidity. We observed 140,079 deaths in total, 236,003 respiratory and 342,074 cardiovascular hospital admissions between 2002 and 2018. Hospital admissions due to respiratory and cardiovascular diseases were significantly positively associated with one IQR increase in UFP (OR: 1.04 [95% CI: 1.01, 1.07], lag 0-4, and 1.02 [1.00, 1.04], lag 0-1, respectively). Among the specific causes, the strongest associations were found for chronic obstructive pulmonary disease (COPD) mortality and asthma hospital admissions and two-day means (lag 0-1) of UFP (OR: 1.13 [1.01, 1.26] and 1.08 [1.00, 1.16], respectively, per one IQR increase in UFP). Based on 17 years of UFP monitoring data, we present novel findings showing that short-term exposure to UFP can trigger respiratory and cardiovascular diseases mortality and morbidity in Copenhagen, Denmark. The strongest associations with UFP were observed with COPD mortality and asthma hospital admissions.
Collapse
Affiliation(s)
- Marie L Bergmann
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana J Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Massling
- Department of Environmental Science, IClimate, Aarhus University, Denmark
| | | | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Heresh Amini
- Department of Environmental Medicine and Public Health, and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Matija Maric
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Claus Nordstrøm
- Department of Environmental Science, IClimate, Aarhus University, Denmark
| | - Mahmood Taghavi
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Stéphane Tuffier
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rina So
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jiawei Zhang
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Zhong H, Xu R, Lu H, Liu Y, Zhu M. Dynamic assessment of population exposure to traffic-originated PM2.5 based on multisource geo-spatial data. TRANSPORTATION RESEARCH PART D: TRANSPORT AND ENVIRONMENT 2023; 124:103923. [DOI: 10.1016/j.trd.2023.103923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Song W, Kwan MP. Air pollution perception bias: Mismatch between air pollution exposure and perception of air quality in real-time contexts. Health Place 2023; 84:103129. [PMID: 37856949 DOI: 10.1016/j.healthplace.2023.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Air pollution perception biases hinder the public's awareness of actual air quality. Past studies that examined the association and mismatch between actual and perceived air quality neglected individuals' dynamic exposure and their activity, travel, spatial, temporal, and social contexts. Using data collected with real-time air pollutant sensors and ecological momentary assessment (EMA), this study investigated the association and mismatch between momentary air pollution exposure and perceived air quality. It also examined how activity type, travel mode, spatial and temporal contexts, and social factors contribute to this disparity. The results show that exposure to air pollution is significantly higher in residential areas (1.777 μg/m3) and transportation land-use areas (2.863 μg/m3) compared to commercial areas. Exposure in the evening is 1.308 μg/m3 higher than in the afternoon. Working or studying activities are associated with 2.863 μg/m3 lower exposure, and individuals perceive air quality as good when working or studying and in residential areas. Conversely, individuals assess air quality as poor in railway travel contexts and being accompanied by friends. This study also reveals the nonstationary association between air pollution exposure and perceived air quality. The odds of underestimating air pollution are 1.8-2.7 times as high as that in residential areas and 2.1 to 2.6 times that in transportation land-use areas when compared to commercial areas. Implementing targeted mitigation measures in these contexts can enhance public awareness of air pollution.
Collapse
Affiliation(s)
- Wanying Song
- Institute of Space and Earth Information Science, Fok Ying Tung Remote Sensing Science Building, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Mei-Po Kwan
- Institute of Space and Earth Information Science, Fok Ying Tung Remote Sensing Science Building, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Geography and Resource Management, Wong Foo Yuan Building, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Institute of Future Cities, Wong Foo Yuan Building, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
18
|
Wei L, Kwan MP, Vermeulen R, Helbich M. Measuring environmental exposures in people's activity space: The need to account for travel modes and exposure decay. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:954-962. [PMID: 36788269 PMCID: PMC7617267 DOI: 10.1038/s41370-023-00527-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Accurately quantifying people's out-of-home environmental exposure is important for identifying disease risk factors. Several activity space-based exposure assessments exist, possibly leading to different exposure estimates, and have neither considered individual travel modes nor exposure-related distance decay effects. OBJECTIVE We aimed (1) to develop an activity space-based exposure assessment approach that included travel modes and exposure-related distance decay effects and (2) to compare the size of such spaces and the exposure estimates derived from them across typically used activity space operationalizations. METHODS We used 7-day-long global positioning system (GPS)-enabled smartphone-based tracking data of 269 Dutch adults. People's GPS trajectory points were classified into passive and active travel modes. Exposure-related distance decay effects were modeled through linear, exponential, and Gaussian decay functions. We performed cross-comparisons on these three functional decay models and an unweighted model in conjunction with four activity space models (i.e., home-based buffers, minimum convex polygons, two standard deviational ellipses, and time-weighted GPS-based buffers). We applied non-parametric Kruskal-Wallis tests, pair-wise Wilcoxon signed-rank tests, and Spearman correlations to assess mean differences in the extent of the activity spaces and correlations across exposures to particulate matter (PM2.5), noise, green space, and blue space. RESULTS Participants spent, on average, 42% of their daily life out-of-home. We observed that including travel modes into activity space delineation resulted in significantly more compact activity spaces. Exposure estimates for PM2.5 and blue space were significantly (p < 0.05) different between exposure estimates that did or did not account for travel modes, unlike noise and green space, for which differences did not reach significance. While the inclusion of distance decay effects significantly affected noise and green space exposure assessments, the decay functions applied appear not to have had any impact on the results. We found that residential exposure estimates appear appropriate for use as proxy values for the overall amount of PM2.5 exposure in people's daily lives, while GPS-based assessments are suitable for noise, green space, and blue space. SIGNIFICANCE For some exposures, the tested activity space definitions, although significantly correlated, exhibited differing exposure estimate results based on inclusion or exclusion of travel modes or distance decay effect. Results only supported using home-based buffer values as proxies for individuals' daily short-term PM2.5 exposure.
Collapse
Affiliation(s)
- Lai Wei
- Department of Human Geography and Spatial Planning, Utrecht University, Utrecht, The Netherlands.
| | - Mei-Po Kwan
- Department of Human Geography and Spatial Planning, Utrecht University, Utrecht, The Netherlands
- Department of Geography and Resource Management and Institute of Space and Earth Information Science, Chinese University of Hong Kong, Hong Kong, China
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht University, Utrecht, The Netherlands
| | - Marco Helbich
- Department of Human Geography and Spatial Planning, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Hernández Paniagua IY, Amador Muñoz O, Rosas Pérez I, Arrieta García O, González Buendía RI, Andraca Ayala GL, Jazcilevich A. Reduced commuter exposure to PM 2.5 and PAHs in response to improved emission standards in bus rapid transit systems in Mexico. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122236. [PMID: 37481026 DOI: 10.1016/j.envpol.2023.122236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
We evaluated impacts of progressive technological updates to bus rapid transit (BRT) systems on in-cabin concentrations of particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), and the various polyaromatic hydrocarbons (PAHs) to which commuters were exposed. PM2.5 samples were collected and real-time concentrations measured from October 2017 to March 2020 inside cabins of BRT buses equipped with Euro IV, V and VI diesel emission standards in the Mexico City Metropolitan Area (MCMA). For effective comparison, similar samplings and measurements were carried out on trains in the MCMA underground (MCU) system. Peak in-cabin PM2.5 concentrations decreased significantly (p < 0.05) by 35% from Euro IV to Euro V buses, and by 80% from Euro IV to Euro VI buses. PM2.5 concentrations inside Euro VI buses were significantly lower (p < 0.05) than in Euro IV and Euro V buses and in underground trains. The in-cabin excess (ICE) of PM2.5 relative to ambient concentrations was significantly (p < 0.05) higher for Euro IV than for Euro V buses during morning the traffic peak, and consistently higher than for Euro VI buses. Indeed, ICEs calculated for Euro VI buses were always lower than those for electricity-powered underground trains. The frequency of hotspots decreased from Euro IV to Euro VI buses due to the combined effect of low emissions and closed, air-conditioned cabins. Concentrations of total PAHs including carcinogenic species also decreased from Euro IV to Euro V buses and were below limits of detection aboard Euro VI buses. This work shows that in real-life conditions, advanced diesel technologies and cabin design significantly reduce commuters' exposure to PM2.5 and to toxic PAH compounds.
