1
|
Min N, Yao J, Li H, Kümmel S, Schaefer T, Herrmann H, Richnow HH. Multi-element isotope fractionation analysis to investigate the photosensitized reactions of humic substance with 3-chloroaniline. WATER RESEARCH 2025; 282:123633. [PMID: 40347894 DOI: 10.1016/j.watres.2025.123633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/15/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
Dissolved organic matter including humic-like substances (HS), acting as photosensitizers participating in electron transfer reactions, can generate a variety of reactive species, such as OH radicals and excited triplet state HS (3HS*) and related, which promote the degradation of organic contaminants such as 3-chloroaniline (3-CA). Multi-element-compound-specific stable isotope analysis (ME-CSIA) was applied to characterize photosensitized mechanisms employing 3-CA as a probe. HS were irradiated with artificial sunlight for elucidation of the reaction mechanisms by studying the kinetic isotope effect (2H, 13C, 15N and 37Cl) to characterize the first irreversible bond change reaction. Unique enrichment factors (-1.0 ± 0.3 ‰ for 13C, 7.4 ± 1.7 ‰ for 2H and 2.3 ± 0.7 ‰ for 37Cl) have been detected in HS/UV experiments (OH radical and triplet state), which indicate complex reaction mechanisms. Triplet state reference experiments with the artificial photosensitizers 4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein in the presence of O2 (Rose Bengal-O2) or absence of O2 (Rose Bengal-O2 free) yielded characteristic enrichment factors (-0.3 ± 0.2 ‰ and -1.2 ± 0.2 ‰ for 13C, 2.7 ± 0.5 ‰ and 4.8 ± 1.0 ‰ for 15N and 8.4 ± 3.3 ‰ and 11.2 ± 6.8 ‰ for 37Cl), allowing interpretation of reaction mechanisms of triplet state with 3-CA. The correlation of 2H vs 13C, 15N vs 13C and 37N vs 13C fractions could be used diagnostically to determine photosensitized reactions in the environment and to differentiate between biodegradation, hydrolysis and photosensitized HS reaction.
Collapse
Affiliation(s)
- Ning Min
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemisry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15 04318 Leipzig, Germany
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Hao Li
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Steffen Kümmel
- Department of Technical Biogeochemisry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15 04318 Leipzig, Germany
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research, Permoserstr. 15. 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research, Permoserstr. 15. 04318 Leipzig, Germany; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Hans Herrmann Richnow
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemisry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103, Leipzig, Germany.
| |
Collapse
|
2
|
Morris DJP, Morris EK, Nichols M, Weidenhamer JD, Bilheux HZ, Cornwell PA, Stringfellow E, Zhang Y, Bilheux JC. Visualization of in-situ chemical flow through sand using neutron radiography. Appl Radiat Isot 2025; 217:111652. [PMID: 39798270 DOI: 10.1016/j.apradiso.2024.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025]
Abstract
Chemical movement through soil is an important process in agriculture and ecology. Observing the spatial and temporal dynamics of these processes using conventional chemical ecology methods requires techniques that are destructive and/or lack resolution. Neutron radiography has the capability to allow chemical motion through sand/soil to be tracked with high spatial and temporal resolution, and we show that it allows for the motion of hydrophobic and hydrophilic chemicals to be distinguished. This technique can have an important impact on introducing neutron radiography to a wider community and into our understanding of chemical communication dynamics between plants and movement of applied chemicals in agricultural soils.
Collapse
Affiliation(s)
- D J P Morris
- Department of Physics & Engineering, Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA.
| | - E K Morris
- Department of Biology, Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA.
| | - M Nichols
- Department of Biology, Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA
| | - J D Weidenhamer
- Department of Chemistry, Geology & Physics, Ashland University, Ashland, OH, 44805, USA
| | - H Z Bilheux
- Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - P A Cornwell
- Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - E Stringfellow
- Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - Y Zhang
- Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - J-C Bilheux
- Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| |
Collapse
|
3
|
Yun HY, Kim IS, Shin KH. Compound-Specific Isotope Analysis Provides Direct Evidence for Identifying the Source of Residual Pesticides Diazinon and Procymidone in the Soil-Plant System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11980-11989. [PMID: 38758169 DOI: 10.1021/acs.jafc.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Compound-specific isotope analysis stands as a promising tool for unveiling the behavior of pesticides in agricultural environments. Using the commercial formulations of persistent fungicide procymidone (PRO) and less persistent insecticide diazinon (DIA), respectively, we analyzed the concentration and carbon isotope composition (δ13C) of the residual pesticides through soil incubation experiments in a greenhouse (for 150 days) and lab conditions (for 50-70 days). Our results showed that the magnitude of δ13C variation depends on pesticide specificity, in which PRO in the soil exhibited little variation in δ13C values over the entire incubation times, while DIA demonstrated an increased δ13C value, with the extent of δ13C variability affected by different spiking concentrations, plant presence, and light conditions. Moreover, the pesticides extracted from soils were isotopically overlapped with those from crop lettuce. Ultimately, the isotope composition of pesticides could infer the degradation and translocation processes and might contribute to identifying the source(s) of pesticide formulation in agricultural fields.
Collapse
Affiliation(s)
- Hee Young Yun
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| | - In-Seon Kim
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Korea
| | - Kyung-Hoon Shin
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| |
Collapse
|
4
|
Sharma M, Singh DN, Uttam G, Sharma P, Meena SA, Verma AK, Negi RK. Adaptive evolution of Sphingopyxis sp. MC4 conferred degradation potential for persistent β- and δ-Hexachlorocyclohexane (HCH) isomers. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132545. [PMID: 37757562 DOI: 10.1016/j.jhazmat.2023.132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Hexachlorocyclohexane (HCH), an organochlorine pesticide imposes several harmful impacts on the ecosystem. β- and δ-isomers of HCH are highly toxic, persistent, and recalcitrant to biodegradation, slow and incomplete degradation of β- and δ- isomers have been reported in a few strains. We have isolated a strain designated as Sphingopyxis strain MC4 that can tolerate and degrade high concentrations of α-, β-, γ- and δ-HCH isomers. To date, no other Sphingopyxis strain has been reported to degrade β- and δ-isomers. To understand the underlying genetic makeup contributing to adaptations, the whole genome of strain MC4 was sequenced. Comparative genome analysis showed that strain MC4 harbors the complete pathway (lin genes) required for HCH degradation. Genetic footprints such as presence of lin genes on genomic islands, IS6100 elements in close proximity of lin genes, and synteny in lin flanking regions with other strains reflects the horizontal gene transfer in strain MC4. Positive selection and HGT drive the adaptive evolution of strain MC4 under the pressure of HCH contamination that it experienced in its surrounding niche. In silico analyses showed efficient binding of β- and δ-isomers with enzymes leading to rapid degradation that need further validation by cloning and biochemical experiments.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Durgesh Narain Singh
- Department of Zoology, University of Delhi, Delhi 110007, India; BioNEST-BHU, InnoResTech Foundation, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gunjan Uttam
- Zoology section, MMV, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Shivam A Meena
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ram Krishan Negi
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
5
|
Liu X, Wu L, Kümmel S, Gehre M, Richnow HH. Determination of Stable Hydrogen Isotopic Composition and Isotope Enrichment Factor at Low Hydrogen Concentration. Anal Chem 2023; 95:16272-16278. [PMID: 37878670 PMCID: PMC10637740 DOI: 10.1021/acs.analchem.3c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Determination of stable hydrogen isotopic compositions (δ2H) is currently challenged to achieve a high detection limit for reaching the linear range where δ2H values are independent of concentration. Therefore, it is difficult to assess precise δ2H values for calculating the hydrogen isotope enrichment factor (εH) and for field application where the concentrations of contaminants are relatively low. In this study, a data treatment approach was developed to obtain accurate δ2H values below the linear range. The core concept was to use a logarithmic function to fit the δ2H values below the linear range and then adjust the δ2H values below the linear range into the linear range by using the fitted logarithmic equation. Moreover, the adjusted δ2H values were calibrated by using laboratory reference materials, e.g., n-alkanes. Tris(2-chloroethyl) phosphate (TCEP) and hexachlorocyclohexane (HCH) isomers were selected as examples of complex heteroatom-bearing compounds to develop the data treatment approach. This data treatment approach was then tested using δ2H values from a TCEP transformation experiment with OH radicals. Comparable δ2H values and εH between the low-concentration experiment and the reference experiment were obtained using the developed approach. Therefore, the developed data treatment approach enables a possibility of determining the hydrogen isotopic compositions of organic components in low concentrations. It is especially valuable for determining organic contaminants in environmental samples, which are usually present in low concentrations.
