1
|
Faramazinia M, Sabzghabaei GR, Multisanti CR, Banaee M, Piccione G, Trivedi A, Faggio C. Individual and combined effects of microplastics and diphenyl phthalate as plastic additives on male goldfish: A biochemical and physiological investigation. Comp Biochem Physiol C Toxicol Pharmacol 2025; 290:110144. [PMID: 39923867 DOI: 10.1016/j.cbpc.2025.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/19/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
The development of the plastics industry worldwide has led to an increase in the rate of plastic waste and chemical additives such as microplastics (MPs) and diphenyl phthalate (DPP) in the environment. The penetration of these pollutants into aquatic ecosystems has also raised concerns about their toxic effects, individually and in combination. The present study investigated the individual and combined toxicity of MPs and DPP on the health of male goldfish. A 28-day exposure experiment was conducted using different concentrations of DPP (2.5, 5.0, 7.5 μL L-1) and MPs (20, 40 mg L-1), both individually and in combination. Biochemical markers, enzyme activities, and hormone levels were evaluated to ascertain the effects on metabolic, renal, and reproductive health. The findings revealed that concurrent exposure to DPP and MPs markedly elevated plasma glucose, creatinine, triglycerides, and cholesterol levels, accompanied by notable reductions in high-density lipoprotein and low-density lipoprotein. Moreover, combined exposures resulted in liver damage, as evidenced by elevated serum glutamic-oxaloacetic transaminase, serum glutamic-pyruvic transaminase, alkaline phosphatase, lactate dehydrogenase, and gamma-glutamyl transferase activities and disruptions in protein synthesis and immune response, with notable decreases in total protein, albumin, and globulin. Testosterone levels decreased, while estradiol levels increased, indicating endocrine disruption and potential reproductive impairment. These findings indicated the adverse synergistic effects of MPs and DPP on the physiology of goldfish. Therefore, further research must be conducted to increase our knowledge of their ecotoxicological risks.
Collapse
Affiliation(s)
- Masoumeh Faramazinia
- Department of Environmental Sciences, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology, Iran
| | - Gholam Reza Sabzghabaei
- Department of Environmental Sciences, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology, Iran
| | | | - Mahdi Banaee
- Department of Aquaculture, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology, Iran
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Abha Trivedi
- Toxicogenomics Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly 243006, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy; Dipartimento di Biotecnologie Marine Ecosostenibili, Stazione Zoologica Anton Dohrn, Italy.
| |
Collapse
|
2
|
Forner-Piquer I, Giommi C, Sella F, Lombó M, Montik N, Dalla Valle L, Carnevali O. Endocannabinoid System and Metabolism: The Influences of Sex. Int J Mol Sci 2024; 25:11909. [PMID: 39595979 PMCID: PMC11593739 DOI: 10.3390/ijms252211909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid system (ECS) is a lipid signaling system involved in numerous physiological processes, such as endocrine homeostasis, appetite control, energy balance, and metabolism. The ECS comprises endocannabinoids, their cognate receptors, and the enzymatic machinery that tightly regulates their levels within tissues. This system has been identified in various organs, including the brain and liver, in multiple mammalian and non-mammalian species. However, information regarding the sex-specific regulation of the ECS remains limited, even though increasing evidence suggests that interactions between sex steroid hormones and the ECS may ultimately modulate hepatic metabolism and energy homeostasis. Within this framework, we will review the sexual dimorphism of the ECS in various animal models, providing evidence of the crosstalk between endocannabinoids and sex hormones via different metabolic pathways. Additionally, we will underscore the importance of understanding how endocrine-disrupting chemicals and exogenous cannabinoids influence ECS-dependent metabolic pathways in a sex-specific manner.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Christian Giommi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Fiorenza Sella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Marta Lombó
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
- Department of Molecular Biology, Universidad de León, 24071 León, Spain
| | - Nina Montik
- Department of Odontostomatological and Specialized Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy;
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| |
Collapse
|
3
|
Giommi C, Maradonna F, Ladisa C, Habibi HR, Carnevali O. Probiotics as Potential Tool to Mitigate Nucleotide Metabolism Alterations Induced by DiNP Dietary Exposure in Danio rerio. Int J Mol Sci 2024; 25:11151. [PMID: 39456934 PMCID: PMC11508264 DOI: 10.3390/ijms252011151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Diisononyl phthalate, classified as endocrine disruptor, has been investigate to trigger lipid biosynthesis in both mammalian and teleostean animal models. Despite this, little is known about the effects of DiNP exposure at tolerable daily intake level and the possible mechanisms of its toxicity. Probiotics, on the other hand, were demonstrated to have beneficial effects on the organism's metabolism and recently emerged as a possible tool to mitigate the EDC toxicity. In the present study, using a metabolomic approach, the potential hepatic sex-related toxicity of DiNP was investigated in adult zebrafish together with the mitigating action of the probiotic formulation SLAB51, which has already demonstrated its ability to ameliorate gastrointestinal pathologies in animals including humans. Zebrafish were exposed for 28 days to 50 µg/kg body weight (bw)/day of DiNP (DiNP) through their diet and treated with 109 CFU/g bw of SLAB51 (P) and the combination of DiNP and SLAB51 (DiNP + P), and the results were compared to those of an untreated control group (C). DiNP reduced AMP, IMP, and GMP in the purine metabolism, while such alterations were not observed in the DiNP + P group, for which the phenotype overlapped that of C fish. In addition, in male, DiNP reduced UMP and CMP levels in the pyrimidine metabolism, while the co-administration of probiotic shifted the DiNP + P metabolic phenotype toward that of P male and closed to C male, suggesting the beneficial effects of probiotics also in male fish. Overall, these results provide the first evidence of the disruptive actions of DiNP on hepatic nucleotide metabolism and mitigating action of the probiotic to reduce a DiNP-induced response in a sex-related manner.
Collapse
Affiliation(s)
- Christian Giommi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.M.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.M.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Claudia Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.L.); (H.R.H.)
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.L.); (H.R.H.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.M.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| |
Collapse
|
4
|
Zou J, Gu Q, Gu D. Association between phthalates exposure and non-alcoholic fatty liver disease under different diagnostic criteria: a cross-sectional study based on NHANES 2017 to 2018. Front Public Health 2024; 12:1407976. [PMID: 39386944 PMCID: PMC11462993 DOI: 10.3389/fpubh.2024.1407976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease. Phthalates have been suggested to influence the development of NAFLD due to their endocrine-disrupting properties, but studies based on nationally representative populations are insufficient, and existing studies seem to have reached conflicting conclusions. Due to changes in legislation, the use of traditional phthalates has gradually decreased, and the phthalates substitutes is getting more attention. This study aims to delve deeper into how the choice of diagnostic approach influences observed correlations and concern about more alternatives of phthalates, thereby offering more precise references for the prevention and treatment of NAFLD. Methods A cohort of 641 participants, sourced from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 database, was evaluated for NAFLD using three diagnostic methods: the Hepatic Steatosis Index (HSI), the US Fatty Liver Indicator (US.FLI), and Vibration Controlled Transient Elastography (VCTE). The urinary metabolite concentrations of Di-2-ethylhexyl phthalate (DEHP), Di-isodecyl phthalate (DIDP), Di-isononyl phthalate (DINP), Di-n-butyl phthalate (DnBP), Di-isobutyl phthalate (DIBP), Di-ethyl phthalate (DEP) and Di-n-octyl phthalate (DnOP) were detected. The association between NAFLD and urinary phthalate metabolites was evaluated through univariate and multivariate logistic regression analyses, considering different concentration gradients of urinary phthalates. Results Univariate logistic regression analysis found significant correlations between NAFLD and specific urinary phthalate metabolites, such as Mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), Mono-2-ethyl-5-carboxypentyl phthalate (MECPP), and Mono-(carboxyisoctyl) phthalate (MCiOP), across different diagnostic criteria. In a multivariate logistic regression analysis adjusting only for demographic data, MEOHP (OR = 3.26, 95% CI = 1.19-8.94, p = 0.029), MEHHP (OR = 3.98, 95% CI = 1.43-11.1, p = 0.016), MECPP (OR = 3.52, 95% CI = 1.01-12.2, p = 0.049), and MCiOP (OR = 4.55, 95% CI = 1.93-10.7, p = 0.005) were positively related to NAFLD defined by HSI and VCTE. The correlation strength varied with the concentration of phthalates, indicating a potential dose-response relationship. Adjusting for all covariates in multivariate logistic regression, only MCiOP (OR = 4.22, 95% CI = 1.10-16.2, p = 0.044), as an oxidative metabolite of DINP, remained significantly associated with NAFLD under the VCTE criterion, suggesting its potential role as a risk factor for NAFLD. Conclusion This research highlights a significant association between DINP and NAFLD. These findings underscore the need for further investigation into the role of the phthalates substitutes in the pathogenesis of NAFLD and the importance of considering different diagnostic criteria in research.