Collapse
Affiliation(s)
- Iván Y Hernández Paniagua
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Omar Amador Muñoz
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Irma Rosas Pérez
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Oscar Arrieta García
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Raymundo I González Buendía
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Gema L Andraca Ayala
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico
| | - Arón Jazcilevich
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, C. U., Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
20
|
Patel H, Talbot N, Dirks K, Salmond J. The impact of low emission zones on personal exposure to ultrafine particles in the commuter environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162540. [PMID: 36870513 DOI: 10.1016/j.scitotenv.2023.162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Auckland is a city with limited industrial activity, road traffic being the dominant source of air pollution. Thus, the time periods when social contact and movement in Auckland were severely curtailed due to COVID-19 restrictions presented a unique opportunity to observe impacts on pedestrian exposure to air pollution under a range of different traffic flow scenarios, providing insights into the impacts of potential future traffic calming measures. Pedestrian exposure to ultrafine particles (UFPs), was measured using personal monitoring along a customised route through Central Auckland during different COVID-19-affected traffic flow conditions. Results showed that reduced traffic flows led to statistically significant reductions in average exposure to UFP under all traffic reduction scenarios (TRS). However, the size of the reduction was variable in both time and place. Under the most stringent TRS (traffic reduction of 82 %), median ultrafine particle (UFP) concentrations reduced by 73 %. Under the less stringent scenario, the extent of reduction varied in time and space; a traffic reduction of 62 % resulted in a 23 % reduction in median UFP concentrations in 2020 but in 2021 similar traffic reductions led to a decrease in median UFP concentrations of 71 %. Under all scenarios, the magnitude of the impact of traffic reductions on UFP exposure varied along the route, with areas dominated by emissions from construction and ferry/port activities showing little correlation between traffic flow and exposure. Shared traffic spaces, previously pedestrianised, also recorded consistently high concentrations with little variability observed. This study provided a unique opportunity to assess the potential benefits and risks of such zones and to help decision-makers evaluate future traffic management interventions (such as low emissions zones). The results suggest that controlled traffic flow interventions can result in a significant reduction in pedestrian exposure to UFPs, but that the magnitude of reductions is sensitive to local-scale variations in meteorology, urban land use and traffic flow patterns.
Collapse
Affiliation(s)
- Hamesh Patel
- School of Environment, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, New Zealand; Mote Ltd, 40a George Street, Mount Eden, Auckland, New Zealand.
| | - Nick Talbot
- School of Environment, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Kim Dirks
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jennifer Salmond
- School of Environment, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
21
|
Zhao Y, Gu C, Song X. Evaluation of indoor environmental quality, personal cumulative exposure dose, and aerosol transmission risk levels inside urban buses in Dalian, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55278-55297. [PMID: 36884177 PMCID: PMC9994408 DOI: 10.1007/s11356-023-26037-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/16/2023] [Indexed: 06/09/2023]
Abstract
The transmission of pollutants in buses has an important impact on personal exposure to airborne particles and spread of the COVID-19 epidemic in enclosed spaces. We conducted the following real-time field measurements inside buses: CO2, airborne particle concentration, temperature, and relative humidity data during peak and off-peak hours in spring and autumn. Correlation analysis was adopted to evaluate the dominant factors influencing CO2 and particle mass concentrations in the vehicle. The cumulative personal exposure dose to particulate matter and reproduction number were calculated for passengers on a one-way trip. The results showed the in-cabin CO2 concentrations, with 22.11% and 21.27% of the total time exceeding 1000 ppm in spring and autumn respectively. In-cabin PM2.5 mass concentration exceeded 35 μm/m3 by 57.35% and 86.42% in spring and autumn, respectively. CO2 concentration and the cumulative number of passengers were approximately linearly correlated in both seasons, with R value up to 0.896. The cumulative number of passengers had the most impact on PM2.5 mass concentration among tested parameters. The cumulative personal exposure dose to PM2.5 during a one-way trip in autumn was up to 43.13 μg. The average reproductive number throughout the one-way trip was 0.26; it was 0.57 under the assumed extreme environment. The results of this study provide an important basic theoretical guidance for the optimization of ventilation system design and operation strategies aimed at reducing multi-pollutant integrated health exposure and airborne particle infection (such as SARS-CoV-2) risks.
Collapse
Affiliation(s)
- Yu Zhao
- Ganjingzi District, School of Civil Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Chenmin Gu
- Ganjingzi District, School of Civil Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiaocheng Song
- Civil and Architectural Engineering College, Dalian University, 10 Xuefu Street, Economic & Technological Development Zone, Dalian, 116622, China.
| |
Collapse
|
22
|
Willberg E, Poom A, Helle J, Toivonen T. Cyclists' exposure to air pollution, noise, and greenery: a population-level spatial analysis approach. Int J Health Geogr 2023; 22:5. [PMID: 36765331 PMCID: PMC9921333 DOI: 10.1186/s12942-023-00326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/28/2023] [Indexed: 02/12/2023] Open
Abstract
Urban travel exposes people to a range of environmental qualities with significant health and wellbeing impacts. Nevertheless, the understanding of travel-related environmental exposure has remained limited. Here, we present a novel approach for population-level assessment of multiple environmental exposure for active travel. It enables analyses of (1) urban scale exposure variation, (2) alternative routes' potential to improve exposure levels per exposure type, and (3) by combining multiple exposures. We demonstrate the approach's feasibility by analysing cyclists' air pollution, noise, and greenery exposure in Helsinki, Finland. We apply an in-house developed route-planning and exposure assessment software and integrate to the analysis 3.1 million cycling trips from the local bike-sharing system. We show that especially noise exposure from cycling exceeds healthy thresholds, but that cyclists can influence their exposure by route choice. The proposed approach enables planners and individual citizens to identify (un)healthy travel environments from the exposure perspective, and to compare areas in respect to how well their environmental quality supports active travel. Transferable open tools and data further support the implementation of the approach in other cities.
Collapse
Affiliation(s)
- Elias Willberg
- Digital Geography Lab, Faculty of Science, University of Helsinki, Helsinki, Finland. .,Helsinki Institute of Sustainability Science, Institute of Urban and Regional Studies, University of Helsinki, Helsinki, Finland.
| | - Age Poom
- grid.7737.40000 0004 0410 2071Digital Geography Lab, Faculty of Science, University of Helsinki, Helsinki, Finland ,grid.10939.320000 0001 0943 7661Mobility Lab, Department of Geography, University of Tartu, Tartu, Estonia ,grid.7737.40000 0004 0410 2071Helsinki Institute of Sustainability Science, Institute of Urban and Regional Studies, University of Helsinki, Helsinki, Finland
| | - Joose Helle
- grid.7737.40000 0004 0410 2071Digital Geography Lab, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Tuuli Toivonen
- grid.7737.40000 0004 0410 2071Digital Geography Lab, Faculty of Science, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Helsinki Institute of Sustainability Science, Institute of Urban and Regional Studies, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Li D, Lee C, Park AH, Lee H, Ding Y. Contextual and environmental factors that influence health: A within-subjects field experiment protocol. Front Public Health 2023; 11:1019885. [PMID: 36875421 PMCID: PMC9978705 DOI: 10.3389/fpubh.2023.1019885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Background Despite the growing research on environment-physical activity (PA) relationships, field experimental studies are limited. Such studies offer opportunities to focus on real-world environmental exposure and related PA and health outcomes, allowing researchers to better isolate the causal effect of exposures/interventions. Focusing on the street/pedestrian environment as a routine setting for people's daily activities, this research aims to develop and test a field experiment protocol that integrates instantaneous assessments of the environment, PA, and health outcomes. The protocol involves the use of state-of-the-art environmental monitoring and biosensing techniques and focuses on physically active road users (pedestrians and bicyclists) who are more directly exposed to their surrounding environment than others such as drivers. Methods/Design An interdisciplinary research team first identified the target measurement domains for the health outcomes (e.g., stress, thermal comfort, PA) and the street-level environmental exposures (e.g., land use, greenery, infrastructure conditions, air quality, weather) guided by the previous literature which was primarily observational. Portable or wearable measurement instruments (e.g., GPS, accelerometer, biosensor, mini camera, smartphone app, weather station, air quality sensor) were identified, pilot tested, and selected for the identified measures. We ensured that these measures are readily linkable using the time stamp and include eye-level exposures as they impact the users' experiences more directly yet missing in most prior studies relying on secondary, aerial-level measures. A 50-min experimental route was then determined to include typical everyday environments in park and mixed-use settings and to engage participants in three common modes of transportation (walking, bicycling, and driving). Finally, a detailed staff protocol was developed, pilot-tested, and used in a 36-participant within-subject field experiment in College Station, TX. The experiment was successfully executed, showing its potential to support future field experiments that can provide more accurate real-time, real-environment, and multi-dimensional information. Discussion Our study demonstrates the feasibility of capturing the multifold health benefits/harms related to walking and bicycling in varying urban environments by combining field experiments with environmental, behavioral, and physiological sensing. Our study protocol and reflections can be helpful for a broad spectrum of research addressing the complex and multi-level pathways between the environment, behavior, and health outcomes.
