1
|
Yu T, Huang Y, Zhang Y, Wang S, Wang X, Jiang Y, Zang H, Zeng Z, Yang Y. Manure input propagated antibiotic resistance genes and virulence factors in soils by regulating microbial carbon metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126293. [PMID: 40268046 DOI: 10.1016/j.envpol.2025.126293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Antibiotic resistance genes (ARGs) and virulence factors (VFs) in soils represent a significant threat to ecological security and human health. The carbon-rich soil formed by manure fertilization provides an energy source for soil microbes. However, we still know little about how microbial-dominated carbon metabolism affects ARGs and VFs proliferation in soils subjected to long-term fertilization and irrigation practices in wheat-maize system. Here, we investigated soil microbial carbon metabolism, ARGs and VFs distribution, and microbial composition in soils under 9-year of different fertilization and irrigation managements during wheat growing period. Results showed that manure (M) increased total abundance of soil ARGs by 5.9 %-8.0 % and 2.1 %-4.8 % and VFs by 5.4 %-7.5 % and 2.0 %-4.9 % compared to no fertilizer (CK) and NPK fertilizer (C), respectively, regardless of irrigation. M enriched more number of ARGs and VFs types, and increased abundance of host microbes involved in carbon fixation and carbon degradation, such as Streptomyces, Lysobacter and Agromyces. M increased abundance of carbohydrate-active enzymes (CAZymes) and carbon cycle functional pathways, as well as microbial carbon metabolism capacity. Partial least squares path modeling and correlation analysis showed that microbial diversity, CAZymes, carbon cycle functional pathways (particularly carbon fixation and degradation) and microbial carbon metabolism capacity of microbial community had direct positive effects on the proliferation and spread of ARGs and VFs. In conclusion, our results highlight the importance of microbial mediated carbon metabolism in driving the dissemination of ARGs and VFs in soils under long-term manure application.
Collapse
Affiliation(s)
- Taobing Yu
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yangkang Huang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yicong Zhang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shang Wang
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120, Halle (Saale), Germany
| | - Xiquan Wang
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - Ying Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huadong Zang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohai Zeng
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yadong Yang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Gómez-Brandón M, Aira M, Probst M, Liu N, Zhang Z, Zhu YG, Domínguez J. Earthworms attenuate antibiotic resistance genes and mobile genetic elements during vermicomposting of sewage sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125562. [PMID: 40311358 DOI: 10.1016/j.jenvman.2025.125562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Sewage sludge is among the richest reservoirs of antibiotic resistance genes (ARGs) that may spread to urban environment. Further investigation is warranted for removal of sludge-borne ARGs in large-scale vermicomposting systems. Under this scenario, there is the necessity to unveil the role of the widely-used earthworm species Eisenia andrei, since the current body of literature mostly focuses on E. fetida. The present study sought to evaluate the changes in sludge-borne ARGs and mobile genetic elements in a pilot-scale vermireactor in the presence of E. andrei in response to both gut- and cast-associated processes (GAPs and CAPs, respectively), by coupling high-throughput quantitative PCR and Illumina sequencing. After gut transit, large decreases in the relative abundances and number of the genes conferring resistance to major antibiotic classes, including some specific genes classified as of potentially high risk to human health, were recorded in the fresh casts. Likewise, genes encoding resistance to heavy metals were about nine-times lower in the egested materials than in the initial sludge. Genes coding for integrases or insertional sequences also exhibited reduced abundance as a result of GAP and CAP processes, suggesting that vermicompost appears to be less prone to horizontal gene transfer than untreated sludge. These findings provide evidence about the capacity of the earthworm E. andrei to diminish the risk of ARG spread during vermicomposting, reinforcing its potential for bioremediation purposes by transforming large quantities of waste into an improved fertiliser. This is crucial to propel vermicomposting technology forward and achieve transition toward net zero-waste process.
Collapse
Affiliation(s)
- María Gómez-Brandón
- Grupo de Ecología Animal (GEA), Universidade de Vigo, Vigo, 36310, Galicia, Spain.
| | - Manuel Aira
- Grupo de Ecología Animal (GEA), Universidade de Vigo, Vigo, 36310, Galicia, Spain
| | - Maraike Probst
- Universität Innsbruck, Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, Innsbruck, A-6020, Austria
| | - Ning Liu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - ZhiJian Zhang
- College of Environmental and Natural Resources, Zhejiang University, YuHangTang Ave 866, HangZhou, 310058, ZheJiang Province, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jorge Domínguez
- Grupo de Ecología Animal (GEA), Universidade de Vigo, Vigo, 36310, Galicia, Spain
| |
Collapse
|
3
|
Yin D, Wang K, Wu C, Wang Z, Gu Y, Liu P, You S. Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. ENVIRONMENTAL RESEARCH 2025; 269:120811. [PMID: 39798649 DOI: 10.1016/j.envres.2025.120811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost.
Collapse
Affiliation(s)
- Dan Yin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chuandong Wu
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yue Gu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peng Liu
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Sun D, Shi X, Shen Y, Liu Y, Luo S, Jin Y, Zhai W, Liu L, Deng Z, Sun C, Liu D, Yang X, Xie Y, Krüger-Haker H, Wu C, Schwarz S, Shen J, Chen Y, Ma S, Wang Y. Comparative efficacy of anaerobic digestion systems in removing antimicrobial resistance genes from swine wastewater. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136868. [PMID: 39708598 DOI: 10.1016/j.jhazmat.2024.136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Swine farm wastewater is a major reservoir of antimicrobial resistance genes (ARGs). Anaerobic digestion (AD), widely implemented in farms, has been extensively studied for ARG removal. However, a comparative study on ARG removal efficiency across the four principal AD systems - up-flow anaerobic sludge blanket (UASB), continuous stirred tank reactor (CSTR), buried biogas digester (BBD), and septic tank (SPT) - is lacking. Herein, we employed metagenomic sequencing, ultra-performance liquid chromatography-tandem mass spectrometry, as well as atomic absorption spectrometry/atomic fluorescence spectrophotometry, and revealed that UASB and CSTR achieved higher removal efficiencies for both ARGs (67% and 57%) and antibiotic residues (100% and 90%) compared to BBD and SPT. Acinetobacter, Escherichia, Pseudomonas and Streptococcus were the primary ARG hosts, comprising over 65% of the total abundance in influent samples. UASB and CSTR systems demonstrated superior removal efficiencies for both mobile genetic elements (MGEs) and antibiotic residues, both of which had essential impacts on ARG profiles. In addition, heavy metals might contribute to variation in ARGs through horizontal gene transfer. Collectively, the variation in microbial communities and better removal of both MGEs and antibiotic residues contribute to the remarkable ARG removal efficiency of UASB and CSTR, therefore, advocating for the widespread adoption of these two AD systems in swine farms.
Collapse
Affiliation(s)
- Da Sun
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaomin Shi
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yingbo Shen
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weishuai Zhai
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhaoju Deng
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengtao Sun
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dejun Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Yang
- Hainan Animal Disease Control Center, Haikou 571100, China
| | - Youzhi Xie
- Hainan Animal Disease Control Center, Haikou 571100, China
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany; Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Congming Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Stefan Schwarz
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany; Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Jianzhong Shen
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shizhen Ma
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yang Wang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Gao M, Chen Q, Li Z, Zhan Y, Wang L, He T, Yao Q, Jin F, Hu J. Solid phase extraction-surface enhanced Raman spectroscopy (SPE-SERS) test of antibiotic residues in Milk based on au@ MIL-101 NPs. Food Chem 2025; 465:141949. [PMID: 39531971 DOI: 10.1016/j.foodchem.2024.141949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
A SPE-SERS method was developed for the detection of several antibiotic residues in dairy products. Gold nanoparticles (Au NPs) encapsulated with an ultrathin Cr-MIL-101 shell (Au@Cr-MIL-101 NPs) have been synthesized, and the thickness of Cr-MIL-101 shell can be precisely controlled to 3 nm. As a superior solid phase extraction (SPE) adsorbent, Cr-MIL-101 acts as a shell layer to effectively enrich antibiotics within the localized surface plasmon resonance (LSPR) field of Au NPs, which enhances the SERS signal and eliminates background interference. The method can achieve highly sensitive and high-throughput detection for tetracycline hydrochloride, sulfapyridine and benzylpenicillin sodium in dairy products, and the detection limits (LOD) are as low as 2.237, 2.644 and 4.662 ppb respectively. The recoveries of antibiotic residues in spiked dairy products ranged from 72.31 % to 146.7 % with matrix effects (ME) of -15.13 % to 28.68 %. Thus, this method holds significant promise for rapid detection of antibiotics in milk.
Collapse
Affiliation(s)
- Mengyue Gao
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China.
| | - Qiao Chen
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China
| | - ZhiHao Li
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - YiFang Zhan
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - LiHua Wang
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Ting He
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Qi Yao
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Fengmei Jin
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Jiming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
6
|
Li R, Li S, Yan Y, Xie Y, Zhao J, Zhang J, Cai Z, Huang X. Mitigating the health risk of antibiotic resistance genes through reductive soil disinfestation in protected agroecosystems. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136647. [PMID: 39591934 DOI: 10.1016/j.jhazmat.2024.136647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Soil used to grow vegetable crops is usually subjected to various soil management strategies. However, the effects of these management strategies on antibiotic resistance genes (ARGs), which have important implications for human health, are still poorly understood. Here, we examined the effects of reductive soil disinfestation (RSD) on soil ARG profiles, the composition of the bacterial community, and the interactions between ARG hosts and nonhosts in soils under different fertilization regimes. The results indicated that RSD treatment significantly decreased the relative abundance of soil ARGs and mobile genetic elements (MGEs) by 43.4 % to 61.3 %. During the following planting period, the RSD-treated soils were more susceptible to colonization by exogenous microorganisms from the composted chicken manure. Moreover, RSD treatment inhibited the transfer rate of ARGs from the soil to the plant root system and resulted in a lower proportion of ARG hosts with pathogenic ability. Notably, RSD treatment promoted cooperation among nonhost communities. The findings of our study indicated that RSD treatment significantly reduced the health risk of soil resistome. In summary, the application of RSD treatment effectively diminishes ARG pollution, thereby playing a crucial role in enhancing soil ecological health and advancing sustainable agricultural development.
Collapse
Affiliation(s)
- Ruimin Li
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Shu Li
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yuanyuan Yan
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yi Xie
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing 210023, China
| | - Xinqi Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
7
|
Al-Tawfiq JA, Spinola SM. Infections caused by Haemophilus ducreyi: one organism, two stories. Clin Microbiol Rev 2024; 37:e0013524. [PMID: 39287406 PMCID: PMC11629627 DOI: 10.1128/cmr.00135-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
SUMMARYChancroid, a sexually transmitted infection caused by Haemophilus ducreyi, is characterized by painful genital ulcers (GU) and inguinal lymphadenitis. H. ducreyi was recently described as a major cause of non-sexually transmitted cutaneous ulcers (CU) on the lower legs in children in yaws-endemic regions. This review explores the relationship between CU and GU strains of H. ducreyi; their clinical presentation, diagnosis, epidemiology, and treatment; and how findings from a human challenge model relate to GU and CU. We contrast the decline of GU with the persistence of CU caused by H. ducreyi. Factors such as transmission dynamics, control, and elimination efforts are discussed. Syndromic management and targeted treatment of sex workers can eradicate chancroid, while skin colonization by CU strains and environmental factors may necessitate topical treatments or vaccination for CU eradication. Efforts should focus on identifying additional reservoirs of CU strains, improving hygiene, and eliminating asymptomatic colonization to eradicate this painful infection in children.
Collapse
Affiliation(s)
- Jaffar A. Al-Tawfiq
- Infectious Disease Unit, Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Department of Medicine, Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stanley M. Spinola
- Department of Medicine, Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Xin H, Qiu T, Guo Y, Wang X, Liu G, Gao M. Airborne antibiotics, antimicrobial resistance, and bacterial pathogens in a commercial composting facility: Transmission and exposure risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136226. [PMID: 39442303 DOI: 10.1016/j.jhazmat.2024.136226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Multiple elements associated with antimicrobial resistance in compost may escape into the air during the composting process, including antibiotic resistance genes (ARGs), human pathogenic bacteria (HPBs), and even antibiotics. Although antibiotics play a critical role in the evolution of resistance in HPBs, no information is available on airborne antibiotics in composting facilities. In this study, we systematically quantified airborne antibiotics, ARGs, and HPBs in comparison with those in compost. The burden of antibiotics in the air reached 4.17 ± 2.71 × 102 ng/g, significantly higher than that in compost. The concentration of ARGs (102 copies/g) in air also increased compared with that in compost. Concentrations of target contaminants in air were affected by temperature, organic matter, and heavy metals. Co-occurrence network analysis revealed the connectivity and complexity of antibiotics, ARGs, and HPBs were greater in air than in compost. The maximum daily antibiotic intake dose was up to 1.18 × 10-1ng/d/kg, accompanied by considerable inhalation levels of ARGs and HPBs. Our results reveal the severity of airborne antimicrobial resistance (AMR) elements in composting facilities, highlight the non-negligible amount of antibiotics and their co-existence with ARGs and HPBs, and shed light on the potential role of airborne antibiotics in the evolution of environmental AMR.
Collapse
Affiliation(s)
- Huibo Xin
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
9
|
Peng N, Zhang J, Hu R, Liu S, Liu F, Fan Y, Yang H, Huang J, Ding J, Chen R, Li L, He Z, Wang C. Hidden pathogen risk in mature compost: Low optimal growth temperature confers pathogen survival and activity during manure composting. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136230. [PMID: 39442307 DOI: 10.1016/j.jhazmat.2024.136230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Livestock manure is a major reservoir for pathogens, posing significant environmental risks if used untreated. The efficacy of composting in fully inactivating pathogens remains controversial, particularly regarding the influence of their optimal growth temperature (OGT). This study investigated the composition and dynamic changes of pathogen communities and virulence factors (VFs) during the composting of chicken, bovine, ovine, and swine manure. We identified 134 pathogens across 16 composting piles, with ten pathogens exhibited increased abundance and transcriptional activity in curing phase. They included high-risk VFs-carrying pathogens, such as Mycolicibacterium thermoresistibile and Mycolicibacterium phlei, indicating the hidden pathogen risk in mature compost. Community-scale analyses revealed a linkage of these pathogens' survival with their low OGT and an increased number of heat shock proteins (HSPs), enabling them to tolerate high temperatures and regrow. Integrating our data with prior composting studies, we found that the surviving pathogens express 42 VFs and their persistence in mature compost was a widespread issue, highlighting a greater risk of pathogen spread than previously thought. Finally, we compiled the 134 pathogens and 1009 VFs into a comprehensive Environmental Risk of Compost Pathogens (ERCP) catalog, providing a valuable resource for routine pathogen surveillance.
Collapse
Affiliation(s)
- Nenglong Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Junmao Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Songfeng Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yijun Fan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Huijing Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Huang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Jijuan Ding
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruihan Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Li Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Yang J, Xu Z, Wan D, Wang X, Zhang X, Zhu Y, Guo J. Pollution characteristics of heavy metals, antibiotic and antibiotic resistance genes in the crested ibis and their habitat across different lifestyle and geography. ENVIRONMENTAL RESEARCH 2024; 261:119701. [PMID: 39094899 DOI: 10.1016/j.envres.2024.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Antibacterial resistance in wild animals has been increasingly reported worldwide, even though they are usually not directly exposed to clinically relevant antibiotics. Crested ibis, one of the rarest birds in the world, usually forages in paddy fields and prefer to nest and breed near villages that is greatly influenced by anthropogenic activities. We sampled the feces of crested ibises, as well as their habitat environment samples, to explore the pollution characteristics of heavy metals, antibiotics and antibiotic resistance genes (ARGs). Results showed that the pollution characteristics of heavy metals, antibiotic, ARGs and gut microbiota of crested ibis were more related by host lifestyle and habitats. Captive ibises had higher relative abundances of the total ARGs and tetracycline concentrations compared with feralization and wild ibises, while the heavy metal contents had shown the opposite result. The Characteristics of pollutants in the corresponding environmental samples also exhibited high similarity with the results of fecal samples. The relative abundances of Proteobacteria and Actinobacteria were significantly different between captive and wild individuals, while the abundance of majority bacterial genera was generally higher in wild populations. The concentrations of heavy metals in soil (Cd, Cu and Zn) and water (Cd, Cu, Zn and Cr) were both exceeded the background soil levels or surface water quality standards, suggesting multi-element contamination in the habitat. Ecological risk assessments of soils by Igeo and Er showed that the habitats of wild ibises were heavily and moderately contaminated by Cd, which would possibly pose a threat to the health of ibises. PLS-PM analysis indicated that microbial compositions and residual antibiotics had the most substantial impact on the dynamic changes in ARGs of ibis. Overall, this work provides a comprehensive understanding of the characteristics, risks of those contaminations, and their effects on the ARGs in the habitat of crested ibis.
Collapse
Affiliation(s)
- Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Zekun Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Dandan Wan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xueyan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xuan Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yimeng Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
11
|
Jiao Z, Zhang L, Zhang A, Li R, Zhang K, Wu Z, Kang Z, Wei Y, Zhang L, Wang Y, Shi X, Li J. Mature compost enhanced the harmlessness level in co-composting swine manure and carcasses in large-scale silo reactors. Front Microbiol 2024; 15:1494332. [PMID: 39606114 PMCID: PMC11599618 DOI: 10.3389/fmicb.2024.1494332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
This study aimed to investigate the impact of incorporating mature compost on the harmlessness and maturity level of composting from swine manure and carcasses from industrialized pig farms in continuously running large-scale silo reactor systems. The potential human or animal bacterial pathogens and core bacterial community in composting were analyzed by high-throughput sequencing of 16S rRNA gene amplicons. The results showed that the addition of mature compost in the GD group significantly increased the temperature of all depths, the accumulated temperature of compost, and the germination index (75.43%) compared to that in the HN group without mature compost. High-throughput sequencing revealed that the dominated genera in GD were Ureibacillus, Lactobacillus, Corynebacterium, Staphylococcus, and Jeotgalicoccus, and the addition of mature compost could significantly increase the relative abundance of Ureibacillus (16.82%) that was associated with the biodegradation of organics. A total of 421 potential bacterial pathogens were detected, and the dominated genera of pathogens were Streptococcus, Staphylococcus, and Anaerococcus. The potential pathogen in the GD group with mature compost was reduced from 7.16 to 0.77%, which was significantly lower than that (2.97%) in the HN group. Together, these findings revealed that mature compost addition in large-scale reactor composting could accelerate the harmless and humification process, providing an effective and environmentally friendly scheme to deal with the main organic wastes in intensive pig farms.
Collapse
Affiliation(s)
- Ziwei Jiao
- College of Biological Science and Technology, Yili Normal University, Yining, China
| | - Liping Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Ake Zhang
- Fuyang Agricultural Science Academy, Fuyang, Anhui, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing, Jiangsu, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Kui Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Zhen Wu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Zitong Kang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | | | - Yue Wang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Lan L, Chen Y, Ji H, Wang T, Zhang R, Wong MH, Zhang J. Antibiotic-resistant genes derived from commercial organic fertilizers are transported to balconies of residential buildings by express delivery. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:500. [PMID: 39508960 DOI: 10.1007/s10653-024-02279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The rise in antibiotic-resistant genes (ARGs) has recently become a pressing issue, with livestock manure identified as a significant source of these genes. Yet, the distribution of fertilizers derived from livestock manure sold online, potentially containing high levels of ARGs and antibiotic-resistant bacteria (ARB), is often not considered. Our study involved a random survey of commercial organic fertilizers available on online marketplaces, focusing on 13 common ARGs and 2 integrons (intI1, intI2). We found significant ARGs linked to sulfonamides, macrolides, and tetracycline in the 20 fertilizer samples we tested. The gene copy numbers for ermC, sul2, and tetL were exceptionally high, reaching up to 1011 copies per gram of fertilizer in specific samples. Additionally, 18 out of 20 samples contained the critical β-lactam resistance genes blaTEM and blaKPC, with gene copy numbers up to 1010 copies/g. Integrons, intI1, and intI2 were present in all samples, with abundances ranging from 103 to 1010 copies/g. We categorized the 20 samples into three types for further analysis: poultry manure, livestock manure, and earthworm manure. Our findings indicated a high presence of ARGs in poultry manure compared to a lower occurrence in earthworm manure. The study also showed a strong correlation between integrons and specific ARGs. This research underscores the potential risk of commercial organic fertilizers as a pathway for spreading ARGs from the animal breeding environment to human settings through express transportation.
Collapse
Affiliation(s)
- Lihua Lan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Yuxin Chen
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Honghu Ji
- Jinhua Academy of Agricultural Sciences, Jinhua, 321017, People's Republic of China
| | - Ting Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Ranran Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China.
| |
Collapse
|
13
|
Mei Z, Wang F, Fu Y, Liu Y, Hashsham SA, Wang Y, Harindintwali JD, Dou Q, Virta M, Jiang X, Deng Y, Zhang T, Tiedje JM. Biofilm enhanced the mitigations of antibiotics and resistome in sulfadiazine and trimethoprim co-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135721. [PMID: 39255667 PMCID: PMC11479672 DOI: 10.1016/j.jhazmat.2024.135721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Reducing antibiotic levels in soil ecosystems is vital to curb the dissemination of antimicrobial resistance genes (ARGs) and mitigate global health threats. However, gaps persist in understanding how antibiotic resistome can be suppressed during antibiotic degradation. Herein, we investigate the efficacy of a biochar biofilm incorporating antibiotics-degrading bacterial strain (Arthrobacter sp. D2) to mitigate antibiotic resistome in non-manured and manure-amended soils with sulfadiazine (SDZ) and trimethoprim (TMP) contamination. Results show that biofilm enhanced SDZ degradation by 83.0% within three days and increased TMP attenuation by 55.4% over 60 days in non-manured soils. In the non-manured black soil, the relative abundance of ARGs increased initially after biofilm inoculation. However, by day 30, it decreased by 20.5% compared to the controls. Moreover, after 7 days, biofilm reduced TMP by 38.5% in manured soils and decreased the total ARG abundance by 19.0%. Thus, while SDZ degradation did not increase sulfonamide resistance genes, TMP dissipation led to a proliferation of insertion sequences and related TMP resistance genes. This study underscores the importance of antibiotic degradation in reducing related ARGs while cautioning against the potential proliferation and various ARGs transfer by resistant microorganisms.
Collapse
Affiliation(s)
- Zhi Mei
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Agriculture and Forestry Department of Microbiology, University of Helsinki, 00014, Finland
| | - Fang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuhao Fu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Syed A Hashsham
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Yu Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Dou
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marko Virta
- Faculty of Agriculture and Forestry Department of Microbiology, University of Helsinki, 00014, Finland
| | - Xin Jiang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| |
Collapse
|
14
|
Qin J, Wang M, Zhou J, Tong Z, Li L, Liu F. Effects of adding corn straw and apple tree branches on antibiotic resistance genes removal during sheep manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122910. [PMID: 39405860 DOI: 10.1016/j.jenvman.2024.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
The study investigates the effects of composting sheep manure with corn straw (CM) and sheep manure with apple tree branches (AM) on antibiotic resistance genes (ARGs) and microbial communities. The results indicate that AM treatment enables the compost pile to reach the high-temperature phase more quickly. The total phosphorus and total potassium content in AM treatment compost increased compared to the initial stage of composting, while CM treatment effectively enhanced the total nitrogen and total phosphorus content, and CM treatment compost was more conducive to reducing the compost's electrical conductivity. The relative abundance of total ARGs for sulfonamides, tetracyclines, and integrase genes in CM treatment compost were lower than in AM treatment compost. CM treatment was beneficial in reducing the relative abundance of sul1 and tetA-02 by 33.61% and 35.51%, respectively. Both treatments were effective in reducing the relative abundance of sul3 and intI2. The relative abundance of Chloroflexi and Proteobacteria in AM treatment decreased over time, while Bacteroidetes increased, which was opposite to the trend observed in CM treatment. There were significant correlations between the compost's physicochemical properties, bacterial communities, ARGs, and mobile genetic elements (MGEs). ARGs and MGEs can exist in multiple host bacteria, and various ARGs and MGEs can also be hosted in the same bacterium. Mantel analysis showed that the total organic matter, total phosphorus, and total potassium had the greatest contributions to the changes in ARGs and MGEs, while temperature and bacterial communities regulated ARGs by affecting MGEs. Obviously, adding corn straw is more effective in reducing the abundance of ARGs during the sheep manure composting.
Collapse
Affiliation(s)
- Junmei Qin
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Mengxia Wang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenye Tong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Li Li
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Fenwu Liu
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
15
|
Chen X, Song X, Liang Y, Wang F, Pan C, Wei Z. Evaluation of the potential horizontal gene transfer ability during chicken manure and pig manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124621. [PMID: 39067739 DOI: 10.1016/j.envpol.2024.124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Resistance genes have been identified as emerging pollutants due to their ability to rapidly spread in the environment through horizontal gene transfer (HGT). Microbial community serves as the pivotal factor influencing the frequency of HGT during manure composting. However, the characteristics of HGT in microbial community from different types of manure were unclear. Therefore, this study aimed to evaluate the potential risk of HGT in bacterial community through the co-composting of chicken manure and pig manure in different proportions. The experimental results showed that the abundance of sulfonamide antibiotic resistance genes and integrase genes was higher during pig manure composting than those during chicken manure composting. In addition, the addition of pig manure also increased resistance genes abundance during chicken manure composting. These results suggested that the potential HGT risk was greater during pig manure composting. Furthermore, microbial analysis of co-composting suggested that bacterial community of pig manure was more competitive and adaptable than that of chicken manure. Ultimately, statistical analysis indicated that compared to chicken manure composting, the potential ability of HGT was greater during pig manure composting. This study provided the vital theoretical support and scientific guidance for mitigating the HGT risk during manure composting.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyang Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yao Liang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Feng Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
16
|
Zhou Y, Li Q. Preference and regulation mechanism mediated via mobile genetic elements for antibiotic and metal resistomes during composting amended with nano ZVI loaded on biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124520. [PMID: 38992827 DOI: 10.1016/j.envpol.2024.124520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
This study assessed the effectiveness of nano zero-valent iron loaded on biochar (BC-nZVI) during swine manure composting. BC-nZVI significantly reduced the abundance of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs). BC-nZVI modified the preference of MGEs to carry ARGs and MRGs, and the corrosion products of BC-nZVI could destroy cell structure, hinder electron transfer between cells, and weaken the association between ARGs, MRGs, and host bacteria. Functional genes analysis revealed that BC-nZVI down-regulated the abundance of genes affecting the transmission and metabolism of ARGs and MRGs, including type IV secretion systems, transporter systems, two-component systems, and multidrug efflux pumps. Furthermore, the BC-nZVI decreased genes related to flagella and pili production and cell membrane permeability, thereby hindering the transfer of ARGs, MRGs, and MGEs in the environment. Redundancy analysis demonstrated that changes in the microbial community induced by BC-nZVI were pivotal factors impacting the abundance of ARGs, MRGs, and MGEs. Overall, this study confirmed the efficacy of BC-nZVI in reducing resistance genes during swine manure composting, offering a promising environmental strategy to mitigate the dissemination of these contaminants.
Collapse
Affiliation(s)
- Yucheng Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
17
|
Zhou Z, Keiblinger KM, Huang Y, Bhople P, Shi X, Yang S, Yu F, Liu D. Virome and metagenomic sequencing reveal the impact of microbial inoculants on suppressions of antibiotic resistome and viruses during co-composting. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135355. [PMID: 39068883 DOI: 10.1016/j.jhazmat.2024.135355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Co-composting with exogenous microbial inoculant, presents an effective approach for the harmless utilization of livestock manure and agroforestry wastes. However, the impact of inoculant application on the variations of viral and antibiotic resistance genes (ARGs) remains poorly understood, particularly under varying manure quantity (low 10 % vs. high 20 % w/w). Thus, employing virome and metagenomic sequencing, we examined the influence of Streptomyces-Bacillus Inoculants (SBI) on viral communities, phytopathogen, ARGs, mobile genetic elements, and their interrelations. Our results indicate that SBI shifted dominant bacterial species from Phenylobacterium to thermotropic Bordetella, and the quantity of manure mediates the effect of SBI on whole bacterial community. Major ARGs and genetic elements experienced substantial changes with SBI addition. There was a higher ARGs elimination rate in the composts with low (∼76 %) than those with high manure (∼70 %) application. Virus emerged as a critical factor influencing ARG dynamics. We observed a significant variation in virus community, transitioning from Gemycircularvirus- (∼95 %) to Chlamydiamicrovirus-dominance. RDA analysis revealed that Gemycircularvirus was the most influential taxon in shaping ARGs, with its abundance decreased approximately 80 % after composting. Collectively, these findings underscore the role of microbial inoculants in modulating virus communities and ARGs during biowaste co-composting.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Katharina Maria Keiblinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life-Sciences, Vienna 1190, Austria
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Parag Bhople
- Crops, Environment, and Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford Y35TC98, Ireland
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
18
|
Gekenidis MT, Vollenweider V, Joyce A, Murphy S, Walser JC, Ju F, Bürgmann H, Hummerjohann J, Walsh F, Drissner D. Unde venis? Bacterial resistance from environmental reservoirs to lettuce: tracking microbiome and resistome over a growth period. FEMS Microbiol Ecol 2024; 100:fiae118. [PMID: 39216995 PMCID: PMC11418651 DOI: 10.1093/femsec/fiae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Fresh produce is suggested to contribute highly to shaping the gut resistome. We investigated the impact of pig manure and irrigation water quality on microbiome and resistome of field-grown lettuce over an entire growth period. Lettuce was grown under four regimes, combining soil amendment with manure (with/without) with sprinkler irrigation using river water with an upstream wastewater input, disinfected by UV (with/without). Lettuce leaves, soil, and water samples were collected weekly and analysed by bacterial cultivation, 16S rRNA gene amplicon sequencing, and shotgun metagenomics from total community DNA. Cultivation yielded only few clinically relevant antibiotic-resistant bacteria (ARB), but numbers of ARB on lettuce increased over time, while no treatment-dependent changes were observed. Microbiome analysis confirmed a temporal trend. Antibiotic resistance genes (ARGs) unique to lettuce and water included multidrug and β-lactam ARGs, whereas lettuce and soil uniquely shared mainly glycopeptide and tetracycline ARGs. Surface water carried clinically relevant ARB (e.g. ESBL-producing Escherichia coli or Serratia fonticola) without affecting the overall lettuce resistome significantly. Resistance markers including biocide and metal resistance were increased in lettuce grown with manure, especially young lettuce (increased soil contact). Overall, while all investigated environments had their share as sources of the lettuce resistome, manure was the main source especially on young plants. We therefore suggest minimizing soil-vegetable contact to minimize resistance markers on fresh produce.
Collapse
Affiliation(s)
| | - Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Aoife Joyce
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Sinéad Murphy
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Jean-Claude Walser
- Genetic Diversity Centre (GDC), Department of Environmental System Sciences (D-USYS), Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | | | - Fiona Walsh
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany
| |
Collapse
|
19
|
Sun B, Bai Z, Li R, Song M, Zhang J, Wang J, Zhuang X. Efficient elimination of antibiotic resistome in livestock manure by semi-permeable membrane covered hyperthermophilic composting. BIORESOURCE TECHNOLOGY 2024; 407:131134. [PMID: 39038713 DOI: 10.1016/j.biortech.2024.131134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Livestock manure is a hotspot for antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and an important contributor to antibiotic resistance in non-clinical settings. This study investigated the effectiveness and potential mechanisms of a novel composting technology, semi-permeable membrane covered hyperthermophilic composting (smHTC), in removal of ARGs and MGEs in chicken manure. Results showed that smHTC was more efficient in removal of ARGs and MGEs (92% and 93%) compared to conventional thermophilic composting (cTC) (76% and 92%). The efficient removal in smHTC is attributed to direct or indirect negative effects caused by the high temperature, including reducing the involvement of bio-available heavy metals (HMs) in co-selection processes of antibiotic resistance, decreasing the bacterial abundance and diversity, suppressing the horizontal gene transfer and killing potential ARGs hosts. Overall, smHTC can efficiently remove the resistome in livestock manure, reducing the risk to crops and humans from ARGs residues in compost products.
Collapse
Affiliation(s)
- Bo Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xiongan Innovation Institute, Xiongan New Area, Hebei 071000, China.
| | - Rui Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manjiao Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- Binzhou Institute of Technology, Binzhou, Shandong 256606, China
| | - Jiancheng Wang
- Binzhou Institute of Technology, Binzhou, Shandong 256606, China.
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 102699, China.
| |
Collapse
|
20
|
Luo X, Hounmanou YMG, Ndayisenga F, Yu Z. Spontaneous fermentation mitigates the frequency of genes encoding antimicrobial resistance spreading from the phyllosphere reservoir to the diet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172712. [PMID: 38677439 DOI: 10.1016/j.scitotenv.2024.172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The phyllosphere microbiome of vegetable products constitutes an important reservoir for multidrug resistant bacteria and Antibiotic Resistance Genes (ARG). Vegetable products including fermented products such as Paocai therefore may serve as a shuttle for extrinsic microorganisms with ARGs into the gut of consumers. Here we study the effect of fermentation on Paocai ARG dissemination by metagenomic analysis. Microbial abundance and diversity of the Paocai microbiome were diminished during fermentation, which correlated with the reduction of abundance in ARGs. Specifically, as fermentation progressed, Enterobacterales overtook Pseudomonadales as the predominant ARG carriers, and Lactobacillales and Enterobacteriales became the determinants of Paocai resistome variation. Moreover, the dual effect of microbes and metal resistance genes (MRGs) was the major contributor driving Paocai resistome dynamics. We recovered several metagenome-assembled genomes (MAGs) carrying acquired ARGs in the phyllosphere microbiome. ARGs of potential clinical and epidemiological relevance such as tet M and emrB-qacA, were mainly hosted by non-dominant bacterial genera. Overall, our study provides evidence that changes in microbial community composition by fermentation aid in constraining ARG dispersal from raw ingredients to the human microbiome but does not eliminate them.
Collapse
Affiliation(s)
- Xiao Luo
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbojlen 4, 1870 Frederiksberg, Denmark
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China
| | - Zhisheng Yu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China.
| |
Collapse
|
21
|
Liu ZT, Ma RA, Zhu D, Konstantinidis KT, Zhu YG, Zhang SY. Organic fertilization co-selects genetically linked antibiotic and metal(loid) resistance genes in global soil microbiome. Nat Commun 2024; 15:5168. [PMID: 38886447 PMCID: PMC11183072 DOI: 10.1038/s41467-024-49165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Antibiotic resistance genes (ARGs) and metal(loid) resistance genes (MRGs) coexist in organic fertilized agroecosystems based on their correlations in abundance, yet evidence for the genetic linkage of ARG-MRGs co-selected by organic fertilization remains elusive. Here, an analysis of 511 global agricultural soil metagenomes reveals that organic fertilization correlates with a threefold increase in the number of diverse types of ARG-MRG-carrying contigs (AMCCs) in the microbiome (63 types) compared to non-organic fertilized soils (22 types). Metatranscriptomic data indicates increased expression of AMCCs under higher arsenic stress, with co-regulation of the ARG-MRG pairs. Organic fertilization heightens the coexistence of ARG-MRG in genomic elements through impacting soil properties and ARG and MRG abundances. Accordingly, a comprehensive global map was constructed to delineate the distribution of coexistent ARG-MRGs with virulence factors and mobile genes in metagenome-assembled genomes from agricultural lands. The map unveils a heightened relative abundance and potential pathogenicity risks (range of 4-6) for the spread of coexistent ARG-MRGs in Central North America, Eastern Europe, Western Asia, and Northeast China compared to other regions, which acquire a risk range of 1-3. Our findings highlight that organic fertilization co-selects genetically linked ARGs and MRGs in the global soil microbiome, and underscore the need to mitigate the spread of these co-resistant genes to safeguard public health.
Collapse
Affiliation(s)
- Zi-Teng Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rui-Ao Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Konstantinos T Konstantinidis
- School of Civil & Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Si-Yu Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
22
|
Shan G, Wei X, Li W, Liu J, Bao S, Wang S, Zhu L, Xi B, Tan W. Effect of aqueous phase from hydrothermal carbonization of sewage sludge on heavy metals and heavy metal resistance genes during chicken manure composting. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134398. [PMID: 38677124 DOI: 10.1016/j.jhazmat.2024.134398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Livestock manure is often contaminated with heavy metals (HMs) and HM resistance genes (HMRGs), which pollute the environment. In this study, we aimed to investigate the effects of the aqueous phase (AP) produced by hydrothermal carbonization (HTC) of sewage sludge (SS) alone and the AP produced by co-HTC of rice husk (RH) and SS (RH-SS) on humification, HM bioavailability, and HMRGs during chicken manure composting. RH-SS and SS increased the humic acid content of the compost products by 18.3 % and 9.7 %, respectively, and significantly increased the humification index (P < 0.05) compared to the CK (addition of tap water). The passivation of HMs (Zn, Cu, As, Pb, and Cr) increased by 12.17-23.36 % and 9.74-15.95 % for RH-SS and SS, respectively, compared with that for CK. RH-SS and SS reduced the HMRG abundance in composted products by 22.29 % and 15.07 %, respectively. The partial least squares path modeling results showed that SS and RH-SS promoted compost humification while simultaneously altering the bacterial community and reducing the bioavailability of metals and host abundance of HMRGs, which has a direct inhibitory effect on the production and distribution of HMRGs. These findings support a new strategy to reduce the environmental risk of HMs and HMRGs in livestock manure utilization.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoshu Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Bao
- Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources, Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China
| | - Shuncai Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
23
|
Kang Y, Wang J, Li Z. Enhancing pollutants removal in hospital wastewater: Comparative analysis of PAC coagulation vs. bio-contact oxidation, highlighting the impact of outdated treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134340. [PMID: 38640670 DOI: 10.1016/j.jhazmat.2024.134340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
While the effectiveness of Poly-Aluminum Chloride (PAC) coagulation for pollutant removal has been documented across various wastewater scenarios, its specific application in hospital wastewater (HWW) treatment to remove conventional pollutants and hazardous genetic pollutants has not been studied. The research compared three hospital wastewater treatment plants (HWTPs) to address a knowledge gap, including the PAC coagulation-sodium hypochlorite disinfection process (PAC-HWTP), the biological contact oxidation-precipitation-sodium hypochlorite process (BCO-HWTP), and a system using outdated equipment with PAC coagulation (ODE-PAC-HWTP). Effluent compliance with national discharge standards is assessed, with BCO-HWTP meeting standards for direct or indirect discharge into natural aquatic environments. ODE-PAC-HWTP exceeds pretreatment standards for COD and BOD5 concentrations. PAC-HWTP effluent largely adheres to national pretreatment standards, enabling release into municipal sewers for further treatment. Metagenomic analysis reveals that PAC-HWTP exhibits higher removal efficiencies for antibiotic resistance genes, metal resistance genes, mobile genetic elements, and pathogens compared to BCO-HWTP and ODE-PAC-HWTP, achieving average removal rates of 45.13%, 57.54%, 80.61%, and 72.17%, respectively. These results suggests that when discharging treated HWW into municipal sewers for further processing, the use of PAC coagulation process is more feasible and cost-effective compared to BCO technologies. The analysis emphasizes the urgent need to upgrade outdated equipment HWTPs.
Collapse
Affiliation(s)
- Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China.
| |
Collapse
|
24
|
Jia WL, Zhang M, Gao FZ, Bai H, He LX, He LY, Liu T, Han Y, Ying GG. Antibiotic resistome in landfill leachate and impact on groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171991. [PMID: 38547976 DOI: 10.1016/j.scitotenv.2024.171991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Landfill leachate is a hotspot in antibiotic resistance development. However, little is known about antibiotic resistome and host pathogens in leachate and their effects on surrounding groundwater. Here, metagenomic sequencing was used to explore profiles, host bacteria, environmental risks and influencing factors of antibiotic resistome in raw and treated leachate and surrounding groundwater of three landfills. Results showed detection of a total of 324 antibiotic resistance genes (ARGs). The ARGs conferring resistance to multidrug (8.8 %-25.7 %), aminoglycoside (13.1 %-39.2 %), sulfonamide (10.0 %-20.9 %), tetracycline (5.7 %-34.4 %) and macrolide-lincosamide-streptogramin (MLS, 5.3 %-29.5 %) were dominant in raw leachate, while multidrug resistance genes were the major ARGs in treated leachate (64.1 %-83.0 %) and groundwater (28.7 %-76.6 %). Source tracking analysis suggests non-negligible influence of leachate on the ARGs in groundwater. The pathogens including Acinetobacter pittii, Pseudomonas stutzeri and P. alcaligenes were the major ARG-carrying hosts. Variance partitioning analysis indicates that the microbial community, abiotic variables and their interaction contributed most to the antibiotic resistance development. Our results shed light on the dissemination and driving mechanisms of ARGs from leachate to the groundwater, indicating that a comprehensive risk assessment and efficient treatment approaches are needed to deal with ARGs in landfill leachate and nearby groundwater. ENVIRONMENTAL IMPLICATIONS: Antibiotic resistance genes are found abundant in the landfill sites, and these genes could be disseminated into groundwater via leaching of wastewater and infiltration of leachate. This results in deterioration of groundwater quality and human health risks posed by these ARGs and related pathogens. Thus measures should be taken to minimize potential negative impacts of landfills on the surrounding environment.
Collapse
Affiliation(s)
- Wei-Li Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu Han
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
25
|
Singh A, Singh E, Khan N, Shukla S, Bhargava PC. Effect of biochar on the fate of antibiotic resistant genes and integrons in compost amended agricultural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23535-23548. [PMID: 38421542 DOI: 10.1007/s11356-024-32600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
The persistence and transmission of emerging pollutants such as antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) have caused concern to scientific community. Composting practises are often adapted for the reduction of organic waste or to enhance fertility in agriculture soil but its continuous usage has posed a potential risk of increased abundance of ARGs in soil. Thus, the present study scrutinises the emerging risk of ARGs and MGEs in agriculture soil and its potential mitigation using biochar owing to its proven environmental sustainability and performance. After 30 days incubation, ARG distribution of SulI, SulII, dfrA1, dfrA12, tetA, flor, and ErmA was 50, 37.5, 37.5, 62.5, 42.11, 62.5, and 52.63% in control samples whereas it was 5, 15.78, 21.05, 15.79, 10.53, 21.05, and 31.58%, respectively, for biochar amended samples. Similarly, IntI1 and IntI2 in control and biochar amended samples were 18.75 and 6.25% and 10.53 and 5.26%, respectively. Principal component analysis (PCA) factor suggests that biochar amendment samples showed enhanced value for pH, organic matter, and organic carbon over control samples. Furthermore, Pearson's correlation analysis performed between detected ARGs and MGEs demonstrated the positive and significant correlation at p < 0.05 for both control and biochar amended samples.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Saurabh Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
26
|
Casado M, Sanz C, Cáceres R, Rufat J, Vallverdú X, Casadesús J, Matamoros V, Piña B. Evolution of microbiome composition, antibiotic resistance gene loads, and nitrification during the on-farm composting of the solid fraction of pig slurry using two bulking agents. ENVIRONMENTAL RESEARCH 2024; 245:117944. [PMID: 38109952 DOI: 10.1016/j.envres.2023.117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Composting is a nature-based method used to stabilize organic matter and to transform nitrogen from animal farm manure or solid fraction of slurry (SFS). The use of composted material as source of nutrients for agriculture is limited by its potential to facilitate the propagation of biological hazards like pathogens and antibiotic-resistant bacteria and their associated antibiotic-resistance genes (ARG). We show here an experimental on-farm composting (one single batch) of pig SFS, performed under realistic conditions (under dry continental Mediterranean climate) for 280 days, and using two different bulking agents (maize straw and tree pruning residues) for the initial mixtures. The observed reduction in potentially pathogenic bacteria (80-90%) and of ARG loads (60-100%) appeared to be linked to variations in the microbiome composition occurring during the first 4 months of composting, and concurrent with the reduction of water-soluble ammonium and organic matter loads. Nitrification during the composting has also been observed for both composting piles. Similar patterns have been demonstrated at small scale and the present study stresses the fact that the removal can also occur at full scale. The results suggest that adequate composition of the starting material may accelerate the composting process and improve its global performance. While the results confirm the sanitization potential of composting, they also issue a warning to limit ARG loads in soils and in animal and human gut microbiomes, as the only way to limit their presence in foodstuffs and, therefore, to reduce consumers' exposure.
Collapse
Affiliation(s)
- Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Claudia Sanz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Rafaela Cáceres
- IRTA. Torre Marimon, 08140, Caldes de Montbui, Catalunya, Spain.
| | - Josep Rufat
- IRTA. Fruit Centre, Building of the Parc Gardeny, 25003, Lleida, Catalunya, Spain
| | - Xavier Vallverdú
- IRTA. Fruit Centre, Building of the Parc Gardeny, 25003, Lleida, Catalunya, Spain
| | - Jaume Casadesús
- IRTA. Fruit Centre, Building of the Parc Gardeny, 25003, Lleida, Catalunya, Spain
| | - Víctor Matamoros
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| |
Collapse
|
27
|
Kang Y, Wang J, Li Z. Meta-analysis addressing the characterization of antibiotic resistome in global hospital wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133577. [PMID: 38281357 DOI: 10.1016/j.jhazmat.2024.133577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/07/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Hospital wastewater (HWW) is a significant environmental reservoir of antibiotic resistance genes (ARGs). However, currently, no comprehensive understanding exists of the antibiotic resistome in global HWW. In this study, we attempted to address this knowledge gap through an in silico reanalysis of publicly accessible global HWW metagenomic data. We reanalyzed ARGs in 338 HWW samples from 13 countries in Africa, Asia, and Europe. In total, 2420 ARG subtypes belonging to 30 ARG types were detected, dominated by multidrug, beta-lactam, and aminoglycoside resistance genes. ARG composition in Europe differed from that in Asia and Africa. Notably, the ARGs presented co-occurrence with mobile genetic elements (MGEs), metal resistance genes (MRGs), and human bacterial pathogens (HBP), indicating a potential dissemination risk of ARGs in the HWW. Multidrug resistance genes presented co-occurrence with MGEs, MRGs, and HBP, is particularly pronounced. The abundance of contigs that contained ARG, contigs that contained ARG and HBP, contigs that contained ARG and MGE, contigs that contained ARG and MRG were used for health and transmission risk assessment of antibiotic resistome and screened out 40 high risk ARGs in the global HWW. This study first provides a comprehensive characterization and risk of the antibiotic resistome in global HWW.
Collapse
Affiliation(s)
- Yutong Kang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenjun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China.
| |
Collapse
|
28
|
Gao FZ, He LY, He LX, Bai H, Zhang M, Chen ZY, Qiao LK, Liu YS, Ying GG. Swine farming shifted the gut antibiotic resistome of local people. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133082. [PMID: 38016315 DOI: 10.1016/j.jhazmat.2023.133082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Antibiotic resistance genes (ARGs) are prevalent in the livestock environment, but little is known about impacts of animal farming on the gut antibiotic resistome of local people. Here we conducted metagenomic sequencing to investigate gut microbiome and resistome of residents in a swine farming village as well as environmental relevance by comparing with a nearby non-farming village. Results showed a shift of gut microbiome towards unhealthy status in the residents of swine farming village, with an increased abundance and diversity in pathogens and ARGs. The resistome composition in human guts was more similar with that in swine feces and air than that in soil and water. Mobile gene elements were closely associated with the prevalence of gut resistome. Some plasmid-borne ARGs were colocalized in similar genetic contexts in gut and environmental samples. Metagenomic binning obtained 47 ARGs-carrying families in human guts, and therein Enterobacteriaceae posed the highest threats in antibiotic resistance and virulence. Several ARGs-carrying families were shared by gut and environmental samples (mainly in swine feces and air), and the ARGs were evolutionarily conservative within genera. The findings highlight that swine farming can shape gut resistome of local people with close linkage to farm environmental exposures.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China.
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Zi-Yin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Lu-Kai Qiao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
29
|
Li T, Tao S, Ma M, Liu S, Shen M, Zhang H. Is the application of organic fertilizers becoming an undeniable source of microplastics and resistance genes in agricultural systems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169571. [PMID: 38142997 DOI: 10.1016/j.scitotenv.2023.169571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The application of organic fertilizers is becoming an undeniable source of microplastics and antibiotic resistance genes (ARGs) in agricultural soils. The complex microbial activity further transfers resistance genes and their host bacteria to agricultural products and throughout the entire food chain. Therefore, the current main focus is on reducing the abundance of microplastics and ARGs in organic fertilizers at the source, as well as managing microplastics and ARGs in soil. The control of microplastic abundance in organic fertilizers is currently only achieved through pre-composting selection and other methods. However, there are still many shortcomings in the research on the distribution characteristics, propagation and diffusion mechanisms, and control technologies of ARGs, and some key scientific issues still need to be urgently addressed. The high-temperature composting of organic waste can effectively reduce the abundance of ARGs in organic fertilizers to a certain extent. However, it is also important to consider the spread of ARGs in residual antibiotic-resistant bacteria (ARB). This article systematically explores the pathways and interactions of microplastics and resistance genes entering agricultural soils through the application of organic fertilizers. The removal of microplastics and ARGs from organic fertilizers was discussed in detail. Based on the limitations of existing research, further investigation in this area is expected to provide valuable insights for the development and practical implementation of technologies aimed at reducing soil microplastics and resistance genes.
Collapse
Affiliation(s)
- Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Mengjie Ma
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Huijuan Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
30
|
Li Y, Li R, Hou J, Sun X, Wang Y, Li L, Yang F, Yao Y, An Y. Mobile genetic elements affect the dissemination of antibiotic resistance genes (ARGs) of clinical importance in the environment. ENVIRONMENTAL RESEARCH 2024; 243:117801. [PMID: 38043895 DOI: 10.1016/j.envres.2023.117801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in the environment is a quintessential One Health issue that threats both human and ecosystem health; however, the source and transmission of ARGs, especially clinically important ARGs (CLIARGs), in the environment have not yet been well studied. In the present study, shotgun metagenomic approaches were used to characterize the microbiome, resistome, and mobilome composition in human feces and six different environment sample types in South China. Overall, the resistome harbored 157 CLIARGs, with specific ARG hotspots (e.g., human feces, wastewater treatment plants, livestock manure and wastewater) excreting significantly higher abundance of CLIARGs compared with the natural environment. A redundancy analysis (RDA) was performed and revealed that the bacterial community compositions and mobile genetic elements (MGEs) explained 55.08% and 34.68% of the variations in ARG abundance, respectively, indicating that both bacterial community and MGEs are key contributors to the maintenance and dissemination of CLIARGs in the environment. The network analysis revealed non-random co-occurrence patterns between 200 bacterial genera and 147 CLIARGs, as well as between 135 MGEs and 123 CLIARGs. In addition to numerous co-shared CLIARGs among different sample types, the source tracking program based on the FEAST probabilistic model was used to estimate the relative contributions of the CLIARGs from potential sources to the natural environment. The source tracking analysis results delineated that mobilome, more than microbiome, contributed CLIARG transmission from those ARG hotspots into natural environment, and the MGEs in WWTPs seem to play the most significant role in the spread of CLIARGs to the natural environment (average contribution 32.9%-46.4%). Overall, this study demonstrated the distribution and dissemination of CLIARGs in the environment, and aimed to better inform strategies to control the spread of CLIARGs into the natural environment.
Collapse
Affiliation(s)
- Ye Li
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ruilin Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jie Hou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xuan Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yajun Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Linyun Li
- Ministry of Social and Ecological Civilization, Party School of Hebei Provincial Committee of C.P.C, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
31
|
Gao FZ, He LY, Liu YS, Zhao JL, Zhang T, Ying GG. Integrating global microbiome data into antibiotic resistance assessment in large rivers. WATER RESEARCH 2024; 250:121030. [PMID: 38113599 DOI: 10.1016/j.watres.2023.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Rivers are important in spreading antimicrobial resistance (AMR). Assessing AMR risk in large rivers is challenged by large spatial scale and numerous contamination sources. Integrating river resistome data into a global framework may help addressing this difficulty. Here, we conducted an omics-based assessment of AMR in a large river (i.e. the Pearl River in China) with global microbiome data. Results showed that antibiotic resistome in river water and sediment was more diversified than that in other rivers, with contamination levels in some river reaches higher than global baselines. Discharge of WWTP effluent and landfill waste drove AMR prevalence in the river, and the resistome level was highly associated with human and animal sources. Detection of 54 risk rank I ARGs and emerging mobilizable mcr and tet(X) highlighted AMR risk in the river reaches with high human population density and livestock pollution. Florfenicol-resistant floR therein deserved priority concerns due to its high detection frequency, dissimilar phylogenetic distance, mobilizable potential, and presence in multiple pathogens. Co-sharing of ARGs across taxonomic ranks implied their transfer potentials in the community. By comparing with global genomic data, we found that Burkholderiaceae, Enterobacteriaceae, Moraxellaceae and Pseudomonadaceae were important potential ARG-carrying bacteria in the river, and WHO priority carbapenem-resistant Enterobacteriaceae, A. baumannii and P. aeruginosa should be included in future surveillance. Collectively, the findings from this study provide an omics-benchmarked assessment strategy for public risk associated with AMR in large rivers.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China.
| |
Collapse
|
32
|
Song J, Zheng C, Qiu M, Zhan XP, Zhang Z, Zhang H, Shi N, Zhang L, Yu Y, Nicolaisen M, Xu L, Fang H. Mechanisms Underlying the Overlooked Chiral Fungicide-Driven Enantioselective Proliferation of Antibiotic Resistance in Earthworm Intestinal Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2931-2943. [PMID: 38306257 DOI: 10.1021/acs.est.3c07761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
From a "One Health" perspective, the global threat of antibiotic resistance genes (ARGs) is associated with modern agriculture practices including agrochemicals application. Chiral fungicides account for a considerable proportion of wildly used agrochemicals; however, whether and how their enantiomers lead to differential proliferation of antibiotic resistance in agricultural environments remain overlooked. Focused on the soil-earthworm ecosystem, we for the first time deciphered the mechanisms underlying the enantioselective proliferation of antibiotic resistance driven by the enantiomers of a typical chiral fungicide mandipropamid (i.e., R-MDP and S-MDP) utilizing a multiomic approach. Time-series metagenomic analysis revealed that R-MDP led to a significant enhancement of ARGs with potential mobility (particularly the plasmid-borne ARGs) in the earthworm intestinal microbiome. We further demonstrated that R-MDP induced a concentration-dependent facilitation of plasmid-mediated ARG transfer among microbes. In addition, transcriptomic analysis with verification identified the key aspects involved, where R-MDP enhanced cell membrane permeability, transfer ability, biofilm formation and quorum sensing, rebalanced energy production, and decreased cell mobility versus S-MDP. Overall, the findings provide novel insights into the enantioselective disruption of microbiome and resistome in earthworm gut by chiral fungicides and offer significant contributions to the comprehensive risk assessment of chiral agrochemicals in agroecosystems.
Collapse
Affiliation(s)
- Jiajin Song
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiu-Ping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Zihan Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Houpu Zhang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Nan Shi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Luqing Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse 4200, Denmark
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hua Fang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Hou J, Lam KL, Chiu YT, Kwong KY, Lau HL, Marafa LM, Tsui SKW, Mo IWY, Chan PL. Urban green waste bulking agent is the major source of antimicrobial resistance genes persisted in home compost, not animal manure. ENVIRONMENTAL RESEARCH 2024; 242:117713. [PMID: 38000633 DOI: 10.1016/j.envres.2023.117713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Urban green waste and food waste are often used as bulking agents to prepare home compost in combination with animal manure in urban horticulture and community gardening. Although it is known that antimicrobial resistance genes (ARGs) persist in home compost, their origins have not been determined. In addition, the factors contributing to ARGs persistence remain unclear. In this study, we aim to (i) characterize the changes in the microbiome and antimicrobial resistome during the composting process of home compost using metagenomics shotgun sequencing, (ii) identify the source of the ARGs persisted in home compost using SourceTracker, and (iii) elucidate the collective effect of compost microbiome and environmental factors, including the physicochemical properties and antibiotics concentration of home compost, in contributing to ARG persistence using Procrustes analysis, co-occurrence network analysis, variation partitioning analysis, and structural equation modeling. SourceTracker analysis indicated that urban green waste bulking agent was the major source of the persisting ARGs in home compost instead of animal manure. Procrustes analysis and co-occurrence network analysis revealed a strong association between microbiome and antimicrobial resistome. Variation partitioning analysis and structural equation modeling suggested that physicochemical properties shaped the antimicrobial resistome directly and indirectly by influencing the microbiome. Our results indicated that the persistence of ARGs in home compost might be due to the succession of microbial species from the urban green waste bulking agent, and the physicochemical properties might have defined the compost environment to shape the microbiome in the compost, thus, in turn, the persisting antimicrobial resistome.
Collapse
Affiliation(s)
- Jinpao Hou
- School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, Hong Kong
| | - K L Lam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong
| | - Y T Chiu
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong
| | - K Y Kwong
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong
| | - H L Lau
- Department of Geography and Resources Management, the Chinese University of Hong Kong, Shatin, Hong Kong
| | - L M Marafa
- Department of Geography and Resources Management, the Chinese University of Hong Kong, Shatin, Hong Kong
| | - S K W Tsui
- School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, Hong Kong
| | - I W Y Mo
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong.
| | - P L Chan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong; Department of Health Sciences, School of Nursing and Health Studies, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong.
| |
Collapse
|
34
|
Huang B, Lv X, Zheng H, Yu H, Zhang Y, Zhang C, Wang J. Microbial organic fertilizer prepared by co-composting of Trichoderma dregs mitigates dissemination of resistance, virulence genes, and bacterial pathogens in soil and rhizosphere. ENVIRONMENTAL RESEARCH 2024; 241:117718. [PMID: 37995998 DOI: 10.1016/j.envres.2023.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The use of manure, mycelium dregs and other waste as organic fertilizer is the main source of antibiotic resistance genes (ARGs) and pathogens in farmland. Composting of waste may effectively remove ARGs and pathogens. However, the profiles and drivers of changes in metal resistance genes (MRGs), biocide resistance genes (BRGs), and virulence genes (VGs) in soil-crop rhizosphere systems after compost application remain largely unknown. Here, we prepared two kinds of microbial organic fertilizers (MOF) by using Trichoderma dregs (TDs) and organic fertilizer mixing method (MOF1) and TDs co-composting method (MOF2). The effects of different types and doses of MOF on resistance genes, VGs and pathogens in soil-rhizosphere system and their potential mechanisms were studied. The results showed that co-composting of TDs promoted the decomposition of organic carbon and decreased the absolute abundance of ARGs and mobile genetic elements (MGEs) by 53.4-65.0%. MOF1 application significantly increased the abundance and diversity of soil ARGs, BRGs, and VGs, while low and medium doses of MOF2 significantly decreased their abundance and diversity in soil and rhizosphere. Patterns of positive co-occurrence between MGEs and VGs/MRGs/BRGs/ARGs were observed through statistical analysis and gene arrangements. ARGs/MRGs reductions in MOF2 soil were directly driven by weakened horizontal gene transfer triggered by MGEs. Furthermore, MOF2 reduced soil BRGs/VGs levels by shifting bacterial communities (e.g., reduced bacterial host) or improving soil property. Our study provided new insights into the rational use of waste to minimize the spread of resistomes and VGs in soil.
Collapse
Affiliation(s)
- Bin Huang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaolin Lv
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haitao Yu
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chengsheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jie Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
35
|
Wang M, Masoudi A, Wang C, Wu C, Zhang Z, Zhao X, Liu Y, Yu Z, Liu J. Impacts of net cages on pollutant accumulation and its consequence on antibiotic resistance genes (ARGs) dissemination in freshwater ecosystems: Insights for sustainable urban water management. ENVIRONMENT INTERNATIONAL 2024; 183:108357. [PMID: 38056093 DOI: 10.1016/j.envint.2023.108357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
There has been increasing interest in the role of human activities in disseminating antibiotic-resistance genes (ARGs) in aquatic ecosystems. However, the influence of pollutant accumulation on anthropogenic pollutant-ARG synergistic actions is limited. This study explored the association of net cages with the propagation of anthropogenic pollutants and their consequences for influencing the enrichment of ARGs using high-throughput metagenomic sequencing. We showed that net cages could substantially impact the ecology of freshwater systems by enhancing i) ARG diversity and the tendency for ARG-horizontal gene transfer and ii) the overlap of mobile genetic elements (MGEs) with biocide-metal resistance genes (BMRGs) and ARGs. These findings suggested that the cotransfer of these three genetic determinants would be favored in net cage plots and that nonantibiotic factors such as metal(loid)s, particularly iron (Fe), displayed robust selective pressures on ARGs exerted by the net cage. The resistome risk scores of net cage sediments and biofilms were higher than those from off-net cage plots, indicating that the net cage-origin antibiotic resistome should be of great concern. The combination of deterministic and stochastic processes acting on bacterial communities could explain the higher ARG variations in cage plots (8.2%) than in off-cage plots (3.4%). Moreover, MGEs and pollutants together explained 43.3% of the total variation in ARG communities, which was higher than that of off-cage plots (8.8%), considering pollutants, environmental variables, MGEs, and assembly processes. These findings will inform the development of policies and guidelines to more effectively limit the spread of antimicrobial resistance and achieve the goal of sustainability in freshwater systems in urban areas.
Collapse
Affiliation(s)
- Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Can Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Changhao Wu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Ze Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xin Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Yuanjie Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
36
|
Fresno M, Pavez L, Poblete Y, Cortez A, Del Pozo T. Unveiling antimicrobial resistance in Chilean fertilized soils: a One Health perspective on environmental AMR surveillance. Front Microbiol 2023; 14:1239761. [PMID: 38107869 PMCID: PMC10722175 DOI: 10.3389/fmicb.2023.1239761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to humans and animals as well as the environment. Within agricultural settings, the utilization of antimicrobial agents in animal husbandry can lead to the emergence of antimicrobial resistance. In Chile, the widespread use of animal-derived organic amendments, including manure and compost, requires an examination of the potential emergence of AMR resulting from their application. The aim of this research was to identify and compare AMR genes found in fertilized soils and manure in Los Andes city, Chile. Soil samples were collected from an agricultural field, comprising unamended soils, amended soils, and manure used for crop fertilization. The selected genes (n = 28) included genes associated with resistance to beta-lactams, tetracyclines, sulfonamides, polymyxins, macrolides, quinolones, aminoglycosides, as well as mobile genetic elements and multidrug resistance genes. Twenty genes were successfully identified in the samples. Tetracycline resistance genes displayed the highest prevalence, followed by MGE and sulfonamides, while quinolone resistance genes were comparatively less abundant. Notably, blaOXA, sulA, tetO, tetW, tetM, aac (6) ib., and intI1, exhibited higher frequencies in unamended soils, indicating their potential persistence within the soil microbiome and contribution to the perpetuation of AMR over time. Given the complex nature of AMR, it is crucial to adopt an integrated surveillance framework that embraces the One Health approach, involving multiple sectors, to effectively address this challenge. This study represents the first investigation of antimicrobial resistance genes in agricultural soils in Chile, shedding light on the presence and dynamics of AMR in this context.
Collapse
Affiliation(s)
- Marcela Fresno
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Providencia, Santiago, Chile
- Red CYTED-USCC. CYTED 412RT0117: Una Salud en Iberoamérica y El Caribe frente al cambio climático y la pérdida de biodiversidad, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigación en Ciencias Biológicas (NICB), Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Providencia, Santiago, Chile
- Departamento de Ciencias Humanas, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Yanina Poblete
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Providencia, Santiago, Chile
| | - Alexandra Cortez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Talía Del Pozo
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Providencia, Santiago, Chile
| |
Collapse
|
37
|
Yang H, Lu H, Li K, Huang Y, Li Q. Insights into antibiotic resistance gene abundances and regulatory mechanisms induced by ionic liquids during composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118652. [PMID: 37481880 DOI: 10.1016/j.jenvman.2023.118652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
This study investigated the regulatory mechanism of the evolution of antibiotic resistance genes (ARGs) during the composting process with sawdust and cow manure as raw materials using ionic liquids (ILs) pretreatment. The results showed that genes of MLS, chloramphenicol, tetracycline, beta - lactam as composting gradually decreased. From day0 to day3, MLS in control group (CK) and experimental group (T) decreased by 25.62% and 26.66%, respectively. Tetracycline decreased by 7.21% in CK and by 7.86% in T. Chloramphenicol decreased by 2.85% in CK and 3.34% in T. Beta-lactam decreased by 1.95% in Ck and by 3.69% in T. Mechanism studies have shown that ILs can effectively decompose extracellular polymeric substances (EPS) and enhance lactose dehydrogenase (LDH) release, resulting in ARGs release and elimination. Meanwhile, ILs pretreatment can inhibit growth of some ARGs hosts, especially Firmicutes, resulting in decreased ARGs. Moreover, metabolic pathways and related genes take part in ARGs transmission were down regulated, leading to decreased ARGs.
Collapse
Affiliation(s)
- Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Heng Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
38
|
Wang Z, Ding Y, Li Y, Zhao M, Ren X, Zhang Z, Wang Q. Deciphering the influence pathway of selenium on antibiotic resistance genes during goat manure composting. CHEMICAL ENGINEERING JOURNAL 2023; 475:146141. [DOI: 10.1016/j.cej.2023.146141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
39
|
Zhu N, Long Y, Kan Z, Zhu Y, Jin H. Reduction of mobile genetic elements determines the removal of antibiotic resistance genes during pig manure composting after thermal pretreatment. BIORESOURCE TECHNOLOGY 2023; 387:129672. [PMID: 37586429 DOI: 10.1016/j.biortech.2023.129672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Animal manure is a primary repository of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). This work explored the efficiency of ARGs and MGEs removal during pig manure composting after thermal pretreatment (TPC) and the underlying mechanisms. TPC resulted in a decrease of 94.7% and 92.3% in the relative abundance of ARGs and MGEs which was 48.9% and 76.6% lower than control, respectively. Network analysis indicated that reductions of ARGs and MGEs in TPC were relevant to decrease in the amount and abundance of bacterial hosts. Furthermore, total ARGs abundance in TPC was correlated with that of intI1 and Tn916/1545 (P < 0.001). Redundancy analysis supported a leading role of MGEs in ARGs dynamics in TPC. Reduction of MGEs rather than bacterial hosts contributed mainly to ARGs removal in TPC, as revealed by structural equation modeling. In conclusion, TPC was an effective method to treat animal manure containing ARGs.
Collapse
Affiliation(s)
- Ning Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujiao Long
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zexin Kan
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyun Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
40
|
Zhao Z, Yang C, Gao B, Wu Y, Ao Y, Ma S, Jiménez N, Zheng L, Huang F, Tomberlin JK, Ren Z, Yu Z, Yu C, Zhang J, Cai M. Insights into the reduction of antibiotic-resistant bacteria and mobile antibiotic resistance genes by black soldier fly larvae in chicken manure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115551. [PMID: 37832484 DOI: 10.1016/j.ecoenv.2023.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
The increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste. In this study, we investigated BSFL conversion systems for chicken manure. Using metagenomic analysis, we tracked ARB and evaluated the resistome dissemination risk by investigating the co-occurrence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial taxa in a genetic context. Our results indicated that BSFL treatment effectively mitigated the relative abundance of ARB, ARGs, and MGEs by 34.9%, 53.3%, and 37.9%, respectively, within 28 days. Notably, the transferable ARGs decreased by 30.9%, indicating that BSFL treatment could mitigate the likelihood of ARG horizontal transfer and thus reduce the risk of ARB occurrence. In addition, the significantly positive correlation links between antimicrobial concentration and relative abundance of ARB reduced by 44.4%. Moreover, using variance partition analysis (VPA), we identified other bacteria as the most important factor influencing ARB, explaining 20.6% of the ARB patterns. Further analysis suggested that antagonism of other bacteria on ARB increased by 1.4 times, while nutrient competition on both total nitrogen and crude fat increased by 2.8 times. Overall, these findings provide insight into the mechanistic understanding of ARB reduction during BSFL treatment of chicken manure and provide a strategy for rapidly mitigating ARB in animal manure.
Collapse
Affiliation(s)
- Zhengzheng Zhao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Chongrui Yang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Bingqi Gao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Yushi Wu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Yue Ao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shiteng Ma
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Núria Jiménez
- Department of Chemical Engineering, Vilanova i la Geltrú School of Engineering (EPSEVG), Universitat Politècnica de Catalunya·BarcelonaTech, Vilanova i la Geltrú 08800, Spain
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | | | - Zhuqing Ren
- Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China; Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China.
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
41
|
Zhang J, Xu Z, Chu W, Ju F, Jin W, Li P, Xiao R. Residual chlorine persistently changes antibiotic resistance gene composition and increases the risk of antibiotic resistance in sewer systems. WATER RESEARCH 2023; 245:120635. [PMID: 37738943 DOI: 10.1016/j.watres.2023.120635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
During the COVID-19 pandemic, excessive amounts of disinfectants and their transformation products entered sewer systems worldwide, which was an extremely rare occurrence before. The stress of residual chlorine and disinfection by-products is not only likely to promote the spread of antibiotic resistance genes (ARGs), but also leads to the enrichment of chlorine-resistant bacteria that may also be resistant to antibiotics. Therefore, the potential impact of such discharge on ARG composition should be studied and the health risks should be assessed. Thus, this study combined high-throughput 16S rRNA gene amplicon sequencing and metagenomic analysis with long-term batch tests that involved two stages of stress and recovery to comprehensively evaluate the impact of residual chlorine on the microbial community and ARG compositions in sewer systems. The tests demonstrated that the disturbance of the microbial community structure by residual chlorine was reversible, but the change in ARG composition was persistent. This study found that vertical propagation and horizontal gene transfer jointly drove ARG composition succession in the biofilm, while the driving force was mainly horizontal gene transfer in the sediment. In this process, the biocide resistance gene (BRG) subtype chtR played an important role in promoting co-selection with ARGs through plasmids and integrative and conjugative elements. Moreover, it was further shown that the addition of sodium hypochlorite increased the risk of ARGs to human health, even after discontinuation of dosing, signifying that the impact was persistent. In general, this study strengthens the co-selection theory of ARGs and BRGs, and calls for improved disinfection strategies and more environmentally friendly disinfectants.
Collapse
Affiliation(s)
- Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Peng Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; College of Resources and Environmental Engineering, Shandong Agriculture and Engineering University, Jinan, Shandong 250100, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
42
|
Sun Q, Zhang Q, Li H, Ming C, Gao J, Li Y, Zhang Y. Regulatory effects of different anionic surfactants on the transformation of heavy metal fractions and reduction of heavy metal resistance genes in chicken manure compost. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122297. [PMID: 37543071 DOI: 10.1016/j.envpol.2023.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/05/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Surfactants are widely used as a passivating agent in heavy metal passivation process, but their effect on transformation of heavy metal fraction and reduction of heavy metal resistance genes (MRGs) in composting process is still unknown. The aim of this study was to compare the effects of two anionic surfactants (rhamnolipid and sodium dodecyl sulfate) on heavy metal passivation and resistance gene reduction in chicken manure composting. The results showed that the addition of surfactant can effectively enhance degradation of organic matter (OM). