1
|
Salles FJ, Atilola G, Frydas I, Schultz DR, Papaioannou N, Rogero MM, Sarigiannis D, Vineis P, Olympio KPK. Effects of minimal arsenic, lead, and cadmium exposure on biological pathways in Brazilian informal workers welding fashion jewelry. J Trace Elem Med Biol 2025; 89:127660. [PMID: 40300411 DOI: 10.1016/j.jtemb.2025.127660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/23/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
INTRODUCTION This study complements previous research about informal workers occupational exposure by investigating the whole blood transcriptome of women engaged in informal home-based jewelry production in the city of Limeira, Sao Paulo, Brazil, focusing on associations between gene expression and arsenic (As), cadmium (Cd), and lead (Pb) concentrations in blood, as well as on identifying transcriptome profiles linked to self-reported health outcomes. METHODS Participants were divided into two groups: an exposed group comprising informal workers engaged in domestic jewelry welding activities (n = 22) and a control group composed of neighbors without occupational exposures (n = 19). Linear regression modeling assessed the association between the blood concentration of toxic elements, gene expression, and reported health outcomes. Pathway analysis was performed using ConsensusPathDB. RESULTS 269 differentially expressed genes (DEGs) associated with As exposure and 43 with Cd exposure were found in this study, revealing significant health impacts on these workers. DEGs were also significantly associated with respiratory illness (bronchitis and asthma), neurological manifestations (sleep problems, migraines, or frequent headaches), shortness of breath, blood glucose, cholesterol, and triglyceride levels. Pathway analysis indicates genes related to inflammatory processes, alterations in intestinal permeability, and neurological outcomes. CONCLUSION The results shed light on the transcriptomic changes in this occupational context and contribute to a better understanding of the challenges faced by informal workers. Even with low doses of toxic elements in the blood, it was possible to observe differences in gene expression linked to self-reported outcomes. Additional studies should clarify the biological processes associated with toxic elements exposure.
Collapse
Affiliation(s)
- Fernanda Junqueira Salles
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, São Paulo, SP CEP 01246-904, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP 01246-000, Brazil.
| | - Glory Atilola
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, UK; MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; Department of Population, Policy and Practice, Institute of Child Health Great Ormond Street, University College London, UK
| | - Ilias Frydas
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dayna R Schultz
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nafsika Papaioannou
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo 01246-904, Brazil
| | - Dimosthenis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paolo Vineis
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Kelly Polido Kaneshiro Olympio
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, São Paulo, SP CEP 01246-904, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP 01246-000, Brazil.
| |
Collapse
|
2
|
Peng F, Wang Y, Lu Y, Yang Z, Li H. Formation and control of disinfection by-products during the trichloroisocyanuric acid disinfection in swimming pool water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123536. [PMID: 38365079 DOI: 10.1016/j.envpol.2024.123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
The increasing demand for trichloroisocyanuric acid (TCCA) in swimming pool disinfection highlights the need to evaluate its applicability in terms of disinfection by-product (DBP) formation. Nevertheless, there is limited understanding of DBP formation and control during TCCA disinfection, particularly concerning the effects of various management parameters. This study aimed to fill this knowledge gap by comprehensively investigating DBP formation during TCCA chlorination, with a particular focus on assessing the contribution and interaction of influencing factors using Box-Behnken Design and response surface methodology. Results indicated that the concentrations of trichloroacetaldehyde, chloroform, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile produced by TCCA disinfectant were 42.5%, 74.0%, 48.1%, 94.7% and 42.6% of those by the conventional sodium hypochlorite disinfectant, respectively. Temperature exhibited the most significant impact on chloroform formation (49%), while pH played a major role in trichloroacetaldehyde formation (44%). pH2 emerged as the primary contributor to dichloroacetic acid (90%) and trichloroacetic acid (93%) formation. The optimum water quality conditions were determined based on the minimum total DBPs (pH = 7.32, Temperature = 23.7 °C, [Cl-] = 437 mg/L). Chlorine dosage and contact time exhibited greater influence than precursor concentration on chloroform, dichloroacetonitrile, trichloroacetaldehyde, trichloroacetic acid, and total DBPs. Although the interaction between water quality parameters was weak, the interaction between disinfection operating parameters demonstrated substantial effects on DBP formation (8.56-19.06%). Furthermore, the DBP predictive models during TCCA disinfection were provided for the first time, which provides valuable insights for DBP control and early warning programs.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
3
|
Salles FJ, Frydas IS, Papaioannou N, Schultz DR, Luz MS, Rogero MM, Sarigiannis DA, Olympio KPK. Occupational exposure to potentially toxic elements alters gene expression profiles in formal and informal Brazilian workers. ENVIRONMENTAL RESEARCH 2023; 236:116835. [PMID: 37543127 DOI: 10.1016/j.envres.2023.116835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Chemical elements, such as toxic metals, have previously demonstrated their ability to alter gene expression in humans and other species. In this study, microarray analysis was used to compare the gene expression profiles of different occupational exposure populations: a) informal workers who perform soldering of jewelry inside their houses (n = 22) in São Paulo (SP) State; and b) formal workers from a steel company (n = 10) in Rio de Janeiro (RJ) state, Brazil. Control participants were recruited from the same neighborhoods without occupational chemical exposure (n = 19 in SP and n = 8 in RJ). A total of 68 blood samples were collected and RNA was extracted and hybridized using an Agilent microarray platform. Data pre-processing, statistical and pathway analysis were performed using GeneSpring software. Different expression was detected by fold-change analysis resulting in 16 up- and 33 down-regulated genes in informal workers compared to the control group. Pathway analysis revealed genes enriched in MAPK, Toll-like receptor, and NF-kappa B signaling pathways, involved in inflammatory and immune responses. In formal workers, 20 up- and 50 down-regulated genes were found related to antimicrobial peptides, defensins, neutrophil degranulation, Fc-gamma receptor-dependent phagocytosis, and pathways associated with atherosclerosis development, which is one of the main factors involved in the progression of cardiovascular diseases. The gene IFI27 was the only one commonly differentially expressed between informal and formal workers and is known to be associated with various types of cancer. In conclusion, differences in gene expression related to occupational exposure are mainly associated with inflammation and immune response. Previous research has identified a link between inflammation and immune responses and the development of chronic diseases, suggesting that prolonged occupational exposures to potentially toxic elements in Brazilian metal workers could lead to negative health outcomes. Further analysis should be carried out to investigate its direct effects and to validate causal associations.