Collapse
Affiliation(s)
- Dongying Li
- Department of Landscape Architecture and Urban Planning, College of Architecture, Texas A&M University, College Station, TX, United States
| | - Chanam Lee
- Department of Landscape Architecture and Urban Planning, College of Architecture, Texas A&M University, College Station, TX, United States
| | - Amaryllis H Park
- Department of Landscape Architecture and Urban Planning, College of Architecture, Texas A&M University, College Station, TX, United States
| | - Hanwool Lee
- Department of Landscape Architecture and Urban Planning, College of Architecture, Texas A&M University, College Station, TX, United States
| | - Yizhen Ding
- Department of Landscape Architecture and Urban Planning, College of Architecture, Texas A&M University, College Station, TX, United States
| |
Collapse
|
24
|
Li X, Farrukh M, Lee C, Khreis H, Sarda S, Sohrabi S, Zhang Z, Dadashova B. COVID-19 impacts on mobility, environment, and health of active transportation users. CITIES (LONDON, ENGLAND) 2022; 131:103886. [PMID: 35935595 PMCID: PMC9345890 DOI: 10.1016/j.cities.2022.103886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/05/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Active transportation could be an effective way to promote healthy physical activity, especially during pandemics like COVID-19. A comprehensive evaluation of health outcomes derived from COVID-19 induced active transportation can assist multiple stakeholders in revisiting strategies and priorities for supporting active transportation during and beyond the pandemic. We performed a two-step reviewing process by combining a scoping review with a narrative review to summarize published literature addressing the influence of COVID-19 on mobility and the environment that can lead to various health pathways and health outcomes associated with active transportation. We summarized the COVID-19 induced changes in active transportation demand, built environment, air quality, and physical activity. The results demonstrated that, since the pandemic began, bike-sharing users dropped significantly while recreational bike trips and walking activities increased in some areas. Meanwhile, there have been favorable changes to the air quality and the built environment for active transportation users. We then discussed how these changes impact health outcomes during the pandemic and their implications for urban planning and policymaking. This review also suggests that walking and biking can make up for the reduced physical activities during the pandemic, helping people stay active and healthy.
Collapse
Affiliation(s)
- Xiao Li
- Texas A&M Transportation Institute, Bryan, TX, USA
| | - Minaal Farrukh
- School of Public Health, Texas A&M University, College Station, TX, USA
| | - Chanam Lee
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX, USA
| | - Haneen Khreis
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Soham Sarda
- University of California Berkeley, Berkeley, CA, USA
| | | | - Zhe Zhang
- Department of Geography, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
25
|
Serafini MM, Maddalon A, Iulini M, Galbiati V. Air Pollution: Possible Interaction between the Immune and Nervous System? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192316037. [PMID: 36498110 PMCID: PMC9738575 DOI: 10.3390/ijerph192316037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
Exposure to environmental pollutants is a serious and common public health concern associated with growing morbidity and mortality worldwide, as well as economic burden. In recent years, the toxic effects associated with air pollution have been intensively studied, with a particular focus on the lung and cardiovascular system, mainly associated with particulate matter exposure. However, epidemiological and mechanistic studies suggest that air pollution can also influence skin integrity and may have a significant adverse impact on the immune and nervous system. Air pollution exposure already starts in utero before birth, potentially causing delayed chronic diseases arising later in life. There are, indeed, time windows during the life of individuals who are more susceptible to air pollution exposure, which may result in more severe outcomes. In this review paper, we provide an overview of findings that have established the effects of air pollutants on the immune and nervous system, and speculate on the possible interaction between them, based on mechanistic data.
Collapse
|
26
|
Madueño L, Kecorius S, Löndahl J, Schnelle-Kreis J, Wiedensohler A, Pöhlker M. A novel in-situ method to determine the respiratory tract deposition of carbonaceous particles reveals dangers of public commuting in highly polluted megacity. Part Fibre Toxicol 2022; 19:61. [PMID: 36109745 PMCID: PMC9476571 DOI: 10.1186/s12989-022-00501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Background Exposure to air pollutants is one of the major environmental health risks faced by populations globally. Information about inhaled particle deposition dose is crucial in establishing the dose–response function for assessing health-related effects due to exposure to air pollution. Objective This study aims to quantify the respiratory tract deposition (RTD) of equivalent black carbon (BC) particles in healthy young adults during a real-world commuting scenario, analyze factors affecting RTD of BC, and provide key parameters for the assessment of RTD. Methods A novel in situ method was applied to experimentally determine the RTD of BC particles among subjects in the highly polluted megacity of Metro Manila, Philippines. Exposure measurements were made for 40 volunteers during public transport and walking. Results The observed BC exposure concentration was up to 17-times higher than in developed regions. The deposition dose rate (DDR) of BC was up to 3 times higher during commute inside a public transport compared to walking (11.6 versus 4.4 μg hr−1, respectively). This is twice higher than reported in similar studies. The average BC mass deposition fraction (DF) was found to be 43 ± 16%, which can in large be described by individual factors and does not depend on gender. Conclusions Commuting by open-sided public transport, commonly used in developing regions, poses a significant health risk due to acquiring extremely high doses of carcinogenic traffic-related pollutants. There is an urgent need to drastically update air pollution mitigation strategies for reduction of dangerously high emissions of BC in urban setting in developing regions. The presented mobile measurement set-up to determine respiratory tract deposition dose is a practical and cost-effective tool that can be used to investigate respiratory deposition in challenging environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00501-x.
Collapse
|
27
|
Assessment of Factors Influencing Personal Exposure to Air Pollution on Main Roads in Bogota: A Mixed-Method Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58081125. [PMID: 36013592 PMCID: PMC9416028 DOI: 10.3390/medicina58081125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Particulate Matter (PM), particles of variable but small diameter can penetrate the respiratory system via inhalation, causing respiratory and/or cardiovascular diseases. This study aims to evaluate the association of environmental particulate matter (PM2.5) and black carbon (BC) with respiratory health in users of different transport modes in four roads in Bogotá. Materials and Methods: this was a mixed-method study (including a cross sectional study and a qualitative description of the air quality perception), in 300 healthy participants, based on an exploratory sequential design. The respiratory effect was measured comparing the changes between pre- and post-spirometry. The PM2.5 and black carbon (BC) concentrations were measured using portable devices. Inhaled doses were also calculated for each participant according to the mode and route. Perception was approached through semi-structured interviews. The analysis included multivariate models and concurrent triangulation. Results: The concentration of matter and black carbon were greater in bus users (median 50.67 µg m-3; interquartile range (-IR): 306.7). We found greater inhaled dosages of air pollutants among bike users (16.41 µg m-3). We did not find changes in the spirometry parameter associated with air pollutants or transport modes. The participants reported a major sensory influence at the visual and olfactory level as perception of bad air quality. Conclusions: We observed greater inhaled doses among active transport users. Nevertheless, no pathological changes were identified in the spirometry parameters. People's perceptions are a preponderant element in the assessment of air quality.
Collapse
|
28
|
Lim S, Bassey E, Bos B, Makacha L, Varaden D, Arku RE, Baumgartner J, Brauer M, Ezzati M, Kelly FJ, Barratt B. Comparing human exposure to fine particulate matter in low and high-income countries: A systematic review of studies measuring personal PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155207. [PMID: 35421472 PMCID: PMC7615091 DOI: 10.1016/j.scitotenv.2022.155207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Due to the adverse health effects of air pollution, researchers have advocated for personal exposure measurements whereby individuals carry portable monitors in order to better characterise and understand the sources of people's pollution exposure. OBJECTIVES The aim of this systematic review is to assess the differences in the magnitude and sources of personal PM2.5 exposures experienced between countries at contrasting levels of income. METHODS This review summarised studies that measured participants personal exposure by carrying a PM2.5 monitor throughout their typical day. Personal PM2.5 exposures were summarised to indicate the distribution of exposures measured within each country income category (based on low (LIC), lower-middle (LMIC), upper-middle (UMIC), and high (HIC) income countries) and between different groups (i.e. gender, age, urban or rural residents). RESULTS From the 2259 search results, there were 140 studies that met our criteria. Overall, personal PM2.5 exposures in HICs were lower compared to other countries, with UMICs exposures being slightly lower than exposures measured in LMICs or LICs. 34% of measured groups in HICs reported below the ambient World Health Organisation 24-h PM2.5 guideline of 15 μg/m3, compared to only 1% of UMICs and 0% of LMICs and LICs. There was no difference between rural and urban participant exposures in HICs, but there were noticeably higher exposures recorded in rural areas compared to urban areas in non-HICs, due to significant household sources of PM2.5 in rural locations. In HICs, studies reported that secondhand smoke, ambient pollution infiltrating indoors, and traffic emissions were the dominant contributors to personal exposures. While, in non-HICs, household cooking and heating with biomass and coal were reported as the most important sources. CONCLUSION This review revealed a growing literature of personal PM2.5 exposure studies, which highlighted a large variability in exposures recorded and severe inequalities in geographical and social population subgroups.