Collapse
Affiliation(s)
- Xiao Liu
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research-UFZ,Permoserstraße 15, 04318 Leipzig, Germany
| | - Langping Wu
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research-UFZ,Permoserstraße 15, 04318 Leipzig, Germany
- Ecometrix
Incorporated, 6800 Campobello
Road, Mississauga, ON L5N 2L8, Canada
| | - Steffen Kümmel
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research-UFZ,Permoserstraße 15, 04318 Leipzig, Germany
| | - Matthias Gehre
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research-UFZ,Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans Hermann Richnow
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research-UFZ,Permoserstraße 15, 04318 Leipzig, Germany
- Isodetect
GmbH, Deutscher Platz
5b, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Min N, Yao J, Li H, Zhu J, Kümmel S, Lechtenfeld OJ, Schaefer T, Herrmann H, Richnow HH. Carbon and hydrogen isotope fractionation of phthalates during photocatalysis reactions in aqueous solution containing Fe(III) complexes or iron minerals. WATER RESEARCH 2023; 247:120740. [PMID: 39492359 DOI: 10.1016/j.watres.2023.120740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/05/2024]
Abstract
The hydrogen and carbon isotope fractionation factor (ε2H, ε13C) of dimethyl-, diethyl‑ and dibutyl phthalic acid ester during photosensitized degradation by artificial sunlight with Fe(III) ions and iron minerals (hematite, goethite and magnetite) in aqueous solution were examined by compound-specific isotope analysis (CSIA) in order to analyze the degradation mechanism. Hematite does not catalyze photosensitized degradation of phthalates. The correlation of 2H and 13C isotope fractionation (Λ = Δδ2H/Δδ13C) of phthalates with increasing chain length (dimethyl-; diethyl‑; and dibutyl-) were compared with values of the ∙OH radical model reaction with the aromatic ring as well as acidic and alkaline hydrolysis. The Λ values of die photosensitized reaction of diethyl phthalate with goethite (-5.1 ± 1.8) and magnetite (-18.9 ± 3.9) show a large difference compared to Fe(III) solutions (4.7 ± 0.9 to 4.8 ± 1.0) suggesting specific reaction mechanisms. The fractionation factors determined here have potential to characterize the degradation of phthalates catalyzed by photo-induced reaction of Fe(III), goethite and magnetite in natural system and in remediation approaches.
Collapse
Affiliation(s)
- Ning Min
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Hao Li
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Junjie Zhu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Steffen Kümmel
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Oliver J Lechtenfeld
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans Hermann Richnow
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig. Germany.
| |
Collapse
|
7
|
Aamir M, Guo Z, Yu J, Zhao L, Xu D, Sun X, Xu C, Niu L, Liu W. Integrating compound-specific stable isotope and enantiomer-specific analysis to characterize the isomeric and enantiomeric signatures of hexachlorocyclohexanes (HCHs) in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132196. [PMID: 37536155 DOI: 10.1016/j.jhazmat.2023.132196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Organic pollutants in paddy fields may undergo different processes from those in dryland due to the anaerobic environment. The integrated use of compound-specific stable isotope analysis (CSIA) and enantiomer-specific analysis is a promising technique for understanding the behavior and fate of organic pollutants in soils. In this study, soil samples were collected from paddy fields in three major rice cultivation regions of China, spanning a transect of 4000 km. The mean concentrations of ƩHCHs in paddy soils from the Taihu Plain were the highest (1.44 ng/g). The ratios of α-HCH/β-HCH (all below 11.8) and α-HCH/γ-HCH (92% below 4.64), as well as the enantiomeric fractions (EFs) of chiral α-HCH (mean of 0.81), reflected that the distribution of HCHs was affected by the use of both technical HCHs and lindane. The preferential depletion of (-)-α-HCH and pronounced carbon isotope fractionation of α-HCH (δ13C of -28.22 ± 0.92‰ -23.63 ± 1.89‰) demonstrated its effective transformation. Factors such as altitude, soil temperature, soil pH, soil conductivity and soil organic matter significantly influenced the fate and transformation of HCHs. The current study highlights the integrated application of CSIA and enantiomer-specific analysis to provide multiple lines of evidence for the transformation of HCHs in soils.