Collapse
Affiliation(s)
- Jiazhen Zou
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen, China
| | - Qingdan Gu
- Shenzhen Yantian District People’s Hospital (Group), Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen, China
| |
Collapse
|
5
|
Maradonna F, Pessina A, Ashouri G, Notti E, Chemello G, Russo G, Gioacchini G, Carnevali O. First Feeding of Cuttlefish Hatchlings: Pioneering Attempts in Captive Breeding. Animals (Basel) 2024; 14:1993. [PMID: 38998105 PMCID: PMC11240666 DOI: 10.3390/ani14131993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
In the last few decades, the cuttlefish market has grown to approximately 14% of the world's fisheries, and operators have begun to express concerns about the decline of this resource. In this context, the production of cuttlefish through aquaculture could offer a diversifying and valuable response to the increasing market demand and help alleviate the environmental pressure on this species. Therefore, the aim of this study is to identify a dry, cost-effective, and easy-to-administer diet that can successfully support the initial phases of cuttlefish growth and provide a similar performance to a krill-based diet, which closely mimics their natural diet. To achieve this objective, cuttlefish hatchlings were distributed among different experimental tanks, each receiving one of the five different diets (namely Diets A to E). Mortality and morphological parameters were monitored until day 10 post hatching, and the two most effective diets (Diets A and B) were chosen for further trials. The results indicated that Diet B had similar survival and growth rates to Diet A, which was based on frozen krill. Histological analysis revealed a comparable degree of gut maturity between the organisms fed the two diets. Likewise, levels of amylase and trypsin enzymes and hsp70, cat, and sod mRNA did not exhibit significant differences between the two groups. In conclusion, our findings provide preliminary evidence supporting the possibility of cultivating cuttlefish in captivity using a pelleted diet, representing a promising starting point for larger-scale breeding efforts.
Collapse
Affiliation(s)
- Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Pessina
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Ghasem Ashouri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Emilio Notti
- Italian National Research Council (CNR), Institute of Marine Biological Resources and Biotechnologies (IRBIM), Largo Fiera della Pesca 1, 60125 Ancona, Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giulia Russo
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
6
|
Bereketoglu C, Häggblom I, Turanlı B, Pradhan A. Comparative analysis of diisononyl phthalate and di(isononyl)cyclohexane-1,2 dicarboxylate plasticizers in regulation of lipid metabolism in 3T3-L1 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:1245-1257. [PMID: 37927243 DOI: 10.1002/tox.24010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Diisononyl phthalate (DINP) and di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) are plasticizers introduced to replace previously used phthalate plasticizers in polymeric products. Exposure to DINP and DINCH has been shown to impact lipid metabolism. However, there are limited studies that address the mechanisms of toxicity of these two plasticizers. Here, a comparative toxicity analysis has been performed to evaluate the impacts of DINP and DINCH on 3T3-L1 cells. The preadipocyte 3T3-L1 cells were exposed to 1, 10, and 100 μM of DINP or DINCH for 10 days and assessed for lipid accumulation, gene expression, and protein analysis. Lipid staining showed that higher concentrations of DINP and DINCH can induce adipogenesis. The gene expression analysis demonstrated that both DINP and DINCH could alter the expression of lipid-related genes involved in adipogenesis. DINP and DINCH upregulated Pparγ, Pparα, C/EBPα Fabp4, and Fabp5, while both compounds significantly downregulated Fasn and Gata2. Protein analysis showed that both DINP and DINCH repressed the expression of FASN. Additionally, we analyzed an independent transcriptome dataset encompassing temporal data on lipid differentiation within 3T3-L1 cells. Subsequently, we derived a gene set that accurately portrays significant pathways involved in lipid differentiation, which we subsequently subjected to experimental validation through quantitative polymerase chain reaction. In addition, we extended our analysis to encompass a thorough assessment of the expression profiles of this identical gene set across 40 discrete transcriptome datasets that have linked to diverse pathological conditions to foreseen any potential association with DINP and DINCH exposure. Comparative analysis indicated that DINP could be more effective in regulating lipid metabolism.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Isabel Häggblom
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Beste Turanlı
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
7
|
Billings A, Jones KC, Pereira MG, Spurgeon DJ. Emerging and legacy plasticisers in coastal and estuarine environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168462. [PMID: 37963532 DOI: 10.1016/j.scitotenv.2023.168462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
The occurrence of plastic waste in the environment is an emerging and ongoing concern. In addition to the physical impacts of macroplastics and microplastics on organisms, the chemical effects of plastic additives such as plasticisers have also received increasing attention. Research concerning plasticiser pollution in estuaries and coastal environments has been a particular focus, as these environments are the primary entry point for anthropogenic contaminants into the wider marine environment. Additionally, the conditions in estuarine environments favour the sedimentation of suspended particulate matter, with which plasticisers are strongly associated. Hence, estuary systems may be where some of the highest concentrations of these pollutants are seen in freshwater and marine environments. Recent studies have confirmed emerging plasticisers and phthalates as pollutants in estuaries, with the relative abundance of these compounds controlled primarily by patterns of use, source intensity, and fate. Plasticiser profiles are typically dominated by mid-high molecular weight compounds such as DnBP, DiBP, and DEHP. Plasticisers may be taken up by estuarine and marine organisms, and some phthalates can cause negative impacts in marine organisms, although further research is required to assess the impacts of emerging plasticisers. This review provides an overview of the processes controlling the release and partitioning of emerging and legacy plasticisers in aqueous environments, in addition to the sources of plasticisers in estuarine and coastal environments. This is followed by a quantitative analysis and discussion of literature concerning the (co-)occurrence and concentrations of emerging plasticisers and phthalates in these environments. We end this review with a discussion the fate (degradation and uptake by biota) of these compounds, in addition to identification of knowledge gaps and recommendations for future research.
Collapse
Affiliation(s)
- Alex Billings
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - M Glória Pereira
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - David J Spurgeon
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
8
|
Yang R, Zhang Y, Deng Y, Yang Y, Zhong W, Zhu L. 2-Ethylhexyl Diphenyl Phosphate Causes Obesity in Zebrafish by Stimulating Overeating via Inhibition of Dopamine Receptor D2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14162-14172. [PMID: 37704188 DOI: 10.1021/acs.est.3c04070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Obesity is a popular public health problem worldwide and is mainly caused by overeating, but little is known about the impacts of synthetic chemicals on obesity. Herein, we evaluated the obesogenic effect caused by 2-ethylhexyl diphenyl phosphate (EHDPHP) on zebrafish. Adult zebrafish were exposed to 5, 35, and 245 μg/L of EHDPHP for 21 days. Results showed that EHDPHP exposure significantly promoted the feeding behavior of zebrafish, as evidenced by shorter reaction time, increased average food intake, feeding rate, and intake frequency (p < 0.05). Transcriptomic, real-time quantitative PCR, and neurotransmitter analyses revealed that the dopamine (DA) receptor D2 (DRD2) was inhibited, which interfered with the DA neural reward regulation system, thus stimulating food addiction to zebrafish. This was further verified by the restored DRD2 after 7 days of Halo (a DRD2 agonist) treatment. A strong interaction between EHDPHP and DRD2 was identified via molecular docking. As a consequence of the abnormal feeding behavior, the exposed fish exhibited significant obesity evidenced by increased body weight, body mass index, plasma total cholesterol, triglyceride, and body fat content. Additionally, the pathways linked to Parkinson's disease, alcoholism, and cocaine addiction were also disrupted, implying that EHDPHP might cause other neurological disorders via the disrupted DA system.