Collapse
Affiliation(s)
- Shanon Lim
- MRC Centre for Environment and Health, Imperial College London, UK.
| | - Eridiong Bassey
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Liberty Makacha
- MRC Centre for Environment and Health, Imperial College London, UK; Place Alert Labs, Department of Surveying and Geomatics, Faculty of Science and Technology, Midlands State University, Zimbabwe; Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Diana Varaden
- MRC Centre for Environment and Health, Imperial College London, UK; NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, UK
| | - Raphael E Arku
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Jill Baumgartner
- Institute for Health and Social Policy, and Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada; Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
| | - Majid Ezzati
- MRC Centre for Environment and Health, Imperial College London, UK; Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK; Regional Institute for Population Studies, University of Ghana, Legon, Ghana
| | - Frank J Kelly
- MRC Centre for Environment and Health, Imperial College London, UK; NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, UK
| | - Benjamin Barratt
- MRC Centre for Environment and Health, Imperial College London, UK; NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, UK
| |
Collapse
|
29
|
Morales Betancourt R, Galvis B, Mendez-Molano D, Rincón-Riveros JM, Contreras Y, Montejo TA, Rojas-Neisa DR, Casas O. Toward Cleaner Transport Alternatives: Reduction in Exposure to Air Pollutants in a Mass Public Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7096-7106. [PMID: 35333524 DOI: 10.1021/acs.est.1c07004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Commuters are often exposed to higher concentrations of air pollutants due to its proximity to mobile sources. Despite recent trends in urban transport toward zero- and low-tailpipe emission alternatives, the assessments of the impact of these transformations on commuter exposure are limited by the low frequency of such studies. In this work, we use a unique data set of personal exposure concentration measurements collected over the span of 5 years to analyze changes due to the introduction of a new fleet for Bogotá's Bus Rapid Transit System. In that system, over a thousand Euro-II and -III diesel-powered buses were replaced with Euro-VI compressed natural gas and filter-equipped Euro-V diesel buses. We measured personal exposure concentrations of equivalent black carbon (eBC), fine particulate (PM2.5), and ultra fine particles (UFP) during and after the retirement of old buses and the introduction of new ones. Observations collected prior to the fleet renewal were used as baseline and later compared to data collected over two follow-up campaigns in 2019 and 2020. Significant reductions in the concentration of PM2.5 and eBC were observed during the 2019 campaign, with a 48% decrease for mean in-bus eBC (89.9 to 46.4 μg m-3) and PM2.5 (180.7 to 95.4 μg m-3) concentrations. Further reductions were observed during the 2020 follow-up, when the fleet renovation was completed, with mean in-bus eBC decreasing to 17.7 μg m-3 and PM2.5 to 42.3 μg m-3. These observations imply nearly a 5-fold reduction in eBC exposure and a 4-fold decrease in PM2.5. There was a much smaller reduction of in-bus UFP concentration between 2019 and 2020, indicating a persistent presence of high particle number concentrations in the near-road environment despite the fleet renovation process. In-bus UFP concentrations ranged between 65 000 and 104 500 cm-3 during the follow-up campaigns. The results in this work illustrate the immediate benefits of reducing personal exposure through the adoption of vehicles with more stringent emission standards.
Collapse
Affiliation(s)
- Ricardo Morales Betancourt
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
| | - Boris Galvis
- Chemical Engineering Program, Universidad de la Salle Cra. 2 No. 10-70, Bogotá, Colombia 111711
| | - Daniela Mendez-Molano
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
- Universidad Manuela Beltrán, Bogotá, Colombia 110231
| | - Juan Manuel Rincón-Riveros
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
| | - Yadert Contreras
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
| | - Thalia Alejandra Montejo
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
| | - Diego Roberto Rojas-Neisa
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Cra. 1E No. 19A - 40, Bogotá, Colombia 111711
| | - Oscar Casas
- Center of Innovation and Technology ICP, Ecopetrol, Piedecuesta, Colombia 110231
| |
Collapse
|
30
|
Zhang Y, Huang Z, Huang J. A Comparison of Particulate Exposure Levels during Taxi, Bus, and Metro Commuting among Four Chinese Megacities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105830. [PMID: 35627367 PMCID: PMC9140565 DOI: 10.3390/ijerph19105830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022]
Abstract
Exposure to inhalable particulate matter pollution is a hazard to human health. Many studies have examined the in-transit particulate matter pollution across multiple travel modes. However, limited information is available on the comparison of in-transit exposure among cities that experience different climates and weather patterns. This study aimed to examine the variations in in-cabin particle concentrations during taxi, bus, and metro commutes among four megacities located in the inland and coastal areas of China. To this end, we employed a portable monitoring approach to measure in-transit particle concentrations and the corresponding transit conditions using spatiotemporal information. The results highlighted significant differences in in-cabin particle concentrations among the four cities, indicating that PM concentrations varied in an ascending order of, and the ratios of different-sized particle concentrations varied in a descending order of CS, SZ, GZ, and WH. Variations in in-cabin particle concentrations during bus and metro transits between cities were mainly positively associated with urban background particle concentrations. Unlike those in bus and metro transit, in-cabin PM concentrations in taxi transit were negatively associated with urban precipitation and wind speed. The variations in particle concentrations during the trip were significantly associated with passenger density, posture, the in-cabin location of investigators, and window condition, some of which showed interactive effects. Our findings suggest that improving the urban background environment is essential for reducing particulate pollution in public transport microenvironments. Moreover, optimizing the scheduling of buses and the distribution of bus stops might contribute to mitigating the in-cabin exposure levels in transit. With reference to our methods and insights, policymakers and other researchers may further explore in-transit exposure to particle pollution in different cities.
Collapse
|
31
|
Cauci S, Tavano M, Curcio F, Francescato MP. Biomonitoring of urinary metals in athletes according to particulate matter air pollution before and after exercise. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26371-26384. [PMID: 34855175 PMCID: PMC8637506 DOI: 10.1007/s11356-021-17730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Exposure to air pollution during physical exercise is a health issue because fine particulate matter (dimension < 10 μm; PM10) includes several inhalable toxic metals. Body metal changes in athletes according to air pollution are poorly known. Urinary concentrations of 15 metals: beryllium (Be9), aluminum (Al27), vanadium (V51), chromium (Cr51 + Cr52), manganese (Mn55), cobalt (Co59), nickel (Ni61), copper (Cu63), zinc (Zn61), arsenic (As75), selenium (Se82), cadmium (Cd111 + Cd112), thallium (Tl125), lead (Pb207), and uranium (U238) were measured before and after ten 2-h training sessions in 8 non-professional Italian American-football players (18-28 years old, body mass index 24.2-33.6 kg/m2). Collectively, post-training sessions, urinary concentrations of As, Cd, Co, Cu, Mn, Ni, Pb, Se, Tl, and Zn were higher than pre-training sessions; Al, Be, Cr, and U did not change; conversely, V decreased. Subdividing training sessions according to air PM10 levels: low (< 20 μg/m3), medium (20-40 μg/m3), and high (> 40 μg/m3), pre-session and post-session urinary concentrations of Be, Cd, Cu, and Tl were significantly higher (p < 0.05) in more polluted days, whereas V concentrations were lower (p < 0.001). All the remaining metals were unaffected. We first showed that PM10 levels modulate urinary excretion of some toxic metals suggesting an effect of air pollution. The effects of toxic metals inhaled by athletes exercising in polluted air need further studies.
Collapse
Affiliation(s)
- Sabina Cauci
- Department of Medicine, School of Medicine, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy.
| | - Michael Tavano
- Department of Medicine, School of Medicine, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy
| | - Francesco Curcio
- Department of Medicine, School of Medicine, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy
- Clinical Analysis Laboratory, Department of Laboratory Medicine, Institute of Clinical Pathology, Santa Maria della Misericordia University-Hospital, 33100, Udine, Italy
| | - Maria Pia Francescato
- Department of Medicine, School of Medicine, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy
| |
Collapse
|
32
|
Bergmann ML, Andersen ZJ, Amini H, Khan J, Lim YH, Loft S, Mehta A, Westendorp RG, Cole-Hunter T. Ultrafine particle exposure for bicycle commutes in rush and non-rush hour traffic: A repeated measures study in Copenhagen, Denmark. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118631. [PMID: 34871646 DOI: 10.1016/j.envpol.2021.118631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Ultrafine particles (UFP), harmful to human health, are emitted at high levels from motorized traffic. Bicycle commuting is increasingly encouraged to reduce traffic emissions and increase physical activity, but higher breathing rates increase inhaled UFP concentrations while in traffic. We assessed exposure to UFP while cycling along a fixed 8.5 km inner-city route in Copenhagen, on weekdays over six weeks (from September to October 2020), during morning and afternoon rush-hour, as well as morning non-rush-hour, traffic time periods starting from 07:45, 15:45, and 09:45 h, respectively. Continuous measurements were made (each second) of particle number concentration (PNC) and location. PNC levels were summarized and compared across time periods. We used generalized additive models to adjust for meteorological factors, weekdays and trends. A total of 61 laps were completed, during 28 days (∼20 per time period). Overall mean PNC was 18,149 pt/cm3 (range 256-999,560 pt/cm3) with no significant difference between morning rush-hour (18003 pt/cm3), afternoon rush-hour (17560 pt/cm3) and late morning commute (17560 pt/cm3) [p = 0.85]. There was substantial spatial variation of UFP exposure along the route with highest PNC levels measured at traffic intersections (∼38,000-42000 pt/cm3), multiple lane roads (∼38,000-40000 pt/cm3) and construction sites (∼44,000-51000 pt/cm3), while lowest levels were measured at smaller streets, areas with open built environment (∼12,000 pt/cm3), as well as at a bus-only zone (∼15,000 pt/cm3). UFP exposure in inner-city Copenhagen did not differ substantially when bicycling in either rush-hour or non-rush-hour, or morning or afternoon, traffic time periods. UFP exposure varied substantially spatially, with highest concentrations around intersections, multiple lane roads, and construction sites. This suggests that exposure to UFP is not necessarily reduced by avoiding rush-hours, but by avoiding sources of pollution along the bicycling route.