Collapse
Affiliation(s)
- Fernanda Junqueira Salles
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, CEP 01246-904, São Paulo, SP, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP, 01246-000, Brazil.
| | - Ilias S Frydas
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece.
| | - Nafsika Papaioannou
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece.
| | - Dayna R Schultz
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece.
| | - Maciel Santos Luz
- Laboratory of Metallurgical Process, Institute for Technological Research, Sao Paulo, SP, Brazil.
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of Sao Paulo, 01246-904 São Paulo, Brazil.
| | - Dimosthenis A Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; National Hellenic Research Foundation, Athens, Greece; Environmental Health Engineering, Science, Technology and Society Department, School for Advanced Study (IUSS), Pavia, Italy.
| | - Kelly Polido Kaneshiro Olympio
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, CEP 01246-904, São Paulo, SP, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
4
|
Turner MC, Cogliano V, Guyton K, Madia F, Straif K, Ward EM, Schubauer-Berigan MK. Research Recommendations for Selected IARC-Classified Agents: Impact and Lessons Learned. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:105001. [PMID: 37902675 PMCID: PMC10615125 DOI: 10.1289/ehp12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer (IARC) Monographs program assembles expert working groups who publish a critical review and evaluation of data on agents of interest. These comprehensive reviews provide a unique opportunity to identify research needs to address classification uncertainties. A multidisciplinary expert review and workshop held in 2009 identified research gaps and needs for 20 priority occupational chemicals, metals, dusts, and physical agents, with the goal of stimulating advances in epidemiological studies of cancer and carcinogen mechanisms. Overarching issues were also described. OBJECTIVES In this commentary we review the current status of the evidence for the 20 priority agents identified in 2009. We examine whether identified Research Recommendations for each agent were addressed and their potential impact on resolving classification uncertainties. METHODS We reviewed the IARC classifications of each of the 20 priority agents and identified major new epidemiological and human mechanistic studies published since the last evaluation. Information sources were either the published Monograph for agents that have been reevaluated or, for agents not yet reevaluated, Advisory Group reports and literature searches. Findings are described in view of recent methodological developments in Monographs evidence evaluation processes. DISCUSSION The majority of the 20 priority agents were reevaluated by IARC since 2009. The overall carcinogen classifications of 9 agents advanced, and new cancer sites with either "sufficient" or "limited" evidence of carcinogenicity were also identified for 9 agents. Examination of published findings revealed whether evidence gaps and Research Recommendations have been addressed and highlighted remaining uncertainties. During the past decade, new research addressed a range of the 2009 recommendations and supported updated classifications for priority agents. This supports future efforts to systematically apply findings of Monograph reviews to identify research gaps and priorities relevant to evaluation criteria established in the updated IARC Monograph Preamble. https://doi.org/10.1289/EHP12547.
Collapse
Affiliation(s)
- Michelle C. Turner
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Vincent Cogliano
- California Environmental Protection Agency Office of Environmental Health Hazard Assessment, Oakland, California, USA
| | - Kathryn Guyton
- National Academies of Sciences, Engineering, and Medicine, Washington, District of Columbia, USA
| | - Federica Madia
- International Agency for Research on Cancer, Lyon, France
| | - Kurt Straif
- Barcelona Institute for Global Health, Barcelona, Spain
- Boston College, Massachusetts, USA
| | | | | |
Collapse
|
5
|
Peng F, Lu Y, Dong X, Wang Y, Li H, Yang Z. Advances and research needs for disinfection byproducts control strategies in swimming pools. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131533. [PMID: 37146331 DOI: 10.1016/j.jhazmat.2023.131533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
The control of disinfection byproducts (DBPs) in swimming pools is of great significance due to the non-negligible toxicity and widespread existence of DBPs. However, the management of DBPs remains challenging as the removal and regulation of DBPs is a multifactorial phenomenon in pools. This study summarized recent studies on the removal and regulation of DBPs, and further proposed some research needs. Specifically, the removal of DBPs was divided into the direct removal of the generated DBPs and the indirect removal by inhibiting DBP formation. Inhibiting DBP formation seems to be the more effective and economically practical strategy, which can be achieved mainly by reducing precursors, improving disinfection technology, and optimizing water quality parameters. Alternative disinfection technologies to chlorine disinfection have attracted increasing attention, while their applicability in pools requires further investigation. The regulation of DBPs was discussed in terms of improving the standards on DBPs and their preccursors. The development of online monitoring technology for DBPs is essential for implementing the standard. Overall, this study makes a significant contribution to the control of DBPs in pool water by updating the latest research advances and providing detailed perspectives.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Xuelian Dong
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
6
|
Zhang M, Deng YL, Liu C, Lu WQ, Zeng Q. Impacts of disinfection byproduct exposures on male reproductive health: Current evidence, possible mechanisms and future needs. CHEMOSPHERE 2023; 331:138808. [PMID: 37121289 DOI: 10.1016/j.chemosphere.2023.138808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Disinfection byproducts (DBPs) are a class of ubiquitous chemicals in drinking water and inevitably result in widespread human exposures. Potentially adverse health effects of DBP exposures, including reproductive and developmental outcomes, have been increasing public concerns. Several reviews have focused on the adverse pregnancy outcomes of DBPs. This review summarized current evidence on male reproduction health upon exposure to DBPs from toxicological and epidemiological literature. Based on existing experimental studies, there are sufficient evidence showing that haloacetic acids (HAAs) are male reproductive toxicants, including reduced epididymal weight, decreased semen parameters and sperm protein 22, and declined testosterone levels. However, epidemiological evidence remains insufficient to support a link of DBP exposures with adverse male reproductive outcomes, despite that blood and urinary DBP biomarkers are associated with decreased semen quality. Eight potential mechanisms, including germ/somatic cell dysfunction, oxidative stress, genotoxicity, inflammation, endocrine hormones, folate metabolism, epigenetic alterations, and gut microbiota, are likely involved in male reproductive toxicity of DBPs. We also identified knowledge gaps in toxicological and epidemiological studies to enhance future needs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
7
|
Urinary trihalomethane concentrations and liver function indicators: a cross-sectional study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39724-39732. [PMID: 36596971 DOI: 10.1007/s11356-022-25072-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
While it is known that exposure to disinfection by-products (DBPs), including trihalomethanes (THMs), impairs liver function, few epidemiological studies have explored this association. Here, we determined the concentrations of four urinary trihalomethanes (chloroform [TCM], and three Br-THMs, bromodichloromethane [BDCM], dibromochloromethane [DBCM], and bromoform [TBM]), and nine serum liver function indicators in 182 adults ≥ 18 years of age, examined at a medical examination center in Wuxi, China, in 2020 and 2021. Generalized linear model analysis revealed positive associations between urinary DBCM and alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), total protein (TP), and albumin (ALB). Urinary Br-THMs and total THMs (TTHMs) were positively associated with ALT, AST, TBIL, indirect bilirubin (IBIL), TP, and ALB (all P < 0.05). Urinary THMs were not associated with alkaline phosphatase (ALP) or glutamine transaminase (GGT) (all P > 0.05). Generalized additive model-based penalized regression splines were used to confirm these associations. In conclusion, THM exposure was associated with altered serum biomarkers of liver function.
Collapse
|
8
|
Ling Y, Li J, Zhou L. Smoking-related epigenetic modifications are associated with the prognosis and chemotherapeutics of patients with bladder cancer. Int J Immunopathol Pharmacol 2023; 37:3946320231166774. [PMID: 37011378 PMCID: PMC10074629 DOI: 10.1177/03946320231166774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVE Epidemiologic studies have linked smoking to various malignancies, including bladder cancer, but its underlying biological functions remain elusive. Currently, we aimed to identify the smoking-related epigenetic modifications and disclose their impacts on prognosis and therapies in bladder cancer. METHODS DNA methylation, transcriptome, and clinical profiles were acquired from The Cancer Genome Atlas (TCGA) using "TCGAbiolinks" Differential expression analyses were performed with "limma" and visualized by the "pheatmap" package. Smoking-related interactions were displayed using Cytoscape. Least absolute shrinkage and selection operator (LASSO) algorithm was for generation of a smoking-related prognostic model. Kaplan-Meier analysis with log-rank test was for survival analysis, followed by a prognostic nomogram. The Gene Set Enrichment Analysis (GSEA) was used for functional analysis. The "oncoPredict" package was applied for drug sensitivity analysis. RESULTS We recruited all types of bladder cancers and found that smoking was involved in poor prognosis, with the hazard ratio (HR) of 1.600 (95%CI: 1.028-2.491). A total of 1078 smoking-related DNA methylations (526 hypermethylation and 552 hypomethylation) were identified and 9 methylation-driven genes differentially expressed in bladder cancer. Also, 506lncRNAs (448 upregulated and 58 downregulated lncRNAs) and 102 miRNAs (74 upregulated and 28 downregulated miRNAs) were determined as smoking-related ncRNAs. We then calculated the smoking-related risk score and observed that cases of high risk were predicted with poor prognosis. We constructed a prognostic nomogram to predict the 1-, 3-, and 5-year overall survival rates. Several cancer-related pathways were enriched in the high-risk group, and patients with high-risk were more sensitive to Gemcitabine, Wnt-C59, JAK1_8709, KRAS (G12C) Inhibitor-12, and LY2109761. Whereas, those with low-risk were more sensitive to Cisplatin, AZ960, and Buparlisib. CONCLUSIONS Totally, we initially identified the smoking-related epigenetic modifications in bladder cancer and constructed a corresponding prognostic model, which was also linked to disparate sensitivities to chemotherapeutics. Our findings would provide novel insights into the carcinogenesis, prognosis, and therapies in bladder cancer.
Collapse
Affiliation(s)
- Ya Ling
- 74566The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Jindong Li
- 372209Taizhou People's Hospital, Taizhou, China
| | - Lijuan Zhou
- 74566The first Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Orlandella FM, De Stefano AE, Braile M, Luciano N, Mancini A, Franzese M, Buono P, Salvatore G. Unveiling the miRNAs responsive to physical activity/exercise training in cancer: A systematic review. Crit Rev Oncol Hematol 2022; 180:103844. [DOI: 10.1016/j.critrevonc.2022.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
|
10
|
Costa C, Assunção R, Sequeira D, Esteves F, Valdiglesias V, Laffon B, Teixeira JP, Madureira J. From trihalomethanes chronic daily intake through multiple exposure routes to cancer and non-cancer health risk assessment: Evidence from public Portuguese indoor swimming pools facilities using a probabilistic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151790. [PMID: 34808171 DOI: 10.1016/j.scitotenv.2021.151790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to estimate chronic daily intake (CDI) and to predict the attributable lifetime cancer risk (LCR) and hazard index (HI) from concurrent exposure to four trihalomethanes (THMs; chloroform, bromodichloromethane, dibromochloromethane and bromoform), via multiple exposure routes (oral ingestion, dermal contact and inhalation), among 238 non-competitive attendees of 10 Portuguese public indoor swimming pools (SPs), using a probabilistic approach based on Monte Carlo simulations. Exposure parameters of study participants were collected via questionnaires and THMs levels in SPs water were determined according the respective normative standards. The CDI for total THMs calculated for male and female participants considering all routes was 7.52 and 8.97 mg/kg/day, respectively. SP attendees presented higher CDI through inhalation than via the other two exposure routes, and chloroform was the compound contributing the most to total THMs CDI. The risk analysis indicated that the total LCR and HI from the targeted THMs were higher than the negligible risk levels (1 × 10-6 and 1, respectively) in the scenarios examined (central tendency exposure and reasonable maximum exposure), and the health risk for females was slightly higher than for males. This study suggests that there are possible adverse health risks, thus, to protect pool attendees, adequate mitigation measures, and comprehensive regulatory guidelines on individual THMs concentrations are needed.
Collapse
Affiliation(s)
- Carla Costa
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600 Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Ricardo Assunção
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; Food and Nutrition Department, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Av. Padre Cruz, 1600-560 Lisboa, Portugal
| | - Diana Sequeira
- EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Filipa Esteves
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600 Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Vanessa Valdiglesias
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600 Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal.
| | - Joana Madureira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600 Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
| |
Collapse
|
11
|
Villanueva CM, Espinosa A, Gracia-Lavedan E, Vlaanderen J, Vermeulen R, Molina AJ, Amiano P, Gómez-Acebo I, Castaño-Vinyals G, Vineis P, Kogevinas M. Exposure to widespread drinking water chemicals, blood inflammation markers, and colorectal cancer. ENVIRONMENT INTERNATIONAL 2021; 157:106873. [PMID: 34543938 DOI: 10.1016/j.envint.2021.106873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Trihalomethanes (THMs) and nitrate are widespread chemicals in drinking water associated with colorectal cancer risk but mechanisms are not well understood. OBJECTIVES We explored the association between exposure to THMs and nitrate in drinking water and inflammation markers, and the link with colorectal cancer risk. METHODS A subset of 198 colorectal cancer cases and 205 controls from the multicase-control study MCC-Spain were included. Average concentration of THMs (chloroform, bromodichloromethane, dibromochloromethane, bromoform) and nitrate in tap water at the residence was estimated from age 18 until 2 years before the interview ("long term") and for a recent period (3 years before diagnosis). Serum levels of EGF, eotaxin, G-CSF, IL-17E, IL-1rA, IL-8, IP-10, MDC, MPO, periostin, VEGF, and C-reactive protein (CRP) were measured. We estimated the linear association between inflammation markers and exposure among controls, and the odds ratio of colorectal cancer associated with THM and nitrate exposure, and inflammation markers. A mediation analysis was conducted to identify inflammation markers in the pathway between THM/nitrate exposure and colorectal cancer. RESULTS Serum concentrations of EGF, IL-8, IL-17E and eotaxin increased with recent residential levels of brominated THMs, chloroforom and/or total THM. No associations were observed for nitrate and for long-term residential THM levels. All residential exposures except chloroform were positively associated with colorectal cancer. Serum concentrations of VEGF and periostin were positively associated with colorectal cancer, while EGF was inversely associated. One protein-exposure combination (periostin-recent ingested brominated THMs) slightly mediated the association with colorectal cancer risk. DISCUSSION Results suggest that estimated THM exposure is involved in inflammation processes. However, the study design was limited to stablish etiologically relevant associations between the protein levels and colorectal cancer risk. The lack of association between nitrate exposure and inflammation markers suggests other biological mechanisms are involved in the link with colorectal cancer.
Collapse
Affiliation(s)
- Cristina M Villanueva
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| | - Ana Espinosa
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Esther Gracia-Lavedan
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Antonio José Molina
- The Research Group in Gene - Environment and Health Interactions (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain; Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de León, Spain
| | - Pilar Amiano
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Public Health Division of Gipuzkoa, Biodonostia Research Institute, San Sebastian, Spain
| | - Inés Gómez-Acebo
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universidad de Cantabria, Santander, Spain
| | - Gemma Castaño-Vinyals
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Paolo Vineis
- School of Public Health, Imperial College London, London, UK; Italian Institute of Technology, Genova, Liguria, Italy
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
12
|
Vineis P, Robinson O, Chadeau-Hyam M, Dehghan A, Mudway I, Dagnino S. What is new in the exposome? ENVIRONMENT INTERNATIONAL 2020; 143:105887. [PMID: 32619912 DOI: 10.1016/j.envint.2020.105887] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 05/02/2023]
Abstract
The exposome concept refers to the totality of exposures from a variety of external and internal sources including chemical agents, biological agents, or radiation, from conception onward, over a complete lifetime. It encompasses also "psychosocial components" including the impact of social relations and socio-economic position on health. In this review we provide examples of recent contributions from exposome research, where we believe their application will be of the greatest value for moving forward. So far, environmental epidemiology has mainly focused on hard outcomes, such as mortality, disease exacerbation and hospitalizations. However, there are many subtle outcomes that can be related to environmental exposures, and investigations can be facilitated by an improved understanding of internal biomarkers of exposure and response, through the application of omic technologies. Second, though we have a wealth of studies on environmental pollutants, the assessment of causality is often difficult because of confounding, reverse causation and other uncertainties. Biomarkers and omic technologies may allow better causal attribution, for example using instrumental variables in triangulation, as we discuss here. Even more complex is the understanding of how social relationships (in particular socio-economic differences) influence health and imprint on the fundamental biology of the individual. The identification of molecular changes that are intermediate between social determinants and disease status is a way to fill the gap. Another field in which biomarkers and omics are relevant is the study of mixtures. Epidemiology often deals with complex mixtures (e.g. ambient air pollution, food, smoking) without fully disentangling the compositional complexity of the mixture, or with rudimentary approaches to reflect the overall effect of multiple exposures or components. From the point of view of disease mechanisms, most models hypothesize that several stages need to be transitioned through health to the induction of disease, but very little is known about the characteristics and temporal sequence of such stages. Exposome models reinforce the idea of a biography-to-biology transition, in that everyone's disease is the product of the individual history of exposures, superimposed on their underlying genetic susceptibilities. Finally, exposome research is facilitated by technological developments that complement traditional epidemiological study designs. We describe in depth one such new tools, adductomics. In general, the development of high-resolution and high-throughput technologies interrogating multiple -omics (such as epigenomics, transcriptomics, proteomics, adductomics and metabolomics) yields an unprecedented perspective into the impact of the environment in its widest sense on disease. The world of the exposome is rapidly evolving, though a huge gap still needs to be filled between the original expectations and the concrete achievements. Perhaps the most urgent need is for the establishment of a new generation of cohort studies with appropriately specified biosample collection, improved questionnaire data (including social variables), and the deployment of novel technologies that allow better characterization of individual environmental exposures, ranging from personal monitoring to satellite based observations.
Collapse
Affiliation(s)
- Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK; Italian Institute of Technology, Genova, Italy.
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK
| | - Marc Chadeau-Hyam
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK
| | - Abbas Dehghan
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK; UK Dementia Research Institute, Imperial College London, London, UK
| | - Ian Mudway
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK; MRC Centre for Environment and Health, King's College London, London, UK
| | - Sonia Dagnino
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK
| |
Collapse
|
13
|
Wang X, Dong S. Assessment of exposure of children swimmers to trihalomethanes in an indoor swimming pool. JOURNAL OF WATER AND HEALTH 2020; 18:533-544. [PMID: 32833679 DOI: 10.2166/wh.2020.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aimed to understand the exposure levels of trihalomethanes (THMs) in an indoor swimming pool and calculate the risks of exposure to THMs, based on the presence of each THM species, of children swimmers aged 6-17, in Beijing, China. We obtained exposure factors for the children through questionnaires and measured THM concentrations through laboratory tests, and we combined the results with an exposure model to calculate the risks, with consideration of different exposure routes (oral ingestion, inhalation and dermal absorption). In terms of exposure factors for the swimmers aged 6-17, the average body weight, exposure duration, exposure frequency, swimming time, shower time, changing time, warm-up exercise and rest time, skin surface area and ingestion rate of pool water were 40.46 kg, 2.70 years, 96 events/year, 64.03 min/event, 17.04 min/event, 15.31 min/event, 12.71 min/event, 1.37 m2 and 48.93 ml/event, respectively. The THM concentrations in swimming pool water, shower water, swimming pool air and locker room air were 67.17 μg/L, 12.64 μg/L, 358.66 μg/m3 and 40.98 μg/m3, respectively. The average cancer risk of THMs was 5.44 × 10-6, which is an unacceptable risk according to the United State Environmental Protection Agency (USEPA) Guidelines. The average hazard index was 0.007, i.e., less than 1, indicating that the noncancer risk was acceptable. Chloroform (TCM) was the main substance in four species of THMs and inhalation exposure was the main exposure pathway. The risk of cancer and noncancer from inhalation exposure to THMs accounts for 97-99% of the total risk. As a result, the disease control authorities and administrative department should pay attention to the health and safety of swimming facilities and, at the same time, establish standards for THMs in the air through further research.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China E-mail:
| | - Shaoxia Dong
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China E-mail:
| |
Collapse
|
14
|
Canali S. Making evidential claims in epidemiology: Three strategies for the study of the exposome. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2020; 82:101248. [PMID: 32307253 DOI: 10.1016/j.shpsc.2019.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/15/2019] [Accepted: 12/27/2019] [Indexed: 06/11/2023]
Abstract
How is scientific data used to represent phenomena and as evidence for claims about phenomena? In this paper, I propose that a specific type of claims - evidential claims - is involved in data practices to define and restrict the representational and evidential content of a dataset. I present an account of data practices in the epidemiology of the exposome based on the notion of evidential claims, which helps unpack the approaches, assumptions and warrants that connect different stages of research. I identify three different strategies to generate different types of evidential claims in this case. The macro strategy, which individuates the dataset that serves as the initial evidential space for research. The micro strategy, which is used to generate evidential claims about the microscopic and individual component of target phenomena. The association strategy, that uses evidence from the other strategies to identify a dataset as representation of the different levels and relations of exposure and disease. Differentiating between these strategies sheds light on the multi-faceted landscape of biomedical research on environment and health; and the roles of data and evidence in the process of inquiry.
Collapse
Affiliation(s)
- Stefano Canali
- Institute for Philosophy, Leibniz Universität Hannover, Lange Laube 32, 30159, Hannover, Germany.
| |
Collapse
|
15
|
Evlampidou I, Font-Ribera L, Rojas-Rueda D, Gracia-Lavedan E, Costet N, Pearce N, Vineis P, Jaakkola JJ, Delloye F, Makris KC, Stephanou EG, Kargaki S, Kozisek F, Sigsgaard T, Hansen B, Schullehner J, Nahkur R, Galey C, Zwiener C, Vargha M, Righi E, Aggazzotti G, Kalnina G, Grazuleviciene R, Polanska K, Gubkova D, Bitenc K, Goslan EH, Kogevinas M, Villanueva CM. Trihalomethanes in Drinking Water and Bladder Cancer Burden in the European Union. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:17001. [PMID: 31939704 PMCID: PMC7015561 DOI: 10.1289/ehp4495] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Trihalomethanes (THMs) are widespread disinfection by-products (DBPs) in drinking water, and long-term exposure has been consistently associated with increased bladder cancer risk. OBJECTIVE We assessed THM levels in drinking water in the European Union as a marker of DBP exposure and estimated the attributable burden of bladder cancer. METHODS We collected recent annual mean THM levels in municipal drinking water in 28 European countries (EU28) from routine monitoring records. We estimated a linear exposure-response function for average residential THM levels and bladder cancer by pooling data from studies included in the largest international pooled analysis published to date in order to estimate odds ratios (ORs) for bladder cancer associated with the mean THM level in each country (relative to no exposure), population-attributable fraction (PAF), and number of attributable bladder cancer cases in different scenarios using incidence rates and population from the Global Burden of Disease study of 2016. RESULTS We obtained 2005-2018 THM data from EU26, covering 75% of the population. Data coverage and accuracy were heterogeneous among countries. The estimated population-weighted mean THM level was 11.7μg/L [standard deviation (SD) of 11.2]. The estimated bladder cancer PAF was 4.9% [95% confidence interval (CI): 2.5, 7.1] overall (range: 0-23%), accounting for 6,561 (95% CI: 3,389, 9,537) bladder cancer cases per year. Denmark and the Netherlands had the lowest PAF (0.0% each), while Cyprus (23.2%), Malta (17.9%), and Ireland (17.2%) had the highest among EU26. In the scenario where no country would exceed the current EU mean, 2,868 (95% CI: 1,522, 4,060; 43%) annual attributable bladder cancer cases could potentially be avoided. DISCUSSION Efforts have been made to reduce THM levels in the European Union. However, assuming a causal association, current levels in certain countries still could lead to a considerable burden of bladder cancer that could potentially be avoided by optimizing water treatment, disinfection, and distribution practices, among other possible measures. https://doi.org/10.1289/EHP4495.
Collapse
Affiliation(s)
- Iro Evlampidou
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Laia Font-Ribera
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - David Rojas-Rueda
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Esther Gracia-Lavedan
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Nathalie Costet
- Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| | - Neil Pearce
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland
| | - Francis Delloye
- Service Public de Wallonie, Direction générale de l’Agriculture, des Ressources naturelles et de l’Environnement, Département de l'Environnement et de l’Eau, Jambes, Belgium
| | - Konstantinos C. Makris
- Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Euripides G. Stephanou
- Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, Heraklion, Greece
- The Cyprus Institute, Aglantzia-Nicosia, Cyprus
| | - Sophia Kargaki
- Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, Heraklion, Greece
| | | | - Torben Sigsgaard
- Department of Public Health, Section for Environment, Occupation & Health, Aarhus University, Aarhus, Denmark
| | - Birgitte Hansen
- Geological Survey of Denmark and Greenland (GEUS), Aarhus, Denmark
| | - Jörg Schullehner
- Geological Survey of Denmark and Greenland (GEUS), Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Ramon Nahkur
- Public Health Department, Estonian Ministry of Social Affairs, Tallinn, Estonia
| | - Catherine Galey
- Santé Publique France (French National Public Health Agency), Saint-Maurice, France
| | - Christian Zwiener
- Environmental Analytical Chemistry, Center for Applied Geosciences (ZAG), Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Marta Vargha
- National Public Health Center, Budapest, Hungary
| | - Elena Righi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriella Aggazzotti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gunda Kalnina
- Public Health Division, Ministry of Health of the Republic Latvia, Health Inspectorate, Riga, Latvia
| | - Regina Grazuleviciene
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Kinga Polanska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Dasa Gubkova
- Public Health Authority of the Slovak Republic, Bratislava, Slovak Republic
| | | | - Emma H. Goslan
- Cranfield Water Science Institute, Cranfield University, Cranfield, Bedford, UK
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Cristina M. Villanueva
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
16
|
Salas LA, Baker ER, Nieuwenhuijsen MJ, Marsit CJ, Christensen BC, Karagas MR. Maternal swimming pool exposure during pregnancy in relation to birth outcomes and cord blood DNA methylation among private well users. ENVIRONMENT INTERNATIONAL 2019; 123:459-466. [PMID: 30622071 PMCID: PMC6599635 DOI: 10.1016/j.envint.2018.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 05/19/2023]
Abstract
Swimming in pools during pregnancy may expose the fetus to water disinfection by-products (DBP). As yet, our understanding of the impacts on DBPs on the fetus is uncertain. Individuals with public water systems are typically exposed to DBPs through drinking, showering and bathing, whereas among those on private water systems, swimming in pools may be the primary exposure source. We analyzed the effects of maternal swimming on birth outcomes and cord blood epigenetic changes in the New Hampshire Birth Cohort Study, a cohort of pregnant women with households on private water systems. Information about swimming in pools during pregnancy was obtained from 1033 women via questionnaires. Swimming pool use and duration were modeled using linear regression with newborn weight, length, and head circumference (z-scores) and genome wide cord blood DNA methylation as the outcomes and with adjustment for potential confounders. Overall 19.7% of women reported swimming in a pool during pregnancy. Among swimmers, duration of swimming was inversely related to head circumference (-0.02 z-score per 10% increase in duration, P = 0.004). No associations were observed with birth weight, length or DNA methylation modifications. Our findings suggest swimming pool exposure may impact the developing fetus although longer-term studies are needed.
Collapse
Affiliation(s)
- Lucas A Salas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA; The Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon 03756, NH, USA.
| | - Emily R Baker
- Department of Obstetrics and Gynecology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA.
| | - Mark J Nieuwenhuijsen
- ISGlobal, The Barcelona Institute for Global Health, Barcelona 08003, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain.
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta 30322, GA, USA.
| | - Brock C Christensen
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon 03756, NH, USA; Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon 03756, NH, USA.
| | - Margaret R Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA; The Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon 03756, NH, USA.
| |
Collapse
|
17
|
Li M, Huo X, Davuljigari CB, Dai Q, Xu X. MicroRNAs and their role in environmental chemical carcinogenesis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:225-247. [PMID: 30171477 DOI: 10.1007/s10653-018-0179-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/23/2018] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA species that play crucial roles across many biological processes and in the pathogenesis of major diseases, including cancer. Recent studies suggest that the expression of miRNA is altered by certain environmental chemicals, including metals, organic pollutants, cigarette smoke, pesticides and carcinogenic drugs. In addition, extensive studies have indicated the existence and importance of miRNA in different cancers, suggesting that cancer-related miRNAs could serve as potential markers for chemically induced cancers. The altered expression of miRNA was considered to be a vital pathogenic role in xenobiotic-induced cancer development. However, the significance of miRNA in the etiology of cancer and the exact mechanisms by which environmental factors alter miRNA expression remain relatively unexplored. Hence, understanding the interaction of miRNAs with environmental chemicals will provide important information on mechanisms underlying the pathogenesis of chemically induced cancers, and effectively diagnose and treat human cancers resulting from chronic or acute carcinogen exposure. This study presents the current evidence that the miRNA deregulation induced by various chemical carcinogens, different cancers caused by environmental carcinogens and the potentially related genes in the onset or progression of cancer. For each carcinogen, the specifically expressed miRNA may be considered as the early biomarkers of the cancer process. In this review, we also summarize various target genes of the altered miRNA, oncogenes or anti-oncogenes, and the existing evidence regarding the gene regulation mechanisms of cancer caused by environmentally induced miRNA alteration. The future perspective of miRNA may become attractive targets for the diagnosis and treatment of carcinogen-induced cancer.
Collapse
Affiliation(s)
- Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Chand Basha Davuljigari
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
18
|
Vineis P. From John Snow to omics: the long journey of environmental epidemiology. Eur J Epidemiol 2018; 33:355-363. [PMID: 29680996 PMCID: PMC5945800 DOI: 10.1007/s10654-018-0398-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/08/2018] [Indexed: 12/18/2022]
Abstract
A major difference between infectious and non-communicable diseases is that infectious diseases typically have unique necessary causes whereas noncommunicable diseases have multiple causes which by themselves are usually neither necessary nor sufficient. Epidemiology seems to have reached a limit in disentangling the role of single components in causal complexes, particularly at low doses. To overcome limitations the discipline can take advantage of technical developments including the science of the exposome. By referring to the interpretation of the exposome as put forward in the work of Wild and Rappaport, I show examples of how the science of multi-causality can build upon the developments of omic technologies. Finally, I broaden the picture by advocating a more holistic approach to causality that also encompasses social sciences and the concept of embodiment. To tackle NCDs effectively on one side we can invest in various omic approaches, to identify new external causes of non-communicable diseases (that we can use to develop preventive strategies), and the corresponding mechanistic pathways. On the other side, we need to focus on the social and societal determinants which are suggested to be the root causes of many non-communicable diseases.
Collapse
Affiliation(s)
- Paolo Vineis
- MRC-PHE Centre for Environment and Health, Imperial College London, Norfolk Place, London, W21PG, UK. .,Italian Institute for Genomic Medicine, Turin, Italy.
| |
Collapse
|
19
|
Jain P, Vineis P, Liquet B, Vlaanderen J, Bodinier B, van Veldhoven K, Kogevinas M, Athersuch TJ, Font-Ribera L, Villanueva CM, Vermeulen R, Chadeau-Hyam M. A multivariate approach to investigate the combined biological effects of multiple exposures. J Epidemiol Community Health 2018; 72:564-571. [PMID: 29563153 PMCID: PMC6031275 DOI: 10.1136/jech-2017-210061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
Epidemiological studies provide evidence that environmental exposures may affect health through complex mixtures. Formal investigation of the effect of exposure mixtures is usually achieved by modelling interactions, which relies on strong assumptions relating to the identity and the number of the exposures involved in such interactions, and on the order and parametric form of these interactions. These hypotheses become difficult to formulate and justify in an exposome context, where influential exposures are numerous and heterogeneous. To capture both the complexity of the exposome and its possibly pleiotropic effects, models handling multivariate predictors and responses, such as partial least squares (PLS) algorithms, can prove useful. As an illustrative example, we applied PLS models to data from a study investigating the inflammatory response (blood concentration of 13 immune markers) to the exposure to four disinfection by-products (one brominated and three chlorinated compounds), while swimming in a pool. To accommodate the multiple observations per participant (n=60; before and after the swim), we adopted a multilevel extension of PLS algorithms, including sparse PLS models shrinking loadings coefficients of unimportant predictors (exposures) and/or responses (protein levels). Despite the strong correlation among co-occurring exposures, our approach identified a subset of exposures (n=3/4) affecting the exhaled levels of 8 (out of 13) immune markers. PLS algorithms can easily scale to high-dimensional exposures and responses, and prove useful for exposome research to identify sparse sets of exposures jointly affecting a set of (selected) biological markers. Our descriptive work may guide these extensions for higher dimensional data.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.,Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Benoît Liquet
- UMR CNRS 5142, Laboratoire de Mathématiques et de leurs Applications, Université de Pau et des Pays de l'Adour, Anglet, France.,School of Mathematics, ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Australia
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Barbara Bodinier
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Karin van Veldhoven
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Toby J Athersuch
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.,Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Laia Font-Ribera
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Cristina M Villanueva
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Roel Vermeulen
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.,Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.,Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|