Collapse
Affiliation(s)
- Muhammad Aamir
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Zili Guo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiawei Yu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lu Zhao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaohui Sun
- Zhejiang Environmental Monitoring Centre, Hangzhou 310012, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lili Niu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Liu X, Kümmel S, Trapp S, Richnow HH. Uptake and Transformation of Hexachlorocyclohexane Isomers (HCHs) in Tree Growth Rings at a Contaminated Field Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37267390 DOI: 10.1021/acs.est.3c01929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The potential transformation of hexachlorocyclohexane isomers (HCHs) within tree trunks could have a significant impact on the use of phytoscreening. However, the transformation mechanisms of HCH in trunks particularly in growth rings are not yet well understood. Therefore, a field study on an HCH-contaminated field site was conducted to investigate the fate of HCH, particularly α-HCH in tree trunks using multielement compound-specific isotope analysis (ME-CSIA) and enantiomer fractionation. The results indicate that α-HCH was transformed, as evidenced by higher δ13C and δ37Cl values detected across different growth ring sections and in the bark compared to those in muck and soil. Remarkably, in the middle growth ring section, δ13C values of HCH were only marginally higher or comparable to those in muck, whereas δ37Cl values were higher than those of the muck, indicating a different transformation mechanism. Moreover, the δ37Cl values of β-HCH also increased in the tree trunks compared to those in soil and muck, implying a transformation of β-HCH. Additionally, dual-element isotope analysis revealed that there are different transformation mechanisms between the middle growth rings and other sections. Our findings suggest that the transformation of HCHs in trunks could bias quantitative phytoscreening approaches; however, ME-CISA offers an option to estimate the degradation extent.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Stefan Trapp
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Min N, Yao J, Li H, Chen Z, Pang W, Zhu J, Kümmel S, Schaefer T, Herrmann H, Richnow HH. Humic Substance Photosensitized Degradation of Phthalate Esters Characterized by 2H and 13C Isotope Fractionation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1930-1939. [PMID: 36689325 PMCID: PMC9910037 DOI: 10.1021/acs.est.2c06783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The photosensitized transformation of organic chemicals is an important degradation mechanism in natural surface waters, aerosols, and water films on surfaces. Dissolved organic matter including humic-like substances (HS), acting as photosensitizers that participate in electron transfer reactions, can generate a variety of reactive species, such as OH radicals and excited triplet-state HS (3HS*), which promote the degradation of organic compounds. We use phthalate esters, which are important contaminants found in wastewaters, landfills, soils, rivers, lakes, groundwaters, and mine tailings. We use phthalate esters as probes to study the reactivity of HS irradiated with artificial sunlight. Phthalate esters with different side-chain lengths were used as probes for elucidation of reaction mechanisms using 2H and 13C isotope fractionation. Reference experiments with the artificial photosensitizers 4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein (Rose Bengal), 3-methoxy-acetophenone (3-MAP), and 4-methoxybenzaldehyde (4-MBA) yielded characteristic fractionation factors (-4 ± 1, -4 ± 2, and -4 ± 1‰ for 2H; 0.7 ± 0.2, 1.0 ± 0.4, and 0.8 ± 0.2‰ for 13C), allowing interpretation of reaction mechanisms of humic substances with phthalate esters. The correlation of 2H and 13C fractions can be used diagnostically to determine photosensitized reactions in the environment and to differentiate among biodegradation, hydrolysis, and photosensitized HS reaction.
Collapse
Affiliation(s)
- Ning Min
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Jun Yao
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Hao Li
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Zhihui Chen
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Wancheng Pang
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Junjie Zhu
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Steffen Kümmel
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Thomas Schaefer
- Atmospheric
Chemistry Department (ACD), Leibniz Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric
Chemistry Department (ACD), Leibniz Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans Hermann Richnow
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
- Isodetect
Leipzig GmbH, Deutscher
Platz 5b, Leipzig 04103, Germany
| |
Collapse
|
10
|
Bokade P, Gaur VK, Tripathi V, Bobate S, Manickam N, Bajaj A. Bacterial remediation of pesticide polluted soils: Exploring the feasibility of site restoration. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129906. [PMID: 36088882 DOI: 10.1016/j.jhazmat.2022.129906] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
For decades, reclamation of pesticide contaminated sites has been a challenging avenue. Due to increasing agricultural demand, the application of synthetic pesticides could not be controlled in its usage, and it has now adversely impacted the soil, water, and associated ecosystems posing adverse effects on human health. Agricultural soil and pesticide manufacturing sites, in particular, are one of the most contaminated due to direct exposure. Among various strategies for soil reclamation, ecofriendly microbial bioremediation suffers inherent challenges for large scale field application as interaction of microbes with the polluted soil varies greatly under climatic conditions. Methodically, starting from functional or genomic screening, enrichment isolation; functional pathway mapping, production of tensioactive metabolites for increasing the bioavailability and bio-accessibility, employing genetic engineering strategies for modifications in existing catabolic genes to enhance the degradation activity; each step-in degradation study has challenges and prospects which can be addressed for successful application. The present review critically examines the methodical challenges addressing the feasibility for restoring and reclaiming pesticide contaminated sites along with the ecotoxicological risk assessments. Overall, it highlights the need to fine-tune the available processes and employ interdisciplinary approaches to make microbe assisted bioremediation as the method of choice for reclamation of pesticide contaminated sites.
Collapse
Affiliation(s)
- Priyanka Bokade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Varsha Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Shishir Bobate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Natesan Manickam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
11
|
Košková S, Štochlová P, Novotná K, Amirbekov A, Hrabák P. Influence of delta-hexachlorocyclohexane (δ-HCH) to Phytophthora ×alni resistant Alnus glutinosa genotypes - Evaluation of physiological parameters and remediation potential. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114235. [PMID: 36327782 DOI: 10.1016/j.ecoenv.2022.114235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Hexachlorocyclohexanes (HCHs) are persistent organochlorine pesticides with the adverse effects on human health and the environment. The effect of delta-isomer of hexachlorocyclohexane (δ-HCH) on germination, growth parameters and physiological parameters was studied in different Alnus glutinosa (L.) Gaertn. progeny of resistant genotypes to pathogen Phytophthora ×alni. Two experiments were performed: a short-term experiment to determine the effect of δ-HCH on total germination (GT), germination energy (GE), speed of germination (SG), shoot length and biomass of seedlings, and a long-term experiment devoted to remediation aspects. In addition, changes in the hormonal system of alders were monitored in both cases. Significant differences were found between the treated and control group in most of the evaluated characteristics. Also, the content of studied phytohormones differs between groups. Furthermore, the obtained results indicate genetically determined variability in response to δ-HCH. Of the six tested, the Březové and Tuřany progeny seem to be suitable candidates for phytoremediation because of the adaptation to stress conditions or high remediation efficiency. The rest of tested progeny seems to be unsuitable due to higher mortality, lower remediation efficiency and higher levels of stress hormones resulting in significant decrease in biomass and plant height. Moreover, results indicate the role of the plant as a remediation accelerator, probably through released exudates, and a positive effect on the soil microbiome as the presence of plants increased the remediation efficiency by 20.85 - 35.89%. The obtained research findings may be helpful in better understanding the processes involved in removing these pesticides from the soil. Further research should be focused on rhizosphere microbiome, mechanism of in-plant isomerization and metabolites identification.
Collapse
Affiliation(s)
- Stanislava Košková
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic; Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Petra Štochlová
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Public Research Institute, Květnové náměstí 391, CZ-252 43 Průhonice, Czech Republic
| | - Kateřina Novotná
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Public Research Institute, Květnové náměstí 391, CZ-252 43 Průhonice, Czech Republic
| | - Aday Amirbekov
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic; Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Pavel Hrabák
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic.