Collapse
Affiliation(s)
- M L Bergmann
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Z J Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - H Amini
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - J Khan
- Atmospheric Modelling Research Group, Department of Environmental Science, Aarhus University, Roskilde, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Roskilde, Denmark
| | - Y H Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - S Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - A Mehta
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Statistics Denmark, Copenhagen, Denmark
| | - R G Westendorp
- Department of Public Health and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - T Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Egiguren J, Nieuwenhuijsen M, Rojas-Rueda D. Premature Mortality of 2050 High Bike Use Scenarios in 17 Countries. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:127002. [PMID: 34851171 PMCID: PMC8634902 DOI: 10.1289/ehp9073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Biking plays a significant role in urban mobility and has been suggested as a tool to promote public health. A recent study has proposed 2050 global biking scenarios based on large shifts from motorized vehicles to bikes. No previous studies have estimated the health impacts of global cycling scenarios, either future car-bike shift substitutions. OBJECTIVES We aimed to quantify changes in premature mortality of 2050 global biking scenarios in urban populations from 17 countries. METHODS Through a quantitative Health Impact Assessment, the mortality risks and benefits of replacing car trips by bike (mechanica bike and electric bike) in urban populations from 17 countries were estimated. Multiple bike scenarios were created based on current transport trends or large shifts from car trips to bike trips. We quantified the estimated change in the number of premature deaths (reduced or increased) concerning road traffic fatalities, air pollution, and physical activity. This study focuses on urban populations between 20 and 64 y old. RESULTS We found that, among the urban populations (20-64 y old) of 17 countries, 205,424 annual premature deaths could be prevented if high bike-use scenarios are achieved by 2050 (assuming that 100% of bike trips replace car trips). If only 8% of bike trips replace car trips in a more conservative scenario, 18,589 annual premature deaths could be prevented by 2050 in the same population. In all the countries and scenarios, the mortality benefits related to bike use (rather than car use) outweighed the mortality risks. DISCUSSION We found that global biking policies may provide important mortality benefits in 2050. Current and future bike- vs. car-trip policies should be considered key public health interventions for a healthy urban design. https://doi.org/10.1289/EHP9073.
Collapse
Affiliation(s)
- Julen Egiguren
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M.J. Nieuwenhuijsen
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - David Rojas-Rueda
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
34
|
Clockston RLM, Rojas-Rueda D. Health impacts of bike-sharing systems in the U.S. ENVIRONMENTAL RESEARCH 2021; 202:111709. [PMID: 34280419 DOI: 10.1016/j.envres.2021.111709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bike-sharing systems (BSS) are short-term bike rentals that can be borrowed from one location and retired to another at the conclusion of the trip. In 2019, 109,589 BSS trips were made each day in the U.S, and half of those in New York City (NYC). AIM This study aims to quantify the health risks and benefits of BSS in the U.S. and NYC. METHODS This study followed a quantitative health impact assessment approach to estimate the risks and benefits of BSS. Specifically, we quantified the health impacts of physical activity, air pollution, and traffic incidents. We analyzed all the trips made by BSS in the U.S. and NYC. Input data on transport, traffic safety, air quality, and physical activity were collated from public records and scientific publications. We modeled the health impacts on adult users related to mortality, disease incidence, disability-adjusted life years (DALYs), and health economic impacts (related to morbidity and mortality). RESULTS We estimated that in the U.S. BSS trips resulted in an annual reduction of 4.7 premature deaths, 737 DALYs, and 36 million $USD in health economic impacts, mainly derived from the increment in physical activity. In NYC, we estimated an annual reduction of 2 premature deaths, 355 DALYs, and 15 million $USD in health economic impacts. CONCLUSION BSS in the U.S. and NYC provide a health benefit for bicyclists. Improvements in air quality and traffic safety across U.S. cities will maximize the health benefits of BSS.
Collapse
Affiliation(s)
- Raeven Lynn M Clockston
- Colorado School of Public Health, Colorado State University, Fort Collins, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, USA
| | - David Rojas-Rueda
- Colorado School of Public Health, Colorado State University, Fort Collins, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, USA.
| |
Collapse
|
35
|
Bergmann ML, Andersen ZJ, Amini H, Ellermann T, Hertel O, Lim YH, Loft S, Mehta A, Westendorp RG, Cole-Hunter T. Exposure to ultrafine particles while walking or bicycling during COVID-19 closures: A repeated measures study in Copenhagen, Denmark. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148301. [PMID: 34412377 PMCID: PMC8178061 DOI: 10.1016/j.scitotenv.2021.148301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 05/15/2023]
Abstract
Ultrafine particles (UFP; particulate matter <0.1 μm diameter) emitted from motorized traffic may be highly detrimental to health. Active mobility (walking, bicycling) is increasingly encouraged as a way to reduce traffic congestion and increase physical activity levels. However, it has raised concerns of increased exposure to UFP, due to increased breathing rates in traffic microenvironments, immediately close to their source. The recent Coronavirus Disease 2019 (COVID-19) societal closures reduced commuting needs, allowing a natural experiment to estimate contributions from motorized traffic to UFP exposure while walking or bicycling. From late-March to mid-July 2020, UFP was repeatedly measured while walking or bicycling, capturing local COVID-19 closure ('Phase 0') and subsequent phased re-opening ('Phase 1', '2', '2.1' & '3'). A DiSCmini continuously measured particle number concentration (PNC) in the walker/bicyclist's breathing zone. PNC while walking or bicycling was compared across phased re-openings, and the effect of ambient temperature, wind speed and direction was determined using regression models. Approximately 40 repeated 20-minute walking and bicycling laps were made over 4 months during societal re-opening phases related to the COVID-19 pandemic (late-March to mid-July 2020) in Copenhagen. Highest median PNC exposure of both walking (13,170 pt/cm3, standard deviation (SD): 3560 pt/cm3) and bicycling (21,477 pt/cm3, SD: 8964) was seen during societal closures (Phase 0) and decreased to 5367 pt/cm3 (SD: 2949) and 8714 pt/cm3 (SD: 4309) in Phase 3 of re-opening. These reductions in PNC were mainly explained by meteorological conditions, with most of the deviation explained by wind speed (14-22%) and temperature (10-13%). Highest PNC was observed along major roads and intersections. In conclusion, we observed decreases in UFP exposure while walking and bicycling during societal re-opening phases related to the COVID-19 pandemic, due largely to meteorological factors (e.g., wind speed and temperature) and seasonal variations in UFP levels.
Collapse
Affiliation(s)
- M L Bergmann
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Z J Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - H Amini
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - T Ellermann
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - O Hertel
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Y H Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - S Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - A Mehta
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Statistics Denmark, Copenhagen, Denmark
| | - R G Westendorp
- Department of Public Health and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - T Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Green S. Cycling for health: Improving health and mitigating the climate crisis. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2021; 67:739-742. [PMID: 34649896 PMCID: PMC8516176 DOI: 10.46747/cfp.6710739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To review the literature about cycling and health, and to provide an overview and discussion of the available evidence. SOURCES OF INFORMATION The MeSH terms bicycle and transportation were searched in PubMed. Clinical trials, practice reviews, and systematic reviews were included. All reference lists were reviewed for additional articles. MAIN MESSAGE Climate change is a threat to health. In Canada alone, transportation is the second largest source of greenhouse gas emissions. Active transportation, which is any form of human-powered transportation, can mitigate the health effects of the climate crisis while simultaneously improving the health of people. Physical activity improves overall well-being, as well as physical and mental health. Active transportation, particularly cycling, is a convenient way to meet physical activity targets, reduce risk of disease and all-cause mortality, and derive mental health and social benefits. Family physician advocacy for active transportation has been shown to increase cycling levels in patients compared with no physician advocacy. CONCLUSION Family physicians can help to increase the level of active transportation at the individual patient level through patient education and behaviour change counseling; at the community level through community education and political advocacy; and at the policy level through partnerships with larger organizations.
Collapse
Affiliation(s)
- Samantha Green
- Family physician at St Michael’s Hospital in Toronto, Ont, and Faculty Lead in Climate Change and Health in the Department of Family and Community Medicine at the University of Toronto
| |
Collapse
|
37
|
Varaden D, Leidland E, Lim S, Barratt B. "I am an air quality scientist"- Using citizen science to characterise school children's exposure to air pollution. ENVIRONMENTAL RESEARCH 2021; 201:111536. [PMID: 34166662 DOI: 10.1016/j.envres.2021.111536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/26/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Children are particularly vulnerable to the harmful effects of air pollution. To tackle this issue and implement effective strategies to reduce child exposure, it is important to understand how children are exposed to this risk. This study followed a citizen science approach to air pollution monitoring, aiming to characterise school children's exposure to air pollution and to analyse how a citizen science approach to data collection could contribute to and enhance the research process. 258 children across five London primary schools attended air pollution education sessions and measured air pollution for a week using backpacks with built-in air quality sensors. Children received a summary of the results, advice and information on how to reduce exposure to air pollution. Data on the impact of the approach on the school community were collected using surveys and focus groups with children and their parents and interviews with the teachers involved. The unique data set obtained permitted us to map different routes and modes of transport used by the children and quantify different exposure levels. We identified that, on average, children were exposed to higher levels of air pollution when travelling to and from school, particularly during the morning journey where air pollution levels were on average 52% higher than exposures at school. Children who walked to and from school through busy main roads were exposed to 33% higher levels of air pollution than those who travelled through back streets. The findings from this study showed that using a citizen science approach to data collection, where children are actively involved in the research process, not only facilitated the gathering of a large data set by encouraging participation and stimulating adherence with the study protocol, but also increased children's awareness of air pollution, encouraging them to adopt positive behaviour changes to reduce their exposure.
Collapse
Affiliation(s)
- Diana Varaden
- NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, London, W12 0BZ , UK; MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; School of Public Health, Imperial College London Michael Uren Biomedical Engineering HubWhite City Campus, Wood Lane, London, W12 0BZ, UK; School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, FWB Room 4.189, (Corridor B) 150 Stamford Street, London, SE1 9NH, UK.
| | - Einar Leidland
- School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, FWB Room 4.189, (Corridor B) 150 Stamford Street, London, SE1 9NH, UK.
| | - Shanon Lim
- NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, London, W12 0BZ , UK; MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, FWB Room 4.189, (Corridor B) 150 Stamford Street, London, SE1 9NH, UK.
| | - Benjamin Barratt
- NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, London, W12 0BZ , UK; MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; School of Public Health, Imperial College London Michael Uren Biomedical Engineering HubWhite City Campus, Wood Lane, London, W12 0BZ, UK; School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, FWB Room 4.189, (Corridor B) 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
38
|
PM2.5 Pollutant Concentrations in Greenspaces of Nanjing Are High but Can Be Lowered with Environmental Planning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189705. [PMID: 34574633 PMCID: PMC8470726 DOI: 10.3390/ijerph18189705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Small-scale greenspaces in high-density central urban districts serve as important outdoor activity spaces for the surrounding residents, especially the elderly. This study selects six small-scale, popular greenspaces with distinct characteristics that are jointly situated along the same main urban artery in a high-density central urban district. Field investigations and questionnaires are conducted and combined with statistical analyses, to explore the spatial-temporal distribution and influencing factors of PM2.5 concentrations in these greenspaces. The study finds that the air quality conditions in the sites are non-ideal, and this has potential negative impacts on the health of the elderly visitors. Moreover, the difference values of PM2.5 concentrations' spatial-temporal distributions are significantly affected by vehicle-related emissions, which have significant temporal characteristics. PM2.5 concentration is strongly correlated with percentage of green coverage (R = 0.82, p < 0.05), degree of airflow (R = -0.83, p < 0.05), humidity and comfort level (R = 0.54, p < 0.01 and R = -0.40, p < 0.01 respectively). Meanwhile, the sites' "sky view factor" is strongly correlated with degree of airflow (R = 0.82, p < 0.05), and the comfort level plays an indirect role in the process of PM2.5 affecting crowd activities. Based on this analysis, an optimal set of index ranges for greenspace elements which are correlated with the best reduction in PM2.5 concentrations is derived. As such, this research reveals the technical methods to best reduce their concentrations and provides a basis and reference for improving the quality of small-scale greenspaces in high-density urban districts for the benefit of healthy aging.
Collapse
|
39
|
Personal Interventions for Reducing Exposure and Risk for Outdoor Air Pollution: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2021; 18:1435-1443. [PMID: 34468284 PMCID: PMC8489863 DOI: 10.1513/annalsats.202104-421st] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poor air quality affects the health and wellbeing of large populations around the globe. Although source controls are the most effective approaches for improving air quality and reducing health risks, individuals can also take actions to reduce their personal exposure by staying indoors, reducing physical activity, altering modes of transportation, filtering indoor air, and using respirators and other types of face masks. A synthesis of available evidence on the efficacy, effectiveness, and potential adverse effects or unintended consequences of personal interventions for air pollution is needed by clinicians to assist patients and the public in making informed decisions about use of these interventions. To address this need, the American Thoracic Society convened a workshop in May of 2018 to bring together a multidisciplinary group of international experts to review the current state of knowledge about personal interventions for air pollution and important considerations when helping patients and the general public to make decisions about how best to protect themselves. From these discussions, recommendations were made regarding when, where, how, and for whom to consider personal interventions. In addition to the efficacy and safety of the various interventions, the committee considered evidence regarding the identification of patients at greatest risk, the reliability of air quality indices, the communication challenges, and the ethical and equity considerations that arise when discussing personal interventions to reduce exposure and risk from outdoor air pollution.
Collapse
|
40
|
Korhonen A, Relvas H, Miranda AI, Ferreira J, Lopes D, Rafael S, Almeida SM, Faria T, Martins V, Canha N, Diapouli E, Eleftheriadis K, Chalvatzaki E, Lazaridis M, Lehtomäki H, Rumrich I, Hänninen O. Analysis of spatial factors, time-activity and infiltration on outdoor generated PM 2.5 exposures of school children in five European cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147111. [PMID: 33940420 DOI: 10.1016/j.scitotenv.2021.147111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric particles are a major environmental health risk. Assessments of air pollution related health burden are often based on outdoor concentrations estimated at residential locations, ignoring spatial mobility, time-activity patterns, and indoor exposures. The aim of this work is to quantify impacts of these factors on outdoor-originated fine particle exposures of school children. We apply nested WRF-CAMx modelling of PM2.5 concentrations, gridded population, and school location data. Infiltration and enrichment factors were collected and applied to Athens, Kuopio, Lisbon, Porto, and Treviso. Exposures of school children were calculated for residential and school outdoor and indoor, other indoor, and traffic microenvironments. Combined with time-activity patterns six exposure models were created. Model complexity was increased incrementally starting from residential and school outdoor exposures. Even though levels in traffic and outdoors were considerably higher, 80-84% of the exposure to outdoor particles occurred in indoor environments. The simplest and also commonly used approach of using residential outdoor concentrations as population exposure descriptor (model 1), led on average to 26% higher estimates (15.7 μg/m3) compared with the most complex model (# 6) including home and school outdoor and indoor, other indoor and traffic microenvironments (12.5 μg/m3). These results emphasize the importance of including spatial mobility, time-activity and infiltration to reduce bias in exposure estimates.
Collapse
Affiliation(s)
- Antti Korhonen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), 70701 Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, 70701 Kuopio, Finland.
| | - Hélder Relvas
- CESAM, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Ana Isabel Miranda
- CESAM, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Joana Ferreira
- CESAM, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Diogo Lopes
- CESAM, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Sandra Rafael
- CESAM, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Susana Marta Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela, Portugal
| | - Tiago Faria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela, Portugal
| | - Vânia Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela, Portugal
| | - Nuno Canha
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela, Portugal
| | - Evangelia Diapouli
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Agia Paraskevi, 15310 Athens, Greece
| | - Konstantinos Eleftheriadis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Agia Paraskevi, 15310 Athens, Greece
| | - Eleftheria Chalvatzaki
- School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Mihalis Lazaridis
- School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Heli Lehtomäki
- Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), 70701 Kuopio, Finland; Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland (UEF), 70701 Kuopio, Finland
| | - Isabell Rumrich
- Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), 70701 Kuopio, Finland
| | - Otto Hänninen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), 70701 Kuopio, Finland
| |
Collapse
|
41
|
Lim S, Barratt B, Holliday L, Griffiths CJ, Mudway IS. Characterising professional drivers' exposure to traffic-related air pollution: Evidence for reduction strategies from in-vehicle personal exposure monitoring. ENVIRONMENT INTERNATIONAL 2021; 153:106532. [PMID: 33812042 DOI: 10.1016/j.envint.2021.106532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Professional drivers working in congested urban areas are required to work near harmful traffic related pollutants for extended periods, representing a significant, but understudied occupational risk. This study collected personal black carbon (BC) exposures for 141 drivers across seven sectors in London. The aim of the study was to assess the magnitude and the primary determinants of their exposure, leading to the formulation of targeted exposure reduction strategies for the occupation. Each participant's personal BC exposures were continuously measured using real-time monitors for 96 h, incorporating four shifts per participant. 'At work' BC exposures (3.1 ± 3.5 µg/m3) were 2.6 times higher compared to when 'not at work' (1.2 ± 0.7 µg/m3). Workers spent 19% of their time 'at work driving', however this activity contributed 36% of total BC exposure, highlighting the disproportionate effect driving had on their daily exposure. Taxi drivers experienced the highest BC exposures due to the time they spent working in congested central London, while emergency services had the lowest. Spikes in exposure were observed while driving and were at times greater than 100 µg/m3. The most significant determinants of drivers' exposures were driving in tunnels, congestion, location, day of week and time of shift. Driving with closed windows significantly reduced exposures and is a simple behaviour change drivers could implement. Our results highlight strategies by which employers and local policy makers can reduce professional drivers' exposure to traffic-related air pollution.