Collapse
Affiliation(s)
- Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yuan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yun Deng
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
9
|
Mak KWY, He W, Loganathan N, Belsham DD. Bisphenol A Alters the Levels of miRNAs That Directly and/or Indirectly Target Neuropeptide Y in Murine Hypothalamic Neurons. Genes (Basel) 2023; 14:1773. [PMID: 37761913 PMCID: PMC10530511 DOI: 10.3390/genes14091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The hypothalamus is a vital regulator of energy homeostasis. Orexigenic neuropeptide Y (NPY) neurons within the hypothalamus can stimulate feeding and suppress energy expenditure, and dysregulation of these neurons may contribute to obesity. We previously reported that bisphenol A (BPA), an endocrine disruptor with obesogenic properties, alters Npy transcription in hypothalamic neurons by inducing oxidative stress. We hypothesized that hypothalamic microRNAs (miRNAs), a class of small non-coding RNAs, could directly regulate Npy gene expression by binding the 3' untranslated region (UTR). Five predicted Npy-targeting miRNA candidates were uncovered through TargetScan and were detected in Npy-expressing hypothalamic neuronal cell models and hypothalamic neuronal primary cultures. BPA dysregulated the expression of a number of these hypothalamic miRNAs. We examined the effects of putative Npy-targeting miRNAs using miRNA mimics, and we found that miR-143-3p, miR-140-5p, miR-29b-1-5p, and let-7b-3p altered Npy expression in the murine hypothalamic cell lines. Importantly, miR-143-3p targets the mouse Npy 3' UTR, as detected using a luciferase construct containing the potential 3' UTR binding sites. Overall, this study established the first hypothalamic miRNA that directly targets the 3' UTR of mouse Npy, emphasizing the involvement of miRNAs in the NPY system and providing an alternative target for control of NPY levels.
Collapse
Affiliation(s)
- Kimberly W. Y. Mak
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada; (K.W.Y.M.); (W.H.); (N.L.)
| | - Wenyuan He
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada; (K.W.Y.M.); (W.H.); (N.L.)
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada; (K.W.Y.M.); (W.H.); (N.L.)
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada; (K.W.Y.M.); (W.H.); (N.L.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
Zhu Z, Long X, Wang J, Cao Q, Yang H, Zhang Y. Bisphenol A has a sex-dependent disruptive effect on hepatic lipid metabolism in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109616. [PMID: 36963593 DOI: 10.1016/j.cbpc.2023.109616] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor that has adverse effects on lipid metabolism. However, most of the current studies on the effects of BPA on lipid metabolism in fish have focused on middle- and short-term exposure tests. The aim of this study was to investigate the effects of long-term BPA exposure on liver lipid metabolism in zebrafish. Post-fertilization embryos were exposed to environmentally relevant concentrations of BPA for 120 days, and the changes in triglyceride (TG), total cholesterol (TC) levels, and gene expression related to liver lipid metabolism were investigated in both male and female fish. The results showed that long-term exposure to BPA led to lipid deposition in liver, and there was a sex difference. In the liver of female fish, there was higher lipid transport and synthesis at low concentration of BPA, while overall metabolic levels were increased at high concentration of BPA. In contrast, BPA showed a dose-dependent effect on the lipid deposition in male fish. The expression of mRNA of TG transport-related and lipid synthesis-related genes was significantly up-regulated and the expression of genes related to lipid catabolism, was significantly down-regulated with increasing BPA dose. Taken together, our results indicate that long-term exposure to BPA can increase lipid deposition in a gender-specific manner. This may be due to the different responses of lipid metabolism related genes to BPA in male and female zebrafish. These results will provide a new reference for a deeper understanding of the ecotoxicological effects of BPA on aquatic animals.
Collapse
Affiliation(s)
- Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaodong Long
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jing Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qingsheng Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
11
|
Capó X, Alomar C, Compa M, Sole M, Sanahuja I, Soliz Rojas DL, González GP, Garcinuño Martínez RM, Deudero S. Quantification of differential tissue biomarker responses to microplastic ingestion and plasticizer bioaccumulation in aquaculture reared sea bream Sparus aurata. ENVIRONMENTAL RESEARCH 2022; 211:113063. [PMID: 35271834 DOI: 10.1016/j.envres.2022.113063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Marine aquaculture is considered a potential source of microplastics (MPs). MPs can induce oxidative stress and damage in marine species. In this study we evaluated the impact of MPs intake in the commercial fish, Sparus aurata, from aquaculture facilities and the antioxidant response associated to this MPs ingestion in caged specimens for 120 days. Sampling was carried out at the beginning of the study (T0), at 60 days (T60) and at 120 days (T120). At each sampling stage, gastrointestinal tract, blood, plasma, liver and muscle samples were obtained to analyse MPs intake (gastrointestinal tract), oxidative stress markers (blood, plasma and liver) and plasticizers bioaccumulation (muscle). Fish sampled at T60 presented the highest MPs intake and plasticizers accumulated in muscle over time, but with a different pattern according to type: bisphenols and phthalates. This indicates MPs ingestion induces a differential tissue response in S. aurata. Similarly, stress biomarkers presented a differential response throughout the study, depending on the analysed tissue. In the case of oxidative damage markers, for malondialdehyde (MDA) an increase throughout the study was observed both in liver and blood cells but with a progressive decrease in plasma. In the case of phase I detoxifying enzyme activities in liver, 7-ethoxyresorufin O-deethylase (EROD), 7-benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD) and carboxylesterases (CE), showed a comparable decrease at T60 with a slight recovery at T120. In contrast, glutathione-S-transferase (GST) activity was significantly enhanced at T60 compared to the other sampling stages. In conclusion, MPs ingestion occurs in aquaculture reared seabream where potentially associated plasticizers accumulate in the muscle and both could be responsible for plasma and liver oxidative stress damage and alterations on detoxifying biomarkers responses.
Collapse
Affiliation(s)
- Xavier Capó
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain.
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| | - Monserrat Compa
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| | - Montserrat Sole
- Institut de Ciències del Mar, ICM-CSIC, E-08003, Barcelona, Spain
| | - Ignasi Sanahuja
- Institut de Ciències del Mar, ICM-CSIC, E-08003, Barcelona, Spain
| | - Dulce Lucy Soliz Rojas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Gema Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Rosa Maria Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| |
Collapse
|
12
|
Zhang Y, Yang Z, Li X, Song P, Wang J. Effects of diisononyl phthalate exposure on the oxidative stress and gut microorganisms in earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153563. [PMID: 35104518 DOI: 10.1016/j.scitotenv.2022.153563] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers and can be ubiquitously detected in environment. However, the toxic effects and mechanisms of diisononyl phthalate (DINP) on earthworms are still poorly understood. In this study, earthworms (Eisenia fetida) were exposed to DINP at various doses (0, 300, 600, 1200, and 2400 mg/kg) to investigate their subchronic toxicity. The results demonstrated that the reactive oxygen species (ROS) levels displayed an "increase-decrease" trend with the increasing DINP doses after DINP exposure on days 7, 14, 21, and 28. The malondialdehyde (MDA) content increased with increasing DINP doses on days 7, 14, and then decreased on days 21, 28. The values of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) showed similar variation patterns and reached a maximum level on 21 d. Moreover, on day 28, the SOD and CAT gene expression levels were upregulated, while the GST gene expression levels were downregulated. Meanwhile, 16S rRNA genes of E. fetida gut bacteria and surrounding soil bacteria were measured after 28 days of exposure to DINP. The Chao index of E. fetida gut bacteria decreased when the treatment with the highest concentration (2400 mg/kg) was applied. At the phylum level, the abundance of Chloroflexi was significantly lower in the gut of E. fetida. In addition, the abundance of Proteobacteria at the phylum level and Ottowia at the genus level significantly increased in the surrounding soil. Overall, our results shed light on the toxic mechanism of DINP at biochemical, molecular, and omics levels, and contributed to a better understanding of the ecotoxicity of DINP.