| |
Collapse
|
12
|
Blessing M, Baran N. A review on environmental isotope analysis of aquatic micropollutants: Recent advances, pitfalls and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Mahammedi C, Mahdjoubi L, Booth C, Bowman R, Butt TE. Criteria for Preliminary Risk Assessment of Brownfield Site: An International Survey of Experts. ENVIRONMENTAL MANAGEMENT 2022; 70:681-696. [PMID: 35925209 PMCID: PMC9439978 DOI: 10.1007/s00267-022-01684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Comprehensive risk assessment of brownfield sites requires a broad range of knowledge and multi-disciplinary expertise. Whilst the identification of criteria requirements for preliminary risk assessment has received some attention, there appears to be no studies that have specifically examined professional perspectives relating to these requirements. Yet, variations in professional practitioners' assessments may have significant consequences for the assessment of risks, and how the criteria are imparted to stakeholders. This study aims to identify the criteria requirements for preliminary risk assessment, using the pollutant linkage model (Source-Pathway-Receptor), and explores cross-disciplinary professional perspectives related to these requirements. To this end, this study commenced with a systematic review to identify various criteria streams required for the preliminary risk assessment of brownfield sites. Thereafter, a questionnaire survey was design and shared with brownfield site professionals. Quantitative analysis of the survey responses (n = 76) reveals disciplines have markedly different priorities relating to the same hazard. For instance, geophysicists, geochemists, and hydrologists do not raise concerns regarding ground movement that can result from the removal of storage and tanks, whilst the same hazard was considered as having a high importance by other professions (such as geologists and geotechnical engineers). This example, amongst others revealed in the study, underpins potential issues and implications for various stakeholders compiling and/or using preliminary risk assessment criteria. This study clarifies both the key criteria requirements for the preliminary risk assessment of brownfield sites, as well as the importance of recognising how variation in professionals' perceptions plays in the risk assessment process. Although, specialist knowledge is essential for brownfield site investigation, so is the maintaining a broad-based view of other experts coming from different backgrounds, as this renders holistic risk assessment insights.
Collapse
Affiliation(s)
- Charf Mahammedi
- Brownfield Research and Innovation Centre (BRIC), University of Wolverhampton, Wolverhampton, WV10 0JP, UK.
| | - Lamine Mahdjoubi
- Centre for Architecture and Built Environment Research (CABER), University of the West of England, Bristol, BS16 1QY, UK
| | - Colin Booth
- Centre for Architecture and Built Environment Research (CABER), University of the West of England, Bristol, BS16 1QY, UK
| | | | - Talib E Butt
- Faculty of Engineering and Environment, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
| |
Collapse
|
14
|
Sood U, Dhingra GG, Anand S, Hira P, Kumar R, Kaur J, Verma M, Singhvi N, Lal S, Rawat CD, Singh VK, Kaur J, Verma H, Tripathi C, Singh P, Dua A, Saxena A, Phartyal R, Jayaraj P, Makhija S, Gupta R, Sahni S, Nayyar N, Abraham JS, Somasundaram S, Lata P, Solanki R, Mahato NK, Prakash O, Bala K, Kumari R, Toteja R, Kalia VC, Lal R. Microbial Journey: Mount Everest to Mars. Indian J Microbiol 2022; 62:323-337. [PMID: 35974919 PMCID: PMC9375815 DOI: 10.1007/s12088-022-01029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022] Open
Abstract
A rigorous exploration of microbial diversity has revealed its presence on Earth, deep oceans, and vast space. The presence of microbial life in diverse environmental conditions, ranging from moderate to extreme temperature, pH, salinity, oxygen, radiations, and altitudes, has provided the necessary impetus to search for them by extending the limits of their habitats. Microbiology started as a distinct science in the mid-nineteenth century and has provided inputs for the betterment of mankind during the last 150 years. As beneficial microbes are assets and pathogens are detrimental, studying both have its own merits. Scientists are nowadays working on illustrating the microbial dynamics in Earth's subsurface, deep sea, and polar regions. In addition to studying the role of microbes in the environment, the microbe-host interactions in humans, animals and plants are also unearthing newer insights that can help us to improve the health of the host by modulating the microbiota. Microbes have the potential to remediate persistent organic pollutants. Antimicrobial resistance which is a serious concern can also be tackled only after monitoring the spread of resistant microbes using disciplines of genomics and metagenomics The cognizance of microbiology has reached the top of the world. Space Missions are now looking for signs of life on the planets (specifically Mars), the Moon and beyond them. Among the most potent pieces of evidence to support the existence of life is to look for microbial, plant, and animal fossils. There is also an urgent need to deliberate and communicate these findings to layman and policymakers that would help them to take an adequate decision for better health and the environment around us. Here, we present a glimpse of recent advancements by scientists from around the world, exploring and exploiting microbial diversity.
Collapse
Affiliation(s)
- Utkarsh Sood
- The Energy and Resources Institute, New Delhi, India
| | | | - Shailly Anand
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Princy Hira
- Maitreyi College, University of Delhi, New Delhi, India
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar India
| | | | - Mansi Verma
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | - Sukanya Lal
- Ramjas College, University of Delhi, Delhi, India
| | | | | | - Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, India
| | | | | | - Priya Singh
- Maitreyi College, University of Delhi, New Delhi, India
| | - Ankita Dua
- Shivaji College, University of Delhi, New Delhi, India
| | - Anjali Saxena
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | | | - Perumal Jayaraj
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Renu Gupta
- Maitreyi College, University of Delhi, New Delhi, India
| | - Sumit Sahni
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Namita Nayyar
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | | | - Pushp Lata
- Ramjas College, University of Delhi, Delhi, India
| | - Renu Solanki
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Nitish Kumar Mahato
- University Department of Zoology, Kolhan University, Chaibasa, Jharkhand India
| | - Om Prakash
- National Centre for Cell Sciences, Pune, Maharashtra India
| | - Kiran Bala
- Deshbandhu College, University of Delhi, New Delhi, India
| | - Rashmi Kumari
- College of Commerce, Arts and Science, Patliputra University, Patna, Bihar India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | | | - Rup Lal
- The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
15
|
Zhang Z, Liu X, Huang J, Xu H, Ren W, Lin C, He M, Ouyang W. Horizontal planetary mechanochemical method for rapid and efficient remediation of high-concentration lindane-contaminated soils in an alkaline environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129078. [PMID: 35533523 DOI: 10.1016/j.jhazmat.2022.129078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Lindane is a persistent organic pollutant that has attracted worldwide attention because of its threat to human health and environmental security. A horizontal planetary mechanochemical method was developed for rapid and efficient degradation of lindane in soil in an alkaline environment. Under the condition of a very low reagent-to-soil ratio (R = 2%), ball-to-powder ratio (CR = 6:1), rotation speed (r = 300 rpm) and high soil single treatment capacity (SC = 60 g), the lindane in four typical soils (~ 100 mg/kg) can be degraded up to 96.30% in 10 min. This method can also remediate high-concentration lindane-contaminated soil (833 ± 26 mg/kg). The experimental results and theoretical calculations proved that the stepwise dechlorination and final carbonization of lindane in soil are mainly attributed to the combined action of mechanical energy and alkalinity. The bimolecular elimination (E2) reaction was the first step of lindane destruction. Subsequently, the unimolecular elimination (E1) reaction tended to occur with the weakening of alkalinity. Then, benzene was obtained through stepwise hydrogenolysis reaction. The last was the generation of carbon substances by fragmentation or condensation of benzene rings. This work proposes a practical remediation technology for organic contaminated soil and improves the understanding of the degradation pathways of lindane in soil in alkali-assisted mechanochemical system.
Collapse
Affiliation(s)
- Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Hengpu Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
16
|
Liu X, Yang A, Kümmel S, Richnow HH. Uptake and Metabolization of HCH Isomers in Trees Examined over an Annual Growth Period by Compound-Specific Isotope Analysis and Enantiomer Fractionation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10120-10130. [PMID: 35758406 DOI: 10.1021/acs.est.2c02697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To understand the role of plants for natural attenuation, a field study was conducted to characterize the fate of HCH in trees over an annual growth period using compound-specific isotope analysis and enantiomer fractionation. Stable and slightly higher δ13C and δ37Cl values of HCH of host soil samples compared to the muck (consisting nearly exclusively of HCH) revealed that masking isotope effects caused by the limited bioavailability may underestimate the real extent of HCH transformation in soil. In contrast, an increase of δ13C and δ37Cl values in trees indicated the transformation of HCH. A large variability of δ13C and δ37Cl values in trees over the growth period was observed, representing different transformation extents among different growth times, which is further supported by the shift of the enantiomer fraction (EF), indicating the preferential transformation of enantiomers also varied over the different growth periods. Based on dual-element isotope analysis, different predominant transformation mechanisms were observed during the growing seasons. Our observation implies that plants are acting as biological pumps driving a cycle of uptake and metabolization of HCH and refeed during littering to soil catalyzing their transformation. The changes of the transformation mechanism in different seasons have implications for phytoscreening and shed new light on phytoremediation of HCH at field sites.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Ahyung Yang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
- The Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau in der Pfalz 76829, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| |
Collapse
|
17
|
Chen S, Ma L, Wang Y. Kinetic isotope effects of C and N indicate different transformation mechanisms between atzA- and trzN-harboring strains in dechlorination of atrazine. Biodegradation 2022; 33:207-221. [PMID: 35257297 DOI: 10.1007/s10532-022-09977-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
Compound-specific stable isotope analysis provides an alternative method to insight into the biotransformation mechanisms of diffuse organic pollutants in the environment, e.g., the endocrine disruptor herbicide atrazine. Biotic hydrolysis process catalyzed by chlorohydrolase AtzA and TrzN plays an important role in the detoxification of atrazine, while the catalytic mechanism of AtzA is still speculative. To investigate the catalytic mechanism of AtzA and answer whether both enzymes catalyze hydrolytic dechlorination of atrazine by the same mechanism, in this study, apparent kinetic isotope effects (AKIE) for carbon and nitrogen were observed by three atzA-harboring bacterial isolates and their membrane-free extracts. The AKIEs obtained from atzA-harboring bacterial isolates (AKIEC = 1.021 ± 0.010, AKIEN = 0.992 ± 0.003) were statistically different from that of trzN-harboring strains (AKIEC = 1.040 ± 0.006, AKIEN = 0.983 ± 0.006), confirming the different activation mechanisms of atrazine preceding to nucleophilic aromatic substitution of Cl atom in actual enzymatic reaction catalyzed by AtzA and TrzN, despite the limitation of variable dual-element isotope plots. The lower degree of normal carbon and inverse nitrogen isotope fractionation observed from atzA-harboring strains, suggesting AtzA catalyzing hydrolytic dechlorination of atrazine by coordination of Cl and one aromatic N to the Fe2+ drawing electron density from carbon-chlorine bond that facilitating the nucleophilic attack, rather than in TrzN case that protonation of aromatic N increasing nucleophilic substitution of Cl atom. This study suggests considering the potential influences of phylogenetic diversity of bacterial isolates and evolution of enzymes on the applications of CSIA method in future study.
Collapse
Affiliation(s)
- Songsong Chen
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Limin Ma
- College of Environmental Science and Engineering, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yuncai Wang
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
18
|
Liu X, Wu L, Kümmel S, Richnow HH. Stable isotope fractionation associated with the synthesis of hexachlorocyclohexane isomers for characterizing sources. CHEMOSPHERE 2022; 296:133938. [PMID: 35149010 DOI: 10.1016/j.chemosphere.2022.133938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The stable isotope fingerprints of hexachlorocyclohexane (HCH) isomers have potential for identifying sources as they are related to the synthesis processes and isotopic compositions of raw materials. However, the isotopic fractionation associated with the synthesis processes has not been investigated. Therefore, photochemical synthesis experiments using benzene and chlorine gas were conducted to characterize the associated isotopic fractionation under different conditions. Different patterns of isotopic fractionation factors (αC, αCl, and αH) were observed in each experiment. The large variability of αH is related to the accumulating secondary hydrogen isotope effects or the rearrangement of C-H bonds at the cyclohexane ring. An increase of δ13C and δ37Cl values of HCH isomers was observed during synthesis, which is related to the C-Cl bond formation in the radical dichlorination forming HCH and the subsequent chlorine substitution forming heptachlorocyclohexanes. The large variability of δ2H values is related to the secondary and primary hydrogen isotope effects. Different δ13C, δ37Cl and δ2H values among HCH isomers were observed, indicating that conformational complexity of HCH caused by arrangement of C-Cl bonds in planar and axial positions also influence the isotope values. The understanding of isotopic fractionation during HCH synthesis can be indicative for source identification in the field.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Department of Civil & Mineral Engineering, University of Toronto, 35 St George St, Toronto, ON M5S 1A4, Canada.
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
19
|
Gao Y, Li H. Agro-environmental contamination, food safety and human health: An introduction to the special issue. ENVIRONMENT INTERNATIONAL 2021; 157:106812. [PMID: 34364216 DOI: 10.1016/j.envint.2021.106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
20
|
Liu X, Li W, Kümmel S, Merbach I, Sood U, Gupta V, Lal R, Richnow HH. Soil from a Hexachlorocyclohexane Contaminated Field Site Inoculates Wheat in a Pot Experiment to Facilitate the Microbial Transformation of β-Hexachlorocyclohexane Examined by Compound-Specific Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13812-13821. [PMID: 34609852 DOI: 10.1021/acs.est.1c03322] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-Hexachlorocyclohexane (β-HCH) is a remnant from former HCH pesticide production. Its removal from the environment gained attention in the last few years since it is the most stable HCH isomer. However, knowledge about the transformation of β-HCH in soil-plant systems is still limited. Therefore, experiments with a contaminated field soil were conducted to investigate the transformation of β-HCH in soil-plant systems by compound specific isotope analysis (CSIA). The results showed that the δ13C and δ37Cl values of β-HCH in the soil of the planted control remained stable, revealing no transformation due to a low bioavailability. Remarkably, an increase of the δ13C and δ37Cl values in soil and plant tissues of the spiked treatments were observed, indicating the transformation of β-HCH in both the soil and the plant. This was surprising as previously it was shown that wheat is unable to transform β-HCH when growing in hydroponic culture or garden soil. Thus, results of this work indicate for the first time that a microbial community of the soil inoculated the wheat and then facilitated the transformation of β-HCH in the wheat, which may have implications for the development of phytoremediation concepts. A high abundance of HCH degraders belonging to Sphingomonas sp., Mycobacterium sp., and others was detected in the β-HCH-treated bulk and rhizosphere soil, potentially supporting the biotransformation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Wang Li
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Applied Geosciences, Technical University Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ines Merbach
- Department of Community Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06102 Halle, Germany
| | - Utkarsh Sood
- The Energy and Resources Institute, Lodhi Road, New Delhi 110003, India
| | - Vipin Gupta
- PhiXGen Private Limited, Gurugram, Haryana 122001, India
| | - Rup Lal
- The Energy and Resources Institute, Lodhi Road, New Delhi 110003, India
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
21
|
Sharma M, Singh DN, Budhraja R, Sood U, Rawat CD, Adrian L, Richnow HH, Singh Y, Negi RK, Lal R. Comparative proteomics unravelled the hexachlorocyclohexane (HCH) isomers specific responses in an archetypical HCH degrading bacterium Sphingobium indicum B90A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41380-41395. [PMID: 33783707 DOI: 10.1007/s11356-021-13073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Hexachlorocyclohexane (HCH) is a persistent organochlorine pesticide that poses threat to different life forms. Sphingobium indicum B90A that belong to sphingomonad is well-known for its ability to degrade HCH isomers (α-, β-, γ-, δ-), but effects of HCH isomers and adaptive mechanisms of strain B90A under HCH load remain obscure. To investigate the responses of strain B90A to HCH isomers, we followed the proteomics approach as this technique is considered as the powerful tool to study the microbial response to environmental stress. Strain B90A culture was exposed to α-, β-, γ-, δ-HCH (5 mgL-1) and control (without HCH) taken for comparison and changes in whole cell proteome were analyzed. In β- and δ-HCH-treated cultures growth decreased significantly when compared to control, α-, and γ-HCH-treated cultures. HCH residue analysis corroborated previous observations depicting the complete depletion of α- and γ-HCH, while only 66% β-HCH and 34% δ-HCH were depleted from culture broth. Comparative proteome analyses showed that β- and δ-HCH induced utmost systemic changes in strain B90A proteome, wherein stress-alleviating proteins such as histidine kinases, molecular chaperons, DNA binding proteins, ABC transporters, TonB proteins, antioxidant enzymes, and transcriptional regulators were significantly affected. Besides study confirmed constitutive expression of linA, linB, and linC genes that are crucial for the initiation of HCH isomers degradation, while increased abundance of LinM and LinN in presence of β- and δ-HCH suggested the important role of ABC transporter in depletion of these isomers. These results will help to understand the HCH-induced damages and adaptive strategies of strain B90A under HCH load which remained unravelled to date.
Collapse
Affiliation(s)
- Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Rohit Budhraja
- Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Utkarsh Sood
- Department of Zoology, University of Delhi, Delhi, 110007, India
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | | | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India.
| |
Collapse
|
22
|
Won EJ, Yun HY, Lee DH, Shin KH. Application of Compound-Specific Isotope Analysis in Environmental Forensic and Strategic Management Avenue for Pesticide Residues. Molecules 2021; 26:4412. [PMID: 34361564 PMCID: PMC8348328 DOI: 10.3390/molecules26154412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Unintended pesticide pollution in soil, crops, and adjacent environments has caused several issues for both pesticide users and consumers. For users, pesticides utilized should provide higher yield and lower persistence while considering both the environment and agricultural products. Most people are concerned that agricultural products expose humans to pesticides accumulating in vegetation. Thus, many countries have guidelines for assessing and managing pesticide pollution, for farming in diverse environments, as all life forms in soil are untargeted to these pesticides. The stable isotope approach has been a useful technique to find the source of organic matter in studies relating to aquatic ecology and environmental sciences since the 1980s. In this study, we discuss commonly used analytical methods using liquid and gas chromatography coupled with isotopic ratio mass spectrometry, as well as the advanced compound-specific isotope analysis (CSIA). CSIA applications are discussed for tracing organic pollutants and understanding chemical reactions (mechanisms) in natural environments. It shows great applicability for the issues on unintended pesticide pollution in several environments with the progress history of isotope application in agricultural and environmental studies. We also suggest future study directions based on the forensic applications of stable isotope analysis to trace pesticides in the environment and crops.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| | - Hee-Young Yun
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| | - Dong-Hun Lee
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Marine Environment Research Division, National Institute of Fisheries Science, Busan 46083, Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Korea; (E.-J.W.); (H.-Y.Y.); Korea; (D.-H.L.)
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| |
Collapse
|
23
|
Myco-remediation of Chlorinated Pesticides: Insights Into Fungal Metabolic System. Indian J Microbiol 2021; 61:237-249. [PMID: 34294989 DOI: 10.1007/s12088-021-00940-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/03/2021] [Indexed: 12/22/2022] Open
Abstract
Synthetic chemicals including organochlorine pesticides pose environment and health hazard due to persistent and bio-accumulation property. Majority of them are recognized as endocrine disruptors. Fungi are ubiquitous in nature and employs efficient enzymatic machinery for the biotransformation and degradation of toxic, recalcitrant pollutants. This review critically discusses the organochlorine biotransformation process mediated by fungi and highlights the role of enzymatic system responsible for biotransformation, especially distribution of dehalogenase homologs among fungal classes. It also explores the potential use of fungal derived biomaterial, mainly chitosan as an adsorbing biomaterial for pesticides and heavy metals removal. Further, prospects of employing fungus to over-come the existing bioremediation limitations are discussed. The study highlights the potential scope of utilizing fungi for initial biotransformation purposes, preceding final biodegradation by bacterial species under environmental conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00940-8.
Collapse
|
24
|
Liu X, Wu L, Kümmel S, Richnow HH. Characterizing the biotransformation of hexachlorocyclohexanes in wheat using compound-specific stable isotope analysis and enantiomer fraction analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124301. [PMID: 33144013 DOI: 10.1016/j.jhazmat.2020.124301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Hexachlorocyclohexane isomers (HCHs) are persistent organic pollutants being responsible for environmental contamination worldwide. In order to characterize transformation of HCHs in different plant compartments during uptake, a hydroponic experimental setup was designed using wheat as the test plant. The extent of transformation was determined by using compound-specific isotope analysis (CSIA) and enantiomer fraction (EF) analysis. In nutrient solutions, no change of carbon (δ13C) and chlorine isotope ratios (δ37Cl) of α-HCH and β-HCH was detected throughout the experiment indicating no transformation there. In wheat leaves, stems and roots, however, transformation of α-HCH due to a C‒Cl bond cleavage was indicated by increasing δ13C and δ37Cl compared to the nutrient solution. In addition, 1,3,4,5,6-pentachlorocyclohexene (PCCH) was identified as the major metabolite of α-HCH transformation. For β-HCH, in contrast, no transformation was detected. The evaluation of enantiomer fraction analysis revealed no change of the EF(-) in the nutrient solution or on root surface but a decrease in the wheat compartments, providing an evidence for the preferential biological transformation of (-)α-HCH in wheat. The current study provides the first experimental evidence for biotransformation of α-HCH in wheat using CSIA and EF and provides a concept to evaluate processes during phytoremediation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Department of Civil & Mineral Engineering, University of Toronto, 35 St. George St., Toronto, ON M5S 1A4, Canada
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
25
|
Liu X, Bonhomme J, Merbach I, Kümmel S, Richnow HH. Uptake of α-HCH by wheat from the gas phase and translocation to soil analyzed by a stable carbon isotope labeling experiment. CHEMOSPHERE 2021; 264:128489. [PMID: 33059287 DOI: 10.1016/j.chemosphere.2020.128489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Hexachlorocyclohexane isomers (HCH) are persistent organic pollutants which cause serious environmental pollution. Phytoextraction is one of the strategies of phytoremediation, which was considered as a promising method for the clean-up of HCH contaminated field sites. To understand the uptake and translocation mechanisms of HCH in soil-plant system, the uptake of HCH from the gas phase was investigated in a tracer experiment with 13C-labeled α-HCH. The results provide new insights on the uptake mechanism of HCH and allow the elucidation of transport pathways of POPs from the leaves to the rhizosphere. A higher dissipation of α-HCH in planted set-ups versus unplanted controls indicated next to intensive biodegradation in the rhizosphere the removal of HCH by root uptake, accumulation and possible transformation within plants. Analyzing the carbon isotopic composition (δ13C) of α-HCH in the soil of unplanted controls revealed a change of 15.8-28.6‰ compared to the initial δ13C value, indicating that a soil gas phase transportation of α-HCH occurred. Additionally, higher δ13C values of α-HCH were observed in bulk and rhizosphere soil in non-labeled treatments compared to unplanted controls, revealing the uptake of α-HCH from the gas phase by the leaves and the further translocation to the roots and finally release to the rhizosphere. This uptake by the leaves and the subsequent translocation of α-HCH within the plant is further indicated by the observed variations of the δ13C value of α-HCH in different plant tissues at different growth stages. The uptake and translocation pathways of α-HCH from the gas phase need to be considered in phytoremediation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Josephine Bonhomme
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Department of Chemistry and Process Engineering, Ecole Superieure de Chimie Physique Electronique de Lyon, 43, Boulevard Du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Ines Merbach
- Department of Community Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06102, Halle, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
26
|
Liu Y, Kümmel S, Yao J, Nijenhuis I, Richnow HH. Dual C-Cl isotope analysis for characterizing the anaerobic transformation of α, β, γ, and δ-hexachlorocyclohexane in contaminated aquifers. WATER RESEARCH 2020; 184:116128. [PMID: 32777634 DOI: 10.1016/j.watres.2020.116128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Hexachlorocyclohexanes (HCHs) are widespread and persistent environmental pollutants, which cause heavy contamination in soil, sediment and groundwater. An anaerobic consortium, which was enriched on β-HCH using a soil sample from a contaminated area of a former pesticide factory, was capable to transform α, β, γ, and δ-HCH via tetrachlorocyclohexene isomers stoichiometrically to benzene and chlorobenzene. The carbon and chlorine isotope enrichment factors (εC and εCl) of the dehalogenation of the four isomers ranged from -1.9 ± 0.3 to -6.4 ± 0.7‰ and from -1.6 ± 0.2 to -3.2 ± 0.6‰, respectively, and the correlation of δ37Cl and δ13C (Λ values) of the four isomers ranged from 1.1 ± 0.1 to 2.4 ± 0.2. The evaluation of Λ and the apparent kinetic isotope effects (AKIE) for carbon and chlorine may lead to the hypothesis that the two eliminated chlorine atoms of α- and γ-HCH were in axial positions, the same as for the β-HCH conformer which has six chlorine atoms in axial positions after ring flip. The dichloroelimination of δ-HCH resulted in distinct AKIE and Λ values as one chlorine atom is in axial whereas the other chlorine atoms are in the equatorial positions. Significant chlorine and carbon isotope fractionations of HCH isomers were observed in the samples from a contaminated aquifer (Bitterfeld, Germany). The 37Cl/35Cl and 13C/12C isotope fractionation patterns of HCH isomers from laboratory experiments were used diagnostically in a model to characterize microbial dichloroelimination in the field study. The comparison of isotope fractionation patterns indicates that the transformation of HCH isomers at the field was mainly governed by microbial dichloroelimination transformation.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences, Beijing, Beijing, 100083, China
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
27
|
Liu X, Wu L, Kümmel S, Merbach I, Lal R, Richnow HH. Compound-Specific Isotope Analysis and Enantiomer Fractionation to Characterize the Transformation of Hexachlorocyclohexane Isomers in a Soil-Wheat Pot System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8690-8698. [PMID: 32543837 DOI: 10.1021/acs.est.9b07609] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The uptake by plants from soil is one of the first steps for hexachlorocyclohexane (HCH) isomers to enter the food web. However, the HCH transformation associated with the uptake process is still not well understood. Therefore, a soil-wheat pot experiment was conducted to characterize the HCH transformation during wheat growth using compound-specific isotope analysis (CSIA) and enantiomer fractionation. The results showed that the δ13C and δ37Cl values of β-HCH remained stable in soil and wheat, revealing no transformation. In contrast, an increase of δ13C and δ37Cl values of α-HCH indicated its transformation in soil and wheat. A shift of the enantiomer fraction (EF) (-) from 0.50 to 0.35 in soil at the jointing stage and 0.35 to 0.57 at the harvest stage suggested that the preferential transformation of enantiomers varied at different growth stages. Based on the dual element isotope analysis, the transformation mechanism in the soil-wheat system was different from that in wheat in hydroponic systems. The high abundance of HCH degraders, Sphingomonas sp. and Novosphingobium sp., was detected in the α-HCH-treated rhizosphere soil, supporting the potential for biotransformation. The application of CSIA and EF allows characterizing the transformation of organic pollutants such as HCHs in the complex soil-plant systems.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto ON M5S 1A4, Canada
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ines Merbach
- Department of Community Ecology, Helmholtz Centre for Environmental Research GmbH-UFZ, Theodor-Lieser-Str. 4, 06102 Halle, Germany
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
28
|
Liu Y, Liu J, Renpenning J, Nijenhuis I, Richnow HH. Dual C-Cl Isotope Analysis for Characterizing the Reductive Dechlorination of α- and γ-Hexachlorocyclohexane by Two Dehalococcoides mccartyi Strains and an Enrichment Culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7250-7260. [PMID: 32441516 DOI: 10.1021/acs.est.9b06407] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hexachlorocyclohexanes (HCHs) are persistent organic contaminants that threaten human health. Microbial reductive dehalogenation is one of the most important attenuation processes in contaminated environments. This study investigated carbon and chlorine isotope fractionation of α- and γ-HCH during the reductive dehalogenation by three anaerobic cultures. The presence of tetrachlorocyclohexene (TeCCH) indicated that reductive dichloroelimination was the first step of bond cleavage. Isotope enrichment factors (εC and εCl) were derived from the transformation of γ-HCH (εC, from -4.0 ± 0.5 to -4.4 ± 0.6 ‰; εCl, from -2.9 ± 0.4 to -3.3 ± 0.4 ‰) and α-HCH (εC, from -2.4 ± 0.2 to -3.0 ± 0.4 ‰; εCl, from -1.4 ± 0.3 to -1.8 ± 0.2 ‰). During α-HCH transformation, no enantioselectivity was observed, and similar εc values were obtained for both enantiomers. The correlation of 13C and 37Cl fractionation (Λ = Δδ13C/Δδ37Cl ≈ εC/εCl) of γ-HCH (from 1.1 ± 0.3 to 1.2 ± 0.1) indicates similar bond cleavage during the reductive dichloroelimination by the three cultures, similar to α-HCH (1.7 ± 0.2 to 2.0 ± 0.3). The different isotope fractionation patterns during reductive dichloroelimination and dehydrochlorination indicates that dual-element stable isotope analysis can potentially be used to evaluate HCH transformation pathways at contaminated field sites.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Jia Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, PR China
| | - Julian Renpenning
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| |
Collapse
|
29
|
Zhu X, Zhong Y, Wang H, Li D, Deng Y, Gao S, Peng P. Compound-specific carbon isotope analysis for mechanistic characterization of debromination of decabrominated diphenyl ether. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8758. [PMID: 32065465 DOI: 10.1002/rcm.8758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Decabrominated diphenyl ether (BDE-209) is a notorious persistent organic pollutant widely found in the environment. Developing a compound-specific isotope analysis (CSIA) method is much needed in order to trace its transport and degradation processes and to evaluate the effectiveness of the remediation of BDE-209 in the environment. However, the conventional CSIA method, i.e. gas chromatography (GC) combustion isotope ratio mass spectrometry, is not appropriate for BDE-209 because of its high thermal instability and incomplete combustion. METHODS We developed a high-performance liquid chromatography (HPLC) method for the separation and purification of BDE-209 that prevents its thermal reactivity as occurred in prior GC-based methods. The δ13 C value of the purified BDE-209 was determined using offline elemental analyzer isotope ratio mass spectrometry (EA/IRMS). This two-step method was applied to determine the δ13 C values of BDE-209 in two commercial samples and to characterize carbon isotope fractionation associated with the debromination of BDE-209 via nanoscale zero-valent iron. RESULTS The mean values of daily δ13 C analyses of six replicates of a BDE-209 standard varied from -27.66‰ to -27.92‰, with a standard deviation ranging from 0.07‰ to 0.16‰, indicating a good reproducibility of EA/IRMS. The EA/IRMS analysis of the purified BDE-209 standard indicated no obvious isotope fractionation during the sample purification. The impurity content in commercial BDE-209 samples may contribute additional variation of the δ13 C values of BDE-209. The δ13 C values of BDE-209 gradually changed from -27.47 ± 0.37‰ to -24.59 ± 0.19‰ when 74% of the BDE-209 standard was degraded within 36 h. The estimated carbon isotope enrichment factor was -1.72 ± 0.18‰. CONCLUSIONS The two-step method based on HPLC and EA/IRMS avoids the thermal instability of BDE-209 in the traditional CSIA method. It offers a novel approach for elucidating the degradation mechanisms of BDE-209 in the environment and for source identification in contaminated sites.
Collapse
Affiliation(s)
- Xifen Zhu
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, State Key Laboratory of Organic Geochemistry, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Zhong
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, State Key Laboratory of Organic Geochemistry, Guangzhou, 510640, China
| | - Heli Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, State Key Laboratory of Organic Geochemistry, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, State Key Laboratory of Organic Geochemistry, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yirong Deng
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, State Key Laboratory of Organic Geochemistry, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou, 510045, China
| | - Shutao Gao
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, State Key Laboratory of Organic Geochemistry, Guangzhou, 510640, China
| | - Ping'an Peng
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, State Key Laboratory of Organic Geochemistry, Guangzhou, 510640, China
| |
Collapse
|
30
|
Lian S, Nikolausz M, Nijenhuis I, da Rocha UN, Liu B, Corrêa FB, Saraiva JP, Richnow HH. Biotransformation of hexachlorocyclohexanes contaminated biomass for energetic utilization demonstrated in continuous anaerobic digestion system. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121448. [PMID: 31668499 DOI: 10.1016/j.jhazmat.2019.121448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/19/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Lindane, the γ-hexachlorocyclohexane (HCH) isomer, was among the most used pesticides worldwide. Although it was banned in 2009, residues of Lindane and other HCH-isomers are still found with high concentrations in contaminated fields. For clean-up, phytoremediation combined with anaerobic digestion (AD) of contaminated biomass to produce biogas and fertilizer could be a promising strategy and was tested in two 15 L laboratory-scale continuous stirred tank reactors. During operation over one year by adding HCH isomers (γ, α and β) consecutively, no negative influence on conventional reactor parameters was observed. The γ- and α-HCH isomers were transformed to chlorobenzene and benzene, and transformation became faster along with time, while β-HCH was not removed. Genus Methanosaeta and order Clostridiales, showing significant enhancement on abundance with HCH addition, may be used as bioindicators for HCH dehalogenation in AD process. The potential for HCH degradation in AD system was restricted to axial Cl atoms of HCH and it showed slight enantioselective preference towards transformation of (+) α-HCH. Moreover, metabolite benzene was mineralized to CO2 and methane, deducing from tracer experiments with benzene-13C6. Overall, AD appears to be a feasible option for treatment of γ and α-HCHs contaminated biomass.
Collapse
Affiliation(s)
- Shujuan Lian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Marcell Nikolausz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Bin Liu
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Felipe Borim Corrêa
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - João Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
31
|
Kannath S, Adamczyk P, Wu L, Richnow HH, Dybala-Defratyka A. Can Alkaline Hydrolysis of γ-HCH Serve as a Model Reaction to Study Its Aerobic Enzymatic Dehydrochlorination by LinA? Int J Mol Sci 2019; 20:ijms20235955. [PMID: 31779285 PMCID: PMC6929183 DOI: 10.3390/ijms20235955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/26/2022] Open
Abstract
Hexachlorocyclohexane (HCH) isomers constitute a group of persistent organic pollutants. Their mass production and treatment have led to a global environmental problem that continues to this day. The characterization of modes of degradation of HCH by isotope fractionation is a current challenge. Multi isotope fractionation analysis provides a concept to characterize the nature of enzymatic and chemical transformation reactions. The understanding of the kinetic isotope effects (KIE) on bond cleavage reaction contributes to analyses of the mechanism of chemical and enzymatic reactions. Herein, carbon, chlorine, and hydrogen kinetic isotope effects are measured and predicted for the dehydrochlorination reaction of γ-HCH promoted by the hydroxyl ion in aqueous solution. Quantum mechanical (QM) microsolvation with an implicit solvation model and path integral formalism in combination with free-energy perturbation and umbrella sampling (PI-FEP/UM) and quantum mechanical/molecular mechanical QM/MM potentials for including solvent effects as well as calculating isotope effects are used and analyzed with respect to their performance in reproducing measured values. Reaction characterization is discussed based on the magnitudes of obtained isotope effects. The comparative analysis between the chemical dehydrochlorination of γ-HCH in aqueous media and catalyzed reaction by dehydrochlorinase, LinA is presented and discussed. Based on the values of isotope effects, these two processes seem to occur via the same net mechanism.
Collapse
Affiliation(s)
- Suraj Kannath
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 112, 90-924 Lodz, Poland; (S.K.); (P.A.)
| | - Paweł Adamczyk
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 112, 90-924 Lodz, Poland; (S.K.); (P.A.)
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; (L.W.); (H.H.R.)
- Departments of Civil & Mineral Engineering, University of Toronto, 35 St. George St., Toronto, ON M5S 1A4, Canada
| | - Hans H. Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; (L.W.); (H.H.R.)
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 112, 90-924 Lodz, Poland; (S.K.); (P.A.)
- Correspondence: ; Tel.: +48-42-631-3198
| |
Collapse
|