Collapse
Affiliation(s)
- Shanon Lim
- MRC Centre for Environment and Health, Imperial College London, SW7 2AZ London, UK.
| | - Benjamin Barratt
- MRC Centre for Environment and Health, Imperial College London, SW7 2AZ London, UK; NIHR Environmental Exposure and Health HPRU, Imperial College London, UK
| | - Lois Holliday
- Institute of Population Health Sciences, Asthma UK Centre for Applied Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Chris J Griffiths
- Institute of Population Health Sciences, Asthma UK Centre for Applied Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Ian S Mudway
- MRC Centre for Environment and Health, Imperial College London, SW7 2AZ London, UK; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK; NIHR Environmental Exposure and Health HPRU, Imperial College London, UK
| |
Collapse
|
42
|
Peruzzi M, Sanasi E, Pingitore A, Marullo AG, Carnevale R, Sciarretta S, Sciarra L, Frati G, Cavarretta E. An overview of cycling as active transportation and as benefit for health. Minerva Cardioangiol 2021; 68:81-97. [PMID: 32429627 DOI: 10.23736/s0026-4725.20.05182-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Active transportation is defined as travelling on foot, by bicycle or other non-motorized means, sometimes in combination with other forms of public transportation, in contrast with the use of motor vehicles. The prevalence of sedentary lifestyle and physical inactivity is a growing epidemic in most developed countries that spread over the last three decades; active transportation may be a promising approach to increase physical activity and reduce the risk of non-communicable diseases improving cardiorespiratory fitness and cardiometabolic health. The health benefits of physical activity in reducing mortality and morbidity have been proved by several publications. Cardiorespiratory fitness can be improved by regular physical activity with an amelioration of insulin sensitivity, blood lipid profile, body composition, inflammation, and blood pressure. Active transportation as a daily physical activity is less expensive compared to motor vehicle use. The advantages are remarkable in terms of contrasting obesity and sedentary lifestyle, decrease motor traffic congestion and mitigate climate change. Massive investments in policies and interventions aimed to increase active transportation are not generally promoted and there are differences in the prevalence of active transportation in the daily routine among different areas. As in the literature several studies as randomized trials or observational studies have been published, with different end-points, in order to investigate if active commuting may be the right answer to improve cardiorespiratory fitness and cardiometabolic health, we aimed to review the available evidences of cycling as an active transportation and to consider its benefits on health.
Collapse
Affiliation(s)
| | - Elena Sanasi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | | | - Antonino G Marullo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Roberto Carnevale
- Mediterranea Cardiocentro, Naples, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Department of Angio-Cardio-Neurology, IRCCS NeuroMed, Pozzilli, Isernia, Italy
| | - Luigi Sciarra
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Department of Angio-Cardio-Neurology, IRCCS NeuroMed, Pozzilli, Isernia, Italy
| | - Elena Cavarretta
- Mediterranea Cardiocentro, Naples, Italy - .,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| |
Collapse
|
43
|
Boniardi L, Dons E, Longhi F, Scuffi C, Campo L, Van Poppel M, Int Panis L, Fustinoni S. Personal exposure to equivalent black carbon in children in Milan, Italy: Time-activity patterns and predictors by season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116530. [PMID: 33516956 DOI: 10.1016/j.envpol.2021.116530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Air pollution is a global threat to public health, especially when considering susceptible populations, such as children. A better understanding of determinants of exposure could help epidemiologists in refining exposure assessment methods, and policy makers in identifying effective mitigation interventions. Through a participatory approach, 73 and 89 schoolchildren were involved in a two-season personal exposure monitoring campaign of equivalent black carbon (EBC) in Milan, Italy. GPS devices, time-activity diaries and a questionnaire were used to collect personal information. Exposure to EBC was 1.3 ± 1.5 μg/m3 and 3.9 ± 3.3 μg/m3 (mean ± sd) during the warm and the cold season, respectively. The highest peaks of exposure were detected during the home-to-school commute. Children received most of their daily dose at school and home (82%), but the highest dose/time intensity was related to transportation and outdoor environments. Linear mixed-effect models showed that meteorological variables were the most influencing predictors of personal exposure and inhaled dose, especially in the cold season. The total time spent in a car, duration of the home-to-school commute, and smoking habits of parents were important predictors as well. Our findings suggest that seasonality, time-activity and mobility patterns play an important role in explaining exposure patterns. Furthermore, by highlighting the contribution of traffic rush hours, transport-related microenvironments and traffic-related predictors, our study suggests that acting on a local scale could be an effective way of lowering personal exposure to EBC and inhaled dose of children in the city of Milan.
Collapse
Affiliation(s)
- Luca Boniardi
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Environmental and Industrial Toxicology Unit, Milan, Italy
| | - Evi Dons
- Flemish Institute for Technological Research (VITO), Mol, Belgium; Hasselt University, Centre for Environmental Sciences (CMK), Hasselt, Belgium
| | - Francesca Longhi
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - Chiara Scuffi
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - Laura Campo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Environmental and Industrial Toxicology Unit, Milan, Italy
| | | | - Luc Int Panis
- Flemish Institute for Technological Research (VITO), Mol, Belgium; Hasselt University, Centre for Environmental Sciences (CMK), Hasselt, Belgium
| | - Silvia Fustinoni
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Environmental and Industrial Toxicology Unit, Milan, Italy.
| |
Collapse
|
44
|
Identification of High Personal PM2.5 Exposure during Real Time Commuting in the Taipei Metropolitan Area. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There has been an increase in the network of mass rapid transit (MRT) and the number of automobiles over the past decades in the Taipei metropolitan area, Taiwan. The effects of these changes on PM2.5 exposure for the residents using different modes of transportation are unclear. Volunteers measured PM2.5 concentrations while commuting in different modes of transportation using a portable PM2.5 detector. Exposure to PM2.5 (median (range)) was higher when walking along the streets (40 (10–275) µg/m3) compared to riding the buses (35 (13–65) µg/m3) and the cars (15 (8–80) µg/m3). PM2.5 concentrations were higher in underground MRT stations (80 (30–210) µg/m3) and inside MRT cars running in underground sections (80 (55–185) µg/m3) than those in elevated MRT stations (33 (15–35) µg/m3) and inside MRT cars running in elevated sections (28 (13–68) µg/m3) (p < 0.0001). Riding motorcycle also was associated with high PM2.5 exposure (75 (60–105 µg/m3), p < 0.0001 vs. walking). High PM2.5 concentrations were noted near the temples (588 ± 271 µg/m3) and in the underground food court of a night market (405 ± 238 µg/m3) where the eatery stalls stir-fried and grilled food (p < 0.0001 vs. walking). We conclude that residents in the Taipei metropolitan area may still be exposed to high PM2.5 during some forms of commuting, including riding underground MRT.
Collapse
|
45
|
Rojas-Rueda D. Health Impacts of Urban Bicycling in Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052300. [PMID: 33652688 PMCID: PMC7967710 DOI: 10.3390/ijerph18052300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
Background: Bicycling has been associated with health benefits. Local and national authorities have been promoting bicycling as a tool to improve public health and the environment. Mexico is one of the largest Latin American countries, with high levels of sedentarism and non-communicable diseases. No previous studies have estimated the health impacts of Mexico’s national bicycling scenarios. Aim: Quantify the health impacts of Mexico urban bicycling scenarios. Methodology: Quantitative Health Impact Assessment, estimating health risks and benefits of bicycling scenarios in 51,718,756 adult urban inhabitants in Mexico (between 20 and 64 years old). Five bike scenarios were created based on current bike trends in Mexico. The number of premature deaths (increased or reduced) was estimated in relation to physical activity, road traffic fatalities, and air pollution. Input data were collected from national publicly available data sources from transport, environment, health and population reports, and surveys, in addition to scientific literature. Results: We estimated that nine premature deaths are prevented each year among urban populations in Mexico on the current car-bike substitution and trip levels (1% of bike trips), with an annual health economic benefit of US $1,897,920. If Mexico achieves similar trip levels to those reported in The Netherlands (27% of bike trips), 217 premature deaths could be saved annually, with an economic impact of US $45,760,960. In all bicycling scenarios assessed in Mexico, physical activity’s health benefits outweighed the health risks related to traffic fatalities and air pollution exposure. Conclusion: The study found that bicycling promotion in Mexico would provide important health benefits. The benefits of physical activity outweigh the risk from traffic fatalities and air pollution exposure in bicyclists. At the national level, Mexico could consider using sustainable transport policies as a tool to promote public health. Specifically, the support of active transportation through bicycling and urban design improvements could encourage physical activity and its health co-benefits.
Collapse
Affiliation(s)
- David Rojas-Rueda
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
46
|
Will the Consequences of Covid-19 Trigger a Redefining of the Role of Transport in the Development of Sustainable Tourism? SUSTAINABILITY 2021. [DOI: 10.3390/su13041887] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As there are very marked relationships between tourism and transport, integrated knowledge of these processes is essential if destinations and tourism enterprises are to be developed, an effective tourism policy pursued, and emerging local and global issues and conflicts surrounding tourism resolved. Beyond this, in an era of huge change reflecting the consequences of the COVID-19 viral pandemic, the importance of sustainable transport in tourism’s sustainable development appears to be of critical importance. Adopting this kind of perspective, this paper seeks to achieve a critical overview of conceptual dimensions of sustainability that link up with tourism and transport. To this end, ideas based on the literature and previous discussions are extended to include certain new propositions arising out of a (hopefully) post-COVID-19 world. Proceeding first with a systematic literature review (SLR), this article discusses the importance of transport to the development of tourism, dealing critically with modes of transport and their changing roles in sustainable development under COVID and post-COVID circumstances. The author summarises likely new way(s) of thinking in the aftermath of the pandemic, with the need for this/these to be far more sustainable and responsible, and characterised by a reorientation of behaviour in a “green” direction. It is further concluded that three aspects of transport–tourism relations will prove crucial to more sustainable utilisation—i.e., proximity, slower and less energy-intensive travel, and green transport.
Collapse
|
47
|
Tainio M, Jovanovic Andersen Z, Nieuwenhuijsen MJ, Hu L, de Nazelle A, An R, Garcia LMT, Goenka S, Zapata-Diomedi B, Bull F, Sá THD. Air pollution, physical activity and health: A mapping review of the evidence. ENVIRONMENT INTERNATIONAL 2021; 147:105954. [PMID: 33352412 PMCID: PMC7816214 DOI: 10.1016/j.envint.2020.105954] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exposure to air pollution and physical inactivity are both significant risk factors for non-communicable diseases (NCDs). These risk factors are also linked so that the change in exposure in one will impact risks and benefits of the other. These links are well captured in the active transport (walking, cycling) health impact models, in which the increases in active transport leading to increased inhaled dose of air pollution. However, these links are more complex and go beyond the active transport research field. Hence, in this study, we aimed to summarize the empirical evidence on the links between air pollution and physical activity, and their combined effect on individual and population health. OBJECTIVES AND METHODS We conducted a non-systematic mapping review of empirical and modelling evidence of the possible links between exposure to air pollution and physical activity published until Autumn 2019. We reviewed empirical evidence for the (i) impact of exposure to air pollution on physical activity behaviour, (ii) exposure to air pollution while engaged in physical activity and (iii) the short-term and (iv) long-term health effects of air pollution exposure on people engaged in physical activity. In addition, we reviewed (v) public health modelling studies that have quantified the combined effect of air pollution and physical activity. These broad research areas were identified through expert discussions, including two public events performed in health-related conferences. RESULTS AND DISCUSSION The current literature suggests that air pollution may decrease physical activity levels during high air pollution episodes or may prevent people from engaging in physical activity overall in highly polluted environments. Several studies have estimated fine particulate matter (PM2.5) exposure in active transport environment in Europe and North-America, but the concentration in other regions, places for physical activity and for other air pollutants are poorly understood. Observational epidemiological studies provide some evidence for a possible interaction between air pollution and physical activity for acute health outcomes, while results for long-term effects are mixed with several studies suggesting small diminishing health gains from physical activity due to exposure to air pollution for long-term outcomes. Public health modelling studies have estimated that in most situations benefits of physical activity outweigh the risks of air pollution, at least in the active transport environment. However, overall evidence on all examined links is weak for low- and middle-income countries, for sensitive subpopulations (children, elderly, pregnant women, people with pre-existing conditions), and for indoor air pollution. CONCLUSIONS Physical activity and air pollution are linked through multiple mechanisms, and these relations could have important implications for public health, especially in locations with high air pollution concentrations. Overall, this review calls for international collaboration between air pollution and physical activity research fields to strengthen the evidence base on the links between both and on how policy options could potentially reduce risks and maximise health benefits.
Collapse
Affiliation(s)
- Marko Tainio
- Sustainable Urbanisation Programme, Finnish Environment Institute SYKE, Helsinki, Finland; Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Mark J Nieuwenhuijsen
- ISGlobal - Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Liang Hu
- Department of Sport Science, Zhejiang University, Hangzhou, China
| | - Audrey de Nazelle
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Ruopeng An
- Brown School, Washington University in St. Louis, St. Louis, US
| | | | - Shifalika Goenka
- Centre for Chronic Disease Control and Public Health Foundation of India, New Delhi, India
| | | | - Fiona Bull
- Department of Health Promotion, World Health Organization, Geneva, Switzerland
| | - Thiago Herick de Sá
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
48
|
Allen RW, Barn P. Individual- and Household-Level Interventions to Reduce Air Pollution Exposures and Health Risks: a Review of the Recent Literature. Curr Environ Health Rep 2020; 7:424-440. [PMID: 33241434 PMCID: PMC7749091 DOI: 10.1007/s40572-020-00296-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW We reviewed recent peer-reviewed literature on three categories of individual- and household-level interventions against air pollution: air purifiers, facemasks, and behavior change. RECENT FINDINGS High-efficiency particulate air/arresting (HEPA) filter air purifier use over days to weeks can substantially reduce fine particulate matter (PM2.5) concentrations indoors and improve subclinical cardiopulmonary health. Modeling studies suggest that the population-level benefits of HEPA filter air purification would often exceed costs. Well-fitting N95 and equivalent respirators can reduce PM2.5 exposure, with several randomized crossover studies also reporting improvements in subclinical cardiovascular health. The health benefits of other types of face coverings have not been tested and their effectiveness in reducing exposure is highly variable, depends largely on fit, and is unrelated to cost. Behavior modifications may reduce exposure, but there has been little research on health impacts. There is now substantial evidence that HEPA filter air purifiers reduce indoor PM2.5 concentrations and improve subclinical health indicators. As a result, their use is being recommended by a growing number of government and public health organizations. Several studies have also reported subclinical cardiovascular health benefits from well-fitting respirators, while evidence of health benefits from other types of facemasks and behavior changes remains very limited. In situations when emissions cannot be controlled at the source, such as during forest fires, individual- or household-level interventions may be the primary option. In most cases, however, such interventions should be supplemental to emission reduction efforts that benefit entire communities.
Collapse
Affiliation(s)
- Ryan W Allen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Prabjit Barn
- Legacy for Airway Health, Vancouver Coastal Health, Vancouver, BC, Canada
| |
Collapse
|
49
|
Abstract
Walking and cycling are not only frequently-used modes of transport but also popular physical activities. They are beneficial to traffic congestion mitigation, air pollution reduction, and public health promotion. Hence, examining and comparing the built environment correlates of the propensity of walking and cycling is of great interest to urban practitioners and decision-makers and has attracted extensive research attention. However, existing studies mainly look into the two modes separately or consider them as an integral (i.e., active travel), and few compare built environment correlates of their propensity in a single study, especially in the developing world context. Thus, this study, taking Xiamen, China, as a case, examines the built environment correlates of the propensity of walking and cycling simultaneously and compares the results wherever feasible. It found (1) built environment correlates of the propensity of walking and cycling differ with each other largely in direction and magnitude; (2) land use mix, intersection density, and bus stop density are positively associated with walking propensity, while the distance to the CBD (Central Business District) is a negative correlate; (3) as for cycling propensity, only distance to CBD is a positive correlate, and job density, intersection density, and bus stop density are all negative correlates. The findings of this study have rich policy implications for walking and cycling promotion interventions.
Collapse
|
50
|
Potential Effects on Travelers' Air Pollution Exposure and Associated Mortality Estimated for a Mode Shift from Car to Bicycle Commuting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207635. [PMID: 33092089 PMCID: PMC7589739 DOI: 10.3390/ijerph17207635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022]
Abstract
This study aims to use dispersion-modeled concentrations of nitrogen oxides (NOx) and black carbon (BC) to estimate bicyclist exposures along a network of roads and bicycle paths. Such modeling was also performed in a scenario with increased bicycling. Accumulated concentrations between home and work were thereafter calculated for both bicyclists and drivers of cars. A transport model was used to estimate traffic volumes and current commuting preferences in Stockholm County. The study used individuals’ home and work addresses, their age, sex, and an empirical model estimate of their expected physical capacity in order to establish realistic bicycle travel distances. If car commuters with estimated physical capacity to bicycle to their workplace within 30 min changed their mode of transport to bicycle, >110,000 additional bicyclists would be achieved. Time-weighted mean concentrations along paths were, among current bicyclists, reduced from 25.8 to 24.2 μg/m3 for NOx and 1.14 to 1.08 μg/m3 for BC. Among the additional bicyclists, the yearly mean NOx dose from commuting increased from 0.08 to 1.03 μg/m3. This would be expected to yearly cause 0.10 fewer deaths for current bicycling levels and 1.7 more deaths for additional bicycling. This increased air pollution impact is much smaller than the decrease in the total population.
Collapse
|