Collapse
Affiliation(s)
- Youai Zhang
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Zhongkang Yang
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Peipei Song
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China.
| |
Collapse
|
13
|
Wu B, Zhao Q, Li Z, Min Z, Shi M, Nie X, He Q, Gui R. Environmental level bisphenol A accelerates alterations of the reno-cardiac axis by the MAPK cascades in male diabetic rats: An analysis based on transcriptomic profiling and bioinformatics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117671. [PMID: 34435562 DOI: 10.1016/j.envpol.2021.117671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
In humans and animal models, the kidneys and cardiovascular systems are negatively affected by BPA from the environment. It is considered that BPA have some potential estrogen-like and non-hormone-like properties. In this study, RNA-sequencing and its-related bioinformatics was used as the basic strategy to clarify the characteristic mechanisms of kidney-heart axis remodeling and dysfunction in diabetic male rats under BPA exposure. We found that continuous BPA exposure in diabetic rats aggravated renal impairment, and caused hemodynamic disorders and dysfunctions. There were 655 and 125 differentially expressed genes in the kidney and heart, respectively. For the kidneys, functional annotation and enrichment, and gene set enrichment analyses identified bile acid secretion related to lipid synthesis and transport, and MAPK cascade pathways. For the heart, these bioinformatics analyses clearly pointed to MAPKs pathways. A total of 12 genes and another total of 6 genes were identified from the kidney tissue and heart tissue, respectively. Western blotting showed that exposure to BPA activated MAPK cascades in both organs. In this study, the exacerbated remodeling of diabetic kidney-heart axis under BPA exposure and diabetes might occur through hemodynamics, metabolism disorders, and the immune-inflammatory response, as well as continuous estrogen-like stimulation, with focus on the MAPK cascades.
Collapse
Affiliation(s)
- Bin Wu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China; Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Physiology, Pathophysiology, Pharmacology and Toxicology (Laboratory of Physiological Science), Hubei University of Arts and Science, Xiangyang, China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuoneng Li
- Institute of Environment Health and Food Safety, Wuhan Center for Diseases Control and Prevention, Wuhan, China
| | - Zhiteng Min
- Department of Occupational Health, Wuhan Center for Diseases Control and Prevention, Wuhan, China; Key Laboratory of Occupational Hazard Identification and Control of Hubei Province, Wuhan University of Science and Technology, Wuhan, China
| | - Mengdie Shi
- Institute of Environment Health and Food Safety, Wuhan Center for Diseases Control and Prevention, Wuhan, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Tian S, Yan S, Meng Z, Huang S, Sun W, Jia M, Teng M, Zhou Z, Zhu W. New insights into bisphenols induced obesity in zebrafish (Danio rerio): Activation of cannabinoid receptor CB1. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126100. [PMID: 34098260 DOI: 10.1016/j.jhazmat.2021.126100] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Bisphenols (BPs), as widely used plastic additives, penetrate into our daily lives. BPs are considered endocrine disruptors and could potentially induce obesity. In this study, the effects of bisphenol A (BPA) and tetrabromobisphenol A (TBBPA) on food intake and lipid metabolism in zebrafish were determined. Moreover, the impact of BPA and TBBPA on the endocannabinoid system (ECS) of zebrafish was further explored by metabolomics, transcriptomics, and molecular docking analysis. Here we show that exposure to BPA and TBBPA at concentrations commonly found in the environment (20, 100, and 500 μg/L) led to hyperphagia and obesity in adult male zebrafish. Metabolomics and histopathological analysis revealed significant lipid accumulation in the liver of zebrafish exposed to BPA and TBBPA. The expression of ECS-related genes, in conjunction with RNA-Seq results, further indicated that BPA and TBBPA increased appetite and induced obesity by activating cannabinoid receptor type 1(CB1). Furthermore, molecular docking revealed that six representative BPs including BPA and TBBPA could bind to the CB1 receptor. Collectively, these findings indicate that CB1 may be a potential target for BPs to induce obesity.
Collapse
Affiliation(s)
- Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- School of Horticulture and Plant Protection, Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Zhang Y, Jiao Y, Li Z, Tao Y, Yang Y. Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145418. [PMID: 33548714 DOI: 10.1016/j.scitotenv.2021.145418] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
Phthalates (PAEs) are of wide concern because they are commonly used in various plastic products as plasticizers, and can found their way into the environment. However, their interaction with the environment and their toxicity in aquatic animals is still a matter of intense debate. In this review on PAEs in aquatic environments (lakes, rivers and seas), it is found that there is a large variety and abundance of PAEs in developing countries, and the total concentration of PAEs even exceeds 200 μg / L. The interaction between metabolic processes involved in the toxicity induced by various PAEs is summarized for the first time in the article. Exposure of PAEs can lead to activation of the detoxification system CYP450 and endocrine system receptors of aquatic animals, which in turn causes oxidative stress, metabolic disorders, endocrine disorders, and immunosuppression. Meanwhile, each system can activate / inhibit each other, causing genotoxicity and cell apoptosis, resulting in the growth and development of organisms being blocked. The mixed PAEs shows no cumulative toxicity changes to aquatic animals. For the combined pollution of other chemicals and PAEs, PAE can act as an agonist or antagonist, leading to combined toxicity in different directions. Phthalate monoesters (MPEs), the metabolites of PAEs, are also toxic to aquatic animals, however, the toxicity is weaker than the corresponding parent compounds. This review summarizes and analyzes the current ecotoxicological effects of PAEs on aquatic animals, and provides guidance for future research.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
16
|
Gu Y, Gao M, Zhang W, Yan L, Shao F, Zhou J. Exposure to phthalates DEHP and DINP May lead to oxidative damage and lipidomic disruptions in mouse kidney. CHEMOSPHERE 2021; 271:129740. [PMID: 33736212 DOI: 10.1016/j.chemosphere.2021.129740] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 05/26/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) has been well acknowledged for its endocrine disruption and associated metabolic diseases, leading to the search for safer industrial alternatives including di-isononyl phthalate (DINP). However, safety data for the latter chemical has been relatively scarce particularly regarding potential damage to the kidney at low doses. Five-week-old ICR male mice were exposed to vehicle, DEHP or DINP (0.05 and 4.8 mg/kg bw) daily via gavage for 5 weeks. We observed increased levels of reactive oxygen species and malondialdehyde, decreased levels of reduced glutathione, in the kidney at higher dose for both chemicals suggestive of oxidative damage. Elevated levels of inflammatory cytokines tumor necrosis factor-α and interleukin-6 of the kidney further suggested inflammatory status as a result of phthalate exposure in both high dose groups. Targeted lipidomics demonstrated greatest changes in the kidney induced by high dose of DEHP, although DINP also induced significant changes in phospholipids diacylglycerides that are associated with lipid accumulation in glomerular podocytes and inflammatory responses. Our data suggest that oxidative stress may be involved in both DEHP- and DINP-induced renal lipidomic disruption and continue to question the suitability of DINP as proper DEHP substitute.
Collapse
Affiliation(s)
- Yue Gu
- Department of Nephrology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Mei Gao
- Department of Nephrology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenwen Zhang
- Department of Nephrology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jing Zhou
- Department of Health Management, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China.
| |
Collapse
|
17
|
Capó X, Company JJ, Alomar C, Compa M, Sureda A, Grau A, Hansjosten B, López-Vázquez J, Quintana JB, Rodil R, Deudero S. Long-term exposure to virgin and seawater exposed microplastic enriched-diet causes liver oxidative stress and inflammation in gilthead seabream Sparus aurata, Linnaeus 1758. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144976. [PMID: 33636779 DOI: 10.1016/j.scitotenv.2021.144976] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Plastics accumulation in marine ecosystems has notable ecological implications due to their long persistence, potential ecotoxicity, and ability to adsorb other pollutants or act as vectors of pathogens. The present work aimed to evaluate the physiological response of the gilthead seabream (Sparus aurata) fed for 90 days with a diet enriched with virgin and seawater exposed low-density polyethylene microplastics (LDPE-MPs) (size between 100 and 500 μM), followed by 30 days of depuration, applying oxidative stress and inflammatory markers in liver homogenates. No effects of LDPE-MPs treatments on fish growth were observed throughout this study. A progressive increase in antioxidant enzyme activities was observed throughout the study in both treatments, although this increase was higher in the group treated with seawater exposed MPs. This increase was significantly higher in catalase (CAT), glutathione reductase (GRd), and glutathione-s-transferase (GST) in the seawater exposed MPs group, with respect to the virgin group. In contrast, no significant differences were recorded in superoxide dismutase (SOD) and glutathione peroxidase (GPx) between both groups. Exposure to MPs also caused an increase in the oxidative damage markers (malondialdehyde and carbonyls groups). Myeloperoxidase activity significantly increased because of MPs treatments. After 30 days of depuration, antioxidant, inflammatory enzyme activities and oxidative damage markers returned to values similar to those observed in the control group. In conclusion, MPs exposure induced an increase of antioxidant defences in the liver of S. aurata. However, these elevated antioxidant capabilities were not enough to prevent oxidative damage in the liver since, an increased oxidative damage marker was associated with MPs ingestion. The treatment with seawater exposed MPs caused a more significant antioxidant response (CAT, GRs, and GST). Although after a depuration period of 30 days a tendency to recover the initial values of the biomarkers was observed this does not seem to be time enough for a complete normalization.
Collapse
Affiliation(s)
- X Capó
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Balearic Islands, Spain.
| | - J J Company
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Balearic Islands, Spain
| | - C Alomar
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Balearic Islands, Spain
| | - M Compa
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Balearic Islands, Spain
| | - A Sureda
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain; CIBER (Fisiopatologia de la obesidad y nutrición) CIBEROBN. Instituto de Salud Carlos III, (ISCIII), 28029 Madrid, Spain
| | - A Grau
- Laboratorio de Investigaciones Marinas y Acuicultura, LIMIA-Govern de les Illes Balears, Port d'Andratx, Balearic Islands, Spain
| | - B Hansjosten
- Laboratorio de Investigaciones Marinas y Acuicultura, LIMIA-Govern de les Illes Balears, Port d'Andratx, Balearic Islands, Spain
| | - J López-Vázquez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidad de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - J B Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidad de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - R Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidad de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - S Deudero
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
18
|
Yang Y, Sun F, Chen H, Tan H, Yang L, Zhang L, Xie J, Sun J, Huang X, Huang Y. Postnatal exposure to DINP was associated with greater alterations of lipidomic markers for hepatic steatosis than DEHP in postweaning mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143631. [PMID: 33223173 DOI: 10.1016/j.scitotenv.2020.143631] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 05/13/2023]
Abstract
The toxicity of the endocrine disruptor di(2-ethylhexyl) phthalate (DEHP) has been extensively studied for its hormonal dysregulation, obesogenic effect and associated metabolic diseases. DEHP's primary substitute di-isononyl phthalate (DINP), however, although increased in annual production globally, requires better understanding of its health effect. Our previous work reported disruptions in plasma lipid profiles, but the metabolic responses following phthalate exposure in the liver, particularly the entire hepatic lipidome, have been lacking. A targeted lipidomic technique was applied to accurately quantify a total of 363 lipid species in the liver of neonatal mice after exposure to a daily dose of 4.8 mg/kg body weight/day from birth throughout lactation. Distinct patterns of disruption for each sum of lipid classes or sub-classes between the genders were the most noticeable. Following DINP administration, female pups were subject to greater changes in phosphatidylethanolamines, bis(monoacylglycero)phosphate and ceramides. In contrast, the males exhibited less changes in the phosphoglycerol backbone-based molecules, whereas glycerol and cholesterol esters were more disrupted by DINP. DEHP, however, induced less changes overall compared to DINP. These findings highlighted the predominant lipidomic disruption of DINP on glycerol (diacylglycerides and triacylglycerides) and/or cholesterol (in ester or free form) molecules in neonatal mice across genders, suggesting the genesis of hepatic steatosis occurring at as early as post weaning. Collectively, these findings question the suitability of DINP as a safe DEHP substitute and warrant further investigation on longer-term exposure to elucidate its effect on chronic liver diseases.
Collapse
Affiliation(s)
- Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, Guangdong, China
| | - Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, Guangdong, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Liu Yang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Long Zhang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jinxin Xie
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jiachen Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaochen Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
The Complex Interplay between Endocannabinoid System and the Estrogen System in Central Nervous System and Periphery. Int J Mol Sci 2021; 22:ijms22020972. [PMID: 33478092 PMCID: PMC7835826 DOI: 10.3390/ijms22020972] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is a lipid cell signaling system involved in the physiology and homeostasis of the brain and peripheral tissues. Synaptic plasticity, neuroendocrine functions, reproduction, and immune response among others all require the activity of functional ECS, with the onset of disease in case of ECS impairment. Estrogens, classically considered as female steroid hormones, regulate growth, differentiation, and many other functions in a broad range of target tissues and both sexes through the activation of nuclear and membrane estrogen receptors (ERs), which leads to genomic and non-genomic cell responses. Since ECS function overlaps or integrates with many other cell signaling systems, this review aims at updating the knowledge about the possible crosstalk between ECS and estrogen system (ES) at both central and peripheral level, with focuses on the central nervous system, reproduction, and cancer.
Collapse
|
20
|
Forner-Piquer I, Beato S, Piscitelli F, Santangeli S, Di Marzo V, Habibi HR, Maradonna F, Carnevali O. Effects of BPA on zebrafish gonads: Focus on the endocannabinoid system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114710. [PMID: 32417572 DOI: 10.1016/j.envpol.2020.114710] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a monomer used for polycarbonate manufacture, has been widely reported as an endocrine-disrupting chemical (EDC). Among other alterations, BPA induces reproductive dysfunctionalities. Changes in the endocannabinoid system (ECS) have been recently shown to be associated with reproductive disorders. The ECS is a lipid-based signaling system (cannabinoid receptors, endocannabinoids and enzymatic machinery) involved in several physiological functions. The main goal of the present study was to assess the effects of two environmental concentrations of BPA (10 and 20 μg/L) on the ECS in 1-year old zebrafish gonads. In males, BPA increased the gonadosomatic index (GSI) and altered testicular levels of endocannabinoids as well as reduced the testicular area occupied by spermatogonia. In male liver, exposure to 20 μg/L BPA significantly increased vitellogenin (vtg) transcript levels. In female zebrafish, BPA altered ovarian endocannabinoid levels, elevated hepatic vtg mRNA levels as well as increased the percentage of vitellogenic oocytes in the ovaries. In conclusion, exposure to two environmentally relevant concentrations of BPA altered the ECS and consequently, gonadal function in both male and female zebrafish.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Silvia Beato
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Stefania Santangeli
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy.
| |
Collapse
|
21
|
Sun SX, Wu JL, Lv HB, Zhang HY, Zhang J, Limbu SM, Qiao F, Chen LQ, Yang Y, Zhang ML, Du ZY. Environmental estrogen exposure converts lipid metabolism in male fish to a female pattern mediated by AMPK and mTOR signaling pathways. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122537. [PMID: 32203715 DOI: 10.1016/j.jhazmat.2020.122537] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Environmental estrogens, including bisphenol A (BPA) and 17β-estradiol (E2), which are widely used in industries and medicine, pose a severe ecological threat to fish due to feminization induction. However, the related metabolic basis for reproductive feminization in male fish has not been well addressed. We first found that female zebrafish exhibited higher lipid accumulation and lipogenesis activity than males. Next, we exposed male and female zebrafish to E2 (200 ng/L) or BPA (100 μg/L) for six weeks, and observed an early-phase reproductive feminization in males, accompanied with reduced spermatids, significant fat deposition and lipogenic gene expressions that mimicked female patterns. Cellular signaling assays revealed that, E2 or BPA modulated lipid metabolism in males mainly through lowering 5' AMP-activated protein kinase (AMPK) and upregulating the lipogenic mechanistic target of rapamycin (mTOR) pathways. For the first time, we show that environmental estrogens could alter lipid metabolism in male fish to a female pattern (metabolic feminization) prior to gonad feminization in male fish, to allows males to accumulate efficiently lipids to harmonize with the feminized gonads. This study suggests that negative effects of environmental estrogens, as hazardous materials, on vertebrate health are more complicated than originally thought.
Collapse
Affiliation(s)
- Sheng-Xiang Sun
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jun-Lin Wu
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hong-Bo Lv
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hai-Yang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Samwel Mchele Limbu
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Aquatic Sciences and Fisheries Technology, University of Dar as Salaam, Dar es Salaam, Tanzania
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Yang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
22
|
Ernst J, Grabiec U, Falk K, Dehghani F, Schaedlich K. The endocrine disruptor DEHP and the ECS: analysis of a possible crosstalk. Endocr Connect 2020; 9:101-110. [PMID: 31910153 PMCID: PMC6993259 DOI: 10.1530/ec-19-0548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 11/09/2022]
Abstract
Studies of the last decade associated the environmental contamination by di-(2-ethylhexyl)-phthalate (DEHP) with obesity and endocrine malfunction. DEHP was found to interact with several receptors - among them are receptors of the endocannabinoid system (ECS) with high expression levels in adipose tissue. Furthermore, the correlation for BMI and body fat to the serum endocannabinoid level raises the question if the obesogenic and endocrine-disrupting DEHP effects are mediated via the ECS. We therefore characterized the ECS in a human cell model of adipogenesis using the SGBS preadipocytes to subsequently investigate if DEHP exposure affects the intrinsic ECS. The receptors of the ECS and the endocannabinoid-metabolizing enzymes were upregulated during normal adipogenesis, accompanied by an increasing secretion of the adipokines adiponectin and leptin. DEHP affected the secretion of both adipokines but not the ECS, suggesting DEHP to alter the endocrine function of adipocytes without the involvement of the intrinsic ECS.
Collapse
Affiliation(s)
- Jana Ernst
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Correspondence should be addressed to J Ernst:
| | - Urszula Grabiec
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kathrin Falk
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kristina Schaedlich
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
23
|
Sun SX, Zhang YN, Lu DL, Wang WL, Limbu SM, Chen LQ, Zhang ML, Du ZY. Concentration-dependent effects of 17β-estradiol and bisphenol A on lipid deposition, inflammation and antioxidant response in male zebrafish (Danio rerio). CHEMOSPHERE 2019; 237:124422. [PMID: 31352104 DOI: 10.1016/j.chemosphere.2019.124422] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Environmental estrogenic compounds are important pollutants, which are widely distributed in natural water bodies. They produce various adverse effects on fish, but their concentration-dependent toxicities in fish metabolism and health are not fully understood. This study investigated the effects of 17β-estradiol (E2) and bisphenol A (BPA) at low and high concentrations on lipid deposition, inflammation and antioxidant response in male zebrafish. We measured fish growth parameters, gonad development, lipid contents and the activities of inflammatory and antioxidant enzymes, as well as their mRNA expressions. All E2 and BPA concentrations used increased body weight, damaged gonad structure and induced feminization in male zebrafish. The exposure of zebrafish to E2 and BPA promoted lipid accumulation by increasing total fat, liver triglycerides and free fatty acid contents, and also upregulated lipogenic genes expression, although they decreased total cholesterol content. Notably, zebrafish exposed to low concentrations of E2 (200 ng/L) and BPA (100 μg/L) had higher lipid synthesis and deposition compared to high concentrations (2000 ng/L and 2000 μg/L, respectively). However, the high concentrations of E2 and BPA increased inflammation and antioxidant response. Furthermore, BPA caused greater damage to fish gonad development and more severe lipid peroxidation compared to E2. Overall, the results suggest that the toxic effects of E2 and BPA on zebrafish are concentration-dependent such that, the relative low concentrations used induced lipid deposition, whereas the high ones caused adverse effects on inflammation and antioxidant response.
Collapse
Affiliation(s)
- Sheng-Xiang Sun
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yun-Ni Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dong-Liang Lu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei-Li Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Samwel Mchele Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China; Department of Aquatic Sciences and Fisheries Technology, University of Dar as Salaam, Dar es Salaam, Tanzania
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
24
|
Zhang L, Sun W, Duan X, Duan Y, Sun H. Promoting differentiation and lipid metabolism are the primary effects for DINP exposure on 3T3-L1 preadipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113154. [PMID: 31546122 DOI: 10.1016/j.envpol.2019.113154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 05/13/2023]
Abstract
Diisononyl phthalate (DINP) is a high-molecular-weight phthalate, and has been recently introduced as di-(2-ethyl hexyl) phthalate (DEHP) substitute and commonly used in a large variety of plastic items. The fat tissue is an important target for DINP exposure, however, very little is understood about its toxicity and mechanism(s) in adipocyte cells. Therefore, the present work aimed to investigate the role of DINP in adipogenesis using 3T3-L1 preadipocytes. DINP exposure for 10 days extensively induced adipogenesis in 3T3-L1 preadipocytes to adipocytes as assessed by lipid accumulation and gene expression of adipogenic markers. The RT-qPCR results showed that DINP could upregulate the expression of peroxisome proliferator-activated receptor-gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα) and C/EBPβ, while the expression of sterol regulatory element binding transcription factor 1 (SREBF1) and C/EBPδ was not affected. The DINP-induced adipogenesis could be inhibited by using the selective PPARγ antagonist GW9662. The RNA-seq analysis was used to study the systemic toxicities of DINP on preadipocytes. A total of 1181 differently expressed genes (DEGs) (640 genes were up-regulated, 541 genes were down-regulated) were detected in 3T3-L1 preadipocytes under 50 μM DINP. The GO enrichment showed the GO term of "fat cell differentiation" was the most significantly affected metabolic functions, and the KEGG pathway enrichment showed the PPAR pathway was the top affected pathway. The interactive pathway (iPath) analysis showed that the changed metabolic pathways were focus on the lipid metabolism.
Collapse
Affiliation(s)
- Lianying Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Weijie Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoyu Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yishuang Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
25
|
Huang Y, Sun F, Tan H, Deng Y, Sun Z, Chen H, Li J, Chen D. DEHP and DINP Induce Tissue- and Gender-Specific Disturbances in Fatty Acid and Lipidomic Profiles in Neonatal Mice: A Comparative Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12812-12822. [PMID: 31577137 DOI: 10.1021/acs.est.9b04369] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Di-isononyl phthalate (DINP) is considered one of the main industrial alternatives to di(2-ethylhexyl)phthalate (DEHP), a well-known chemical with various toxic effects including the disruption with lipid metabolism. However, the potential effects of DINP on lipid metabolism have rarely been investigated in mammals. Our study demonstrated that exposure of neonatal mice to DEHP and DINP at a daily dose of 0.048 or 4.8 mg/kg from postnatal day 0 (PND0) to PND21 caused nonmonotonic as well as tissue- and gender-specific alterations of total fatty acid (FA) compositions in plasma, heart, and adipose tissues. However, the patterns of disruption differed between DEHP- and DINP-treated groups. On the basis of targeted lipidomic analyses, we further identified gender-specific alterations of eight lipid classes in plasma following DEHP or DINP exposure. At the higher dose, DEHP induced decreases in total phosphatidylcholines and phosphatidylinositol (PI) in females and increases in phosphatidylethanolamines (PEs) and triglycerides in males. By contrast, DINP at the higher dose caused alterations of PEs, PIs, phosphatidylserines, and cholesterols exclusively in male mice, but no changes were observed in female pups. Although the most significant dysregulation of lipid metabolism was often observed for the higher dose, the lower one could also disrupt lipid profiles and sometimes its effects may even be more significant than those induced by the higher dose. Our study for the first time identified tissue- and gender-specific disruptions of FA compositions and lipidomic profiles in mice neonatally exposed to DINP. These findings question the suitability of DINP as a safe DEHP substitute and lay a solid foundation for further elucidation of its effects on lipid metabolism and underlying mechanisms.
Collapse
Affiliation(s)
- Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Yongfeng Deng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Zhiqiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Hexia Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Jing Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
26
|
Renaud L, Huff M, da Silveira WA, Angert M, Haas M, Hardiman G. Genome-Wide Analysis of Low Dose Bisphenol-A (BPA) Exposure in Human Prostate Cells. Curr Genomics 2019; 20:260-274. [PMID: 32030086 PMCID: PMC6983955 DOI: 10.2174/1389202920666190603123040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Endocrine disrupting compounds (EDCs) have the potential to cause adverse effects on wild-life and human health. Two important EDCs are the synthetic estrogen 17α-ethynylestradiol (EE2) and bisphenol-A (BPA) both of which are xenoestrogens (XEs) as they bind the estrogen receptor and dis-rupt estrogen physiology in mammals and other vertebrates. In the recent years the influence of XEs on oncogenes, specifically in relation to breast and prostate cancer has been the subject of considerable study.
Collapse
Affiliation(s)
- Ludivine Renaud
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Matthew Huff
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Willian A da Silveira
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Mila Angert
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Martin Haas
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Gary Hardiman
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| |
Collapse
|
27
|
Forner-Piquer I, Fakriadis I, Mylonas CC, Piscitelli F, Di Marzo V, Maradonna F, Calduch-Giner J, Pérez-Sánchez J, Carnevali O. Effects of Dietary Bisphenol A on the Reproductive Function of Gilthead Sea Bream ( Sparus aurata) Testes. Int J Mol Sci 2019; 20:ijms20205003. [PMID: 31658598 PMCID: PMC6835794 DOI: 10.3390/ijms20205003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA), a known endocrine disrupting chemical (EDC), was administered by diet to gilthead sea bream (Sparus aurata) in order to study its effects on the endocannabinoid system (ECS) and gonadal steroidogenesis. 2-year-old male gilthead sea bream were fed with two different concentrations of BPA (LOW at 4 and HIGH at 4000 µg/kg body weight for 21 days during the reproductive season. Exposure to 4000 µg BPA/kg bw/day (BPA HIGH) reduced sperm motility and altered the straight-line velocity (VSL) and linearity (LIN). Effects on steroidogenesis were evident, with testosterone (T) being up-regulated by both treatments and 11-ketotestosterone (11-KT) down-regulated by BPA HIGH. Plasma levels of 17β-estradiol (E2) were not affected. The Gonadosomatic Index (GSI) increased in the BPA HIGH group. Interestingly, the levels of endocannabinoids and endocannabinoid-like compounds were significantly reduced after both treatments. Unpredictably, a few changes were noticed in the expression of genes coding for ECS enzymes, while the receptors were up-regulated depending on the BPA dose. Reproductive markers in testis (leptin receptor (lepr), estrogen receptors (era, erb), progesterone receptors (pr) and the gonadotropin releasing hormone receptor (gnrhr)) were up-regulated. BPA induced the up-regulation of the hepatic genes involved in oogenesis (vitellogenin (vtg) and zona pellucida 1 (zp1)).
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Ioannis Fakriadis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, 71003 Crete, Greece.
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, 71003 Crete, Greece.
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078 Pozzuoli, Italy.
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078 Pozzuoli, Italy.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Josep Calduch-Giner
- Nutrigenomics and Fish Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
28
|
Carnevali O, Santobuono M, Forner-Piquer I, Randazzo B, Mylonas CC, Ancillai D, Giorgini E, Maradonna F. Dietary diisononylphthalate contamination induces hepatic stress: a multidisciplinary investigation in gilthead seabream (Sparus aurata) liver. Arch Toxicol 2019; 93:2361-2373. [PMID: 31230093 DOI: 10.1007/s00204-019-02494-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
In this study, adult gilthead seabream (Sparus aurata) were exposed for 21 days to Di-iso-nonylphthalte (DiNP at 15 and 1500 μg kg-1 bw day-1) via the diet. This plastic additive has been recently introduced to replace the di-(2-ethylhexyl)phthalate, the toxicity of which has been demonstrated conclusively both in vivo and in vitro trials. An analysis of a set of biomarkers involved in stress and immune response provides evidence of hepatic toxicity by DiNP in the present study. Both hsp70 and gr mRNA levels were upregulated significantly by DiNP, while plasma cortisol increased only in fish fed with the lowest DiNP dose. The oxidative stress markers g6pdh, glut red, gpx1 and CAT were upregulated by DiNP; gst mRNA was induced by the high dose and gck mRNA was downregulated significantly by the low dose. The mRNA levels of genes involved in the immune response, such as pla2, 5-lox, tnfa and cox2, were upregulated significantly only by the high dose of DiNP, while il1 mRNA increases in both doses. These molecular evidences were complemented with features obtained by Fourier Transform Infrared Imaging (FTIRI) analysis regarding the hepatic distribution of the main biological macromolecules. The FTIRI analysis showed an alteration of biochemical composition in DiNP samples. In particular, the low dose of DiNP induced an increase of saturated and unsaturated lipids and phosphorylated proteins, and a decrease of glycogen levels. The levels of caspase did not change significantly in the study, suggesting that DiNP does not activate apoptosis. Finally, the results also suggested the onset of hepatic oxidative stress and the activation of immune response, adding new knowledge to the already described hepatic DiNP toxicity.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Martina Santobuono
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Isabel Forner-Piquer
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Basilio Randazzo
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Daniele Ancillai
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisabetta Giorgini
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
29
|
Gioacchini G, Marisaldi L, Basili D, Candelma M, Pignalosa P, Aiese Cigliano R, Sanseverino W, Hardiman G, Carnevali O. A de novo transcriptome assembly approach elucidates the dynamics of ovarian maturation in the swordfish (Xiphias gladius). Sci Rep 2019; 9:7375. [PMID: 31089194 PMCID: PMC6517582 DOI: 10.1038/s41598-019-43872-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022] Open
Abstract
The Mediterranean swordfish (Xiphias gladius) has been recently classified as overfished and in 2016, the International Commission for the Conservation of the Atlantic Tunas (ICCAT) established a multi-annual management plan to recover this stock. To successfully achieve this goal, knowledge about swordfish biology is needed. To date, few studies on swordfish have been performed and none of them has provided useful insights into the reproductive biology at molecular level. Here we set to characterise the molecular dynamics underlying ovarian maturation by employing a de novo transcriptome assembly approach. Differential gene expression analysis in mature and immature ovaries identified a number of differentially expressed genes associated with biological processes driving ovarian maturation. Focusing on ovarian steroidogenesis and vitellogenin uptake, we depict the molecular dynamics characterizing these processes while a phylogenetic analysis let us identify a candidate vitellogenin receptor. This is the first swordfish transcriptome assembly and these findings provide in-depth understanding of molecular processes describing ovarian maturation. Moreover, the establishment of a publicly available database containing information on the swordfish transcriptome aims to boost research on this species with the long-term of developing more comprehensive and successful stock management plans.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Luca Marisaldi
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Danilo Basili
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Michela Candelma
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | | | | | | | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, BT9 5AG, Belfast, UK
| | - Oliana Carnevali
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy.
| |
Collapse
|
30
|
Carnevali O, Giorgini E, Canuti D, Mylonas CC, Forner-Piquer I, Maradonna F. Diets contaminated with Bisphenol A and Di-isononyl phtalate modify skeletal muscle composition: A new target for environmental pollutant action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:250-259. [PMID: 30577020 DOI: 10.1016/j.scitotenv.2018.12.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/02/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
In the last years, an increasing number of studies reported that food pollution represents a significant route of exposure to environmental toxicants, able to cause mild to severe food illnesses and health problems, including hormonal and metabolic diseases. Pollutants can accumulate in organisms and biomagnify along the food web, finally targeting top consumers causing health and economic problems. In this study, adults of gilthead sea bream, Sparus aurata, were fed with diets contaminated with Bisphenol A (BPA) (4 and 4000 μg BPA kg-1 bw day-1) and Di-isononyl phthalate (DiNP) (15 and 1500 μg DiNP kg-1 bw day-1), to evaluate the effects of the contamination on the muscle macromolecular composition and alterations of its texture. The analysis conducted in the muscle using infrared microspectroscopy, molecular biology and biochemical assays, showed, in fish fed BPA contaminated diets, a decrease of unsaturated lipids and an increase of triglycerides and saturated alkyl chains. Conversely, in fish fed DiNP, a decrease of lipid content, caused by a reduction of both saturated and unsaturated chains and triglycerides was measured. Protein content was decreased by both xenobiotics evidencing a novel macromolecular target affected by these environmental contaminants. In addition, in all treated groups, proteins resulted more phosphorylated than in controls. Calpain and cathepsin levels, orchestrating protein turnover, were deregulated by both xenobiotics, evidencing alterations of muscle composition and texture. In conclusion, the results obtained suggest the ability of BPA and DiNP to modify the muscle macromolecular building, advising this tissue as a target of Endocrine-Disrupting Chemicals (EDCs) and providing a set of biomarkers as possible monitoring endpoints to develop novel OEDC test guidelines.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario, 00136 Roma, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Debora Canuti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece
| | - Isabel Forner-Piquer
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario, 00136 Roma, Italy.
| |
Collapse
|
31
|
Forner-Piquer I, Mylonas CC, Fakriadis I, Papadaki M, Piscitelli F, Di Marzo V, Calduch-Giner J, Pérez-Sánchez J, Carnevali O. Effects of diisononyl phthalate (DiNP) on the endocannabinoid and reproductive systems of male gilthead sea bream (Sparus aurata) during the spawning season. Arch Toxicol 2019; 93:727-741. [PMID: 30600365 DOI: 10.1007/s00204-018-2378-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/13/2018] [Indexed: 01/26/2023]
Abstract
Diisononyl phthalate (DiNP) is a plasticizer used to improve plastic performance in a large variety of items which has been reported as an endocrine-disrupting chemical (EDC) in several organisms. The endocannabinoid system (ECS) is a cellular signaling system, whose functionality is tightly involved with reproductive function. The aim of the present study was the assessment of the effects of DiNP on the gonadal ECS and on the reproductive function of male gilthead sea bream Sparus aurata, an important marine aquacultured species in Europe, during the reproductive season. Fish were fed for 21 days with two diets contaminated with different nominal concentrations of DiNP (DiNP LOW at 15 µg DiNP kg-1 bw day-1 and DiNP HIGH at 1500 µg DiNP kg-1 bw day-1), based on the tolerable daily intake (TDI) ruled by the European Food Safety Authority for humans. The transcription of several genes related to the ECS was affected by the DiNP. Specifically, DiNP reduced the levels of endocannabinoids and endocannabinoid-like mediators, concomitant with the increase of fatty acid amide hydrolase (FAAH) activity. At the histological level, DiNP LOW induced the highest occurrence of individuals with regressed testes. Steroidogenesis was affected significantly, since plasma 11-ketotestosterone (11-KT), the main active androgen in fish, was significantly decreased by the DiNP HIGH treatment, while plasma 17β-estradiol (E2) levels were raised, associated with an increase of the gonadosomatic index (GSI). Additionally, the level of testosterone (T) was significantly increased in the DiNP LOW group, however, the same DiNP concentration reduced the levels of 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P). The production of sperm was in general not affected, since spermiation index, sperm density, survival and the duration of forward motility did not exhibit any changes compared to controls. However, computer-assisted sperm analysis (CASA) showed that DiNP reduced the percentage of motile cells. The results clearly suggest a negative effect of DiNP via the diet on the male endocrine system of gilthead sea bream during the reproductive season.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Ioannis Fakriadis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Maria Papadaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Josep Calduch-Giner
- Nutrigenomics and Fish Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Oliana Carnevali
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
32
|
Maradonna F, Carnevali O. Lipid Metabolism Alteration by Endocrine Disruptors in Animal Models: An Overview. Front Endocrinol (Lausanne) 2018; 9:654. [PMID: 30467492 PMCID: PMC6236061 DOI: 10.3389/fendo.2018.00654] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/18/2018] [Indexed: 02/01/2023] Open
Abstract
Exposure to potential Endocrine Disrupting Chemicals (EDCs) pose a documented risk to both wildlife and human health. Many studies so far described declining sperm counts, genital malformations, early puberty onset, highlighting the negative impact on reproduction caused by the exposure to many anthropogenic chemicals. In the last years, increasing evidence suggested that these compounds, other than altering reproduction, affect metabolism and induce the onset of obesity and metabolic disorders. According to the "environmental obesogens" hypothesis, evidence exists that exposure to potential EDCs during critical periods when adipocytes are differentiating, and organs are developing, can induce diseases that manifest later in the life. This review summarizes the effects occurring at the hepatic level in different animal models, describing morphological alterations and changes of molecular pathways elicited by the toxicant exposure. Results currently available demonstrated that these chemicals impair normal metabolic processes via interaction with members of the nuclear receptor superfamily, including steroid hormone receptors, thyroid hormone receptors, retinoid X receptors, peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptors. In addition, novel results revealed that EDC exposure can either affect circadian rhythms as well as up-regulate the expression of signals belonging to the endocannabinoid system, in both cases leading to a remarkable increase of lipid accumulation. These results warrant further research and increase the interest toward the identification of new mechanisms for EDC metabolic alterations. The last part of this review article condenses recent evidences on the ability of potential EDCs to cause "transgenerational effects" by a single prenatal or early life exposure. On this regard, there is compelling evidence that epigenetic modifications link developmental environmental insults to adult disease susceptibility. This review will contribute to summarize the mechanisms underlying the insurgence of EDC-induced metabolic alterations as well as to build integrated strategies for their better management. In fact, despite the large number of results obtained so far, there is still a great demand for the development of frameworks that can integrate mechanistic and toxicological/epidemiological observations. This would increase legal and governmental institution awareness on this critical environmental issue responsible for negative consequences in both wild species and human health.
Collapse
Affiliation(s)
- Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
- INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, Rome, Italy
- *Correspondence: Francesca Maradonna
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
- INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, Rome, Italy
- Oliana Carnevali
| |
Collapse
|
33
|
Zare A, Henry D, Chua G, Gordon P, Habibi HR. Differential Hepatic Gene Expression Profile of Male Fathead Minnows Exposed to Daily Varying Dose of Environmental Contaminants Individually and in Mixture. Front Endocrinol (Lausanne) 2018; 9:749. [PMID: 30619083 PMCID: PMC6295643 DOI: 10.3389/fendo.2018.00749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023] Open
Abstract
Environmental contaminants are known to impair reproduction, metabolism and development in wild life and humans. To investigate the mechanisms underlying adverse effects of contaminants, fathead minnows were exposed to a number of endocrine disruptive chemicals (EDCs) including Nonylphenol (NP), bisphenol-A (BPA), Di(2-ethylhexyl) phthalate (DEHP), and a mixture of the three chemicals for 21 days, followed by determination of the liver transcriptome by expression microarrays. Pathway analysis revealed a distinct mode of action for the individual chemicals and their mixture. The results showed expression changes in over 980 genes in response to exposure to these EDC contaminants individually and in mixture. Ingenuity Pathway core and toxicity analysis were used to identify the biological processes, pathways and the top regulators affected by these compounds. A number of canonical pathways were significantly altered, including cell cycle & proliferation, lipid metabolism, inflammatory, innate immune response, stress response, and drug metabolism. We identified 18 genes that were expressed in all individual and mixed treatments. Relevant candidate genes identified from expression microarray data were verified using quantitative PCR. We were also able to identify specific genes affected by NP, BPA, and DEHP individually, but were also affected by exposure to the mixture of the contaminants. Overall the results of this study provide novel information on the adverse health impact of contaminants tested based on pathway analysis of transcriptome data. Furthermore, the results identify a number of new biomarkers that can potentially be used for screening environmental contaminants.
Collapse
Affiliation(s)
- Ava Zare
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Darren Henry
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Gordon Chua
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Paul Gordon
- Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
- *Correspondence: Hamid R. Habibi
| |
Collapse
|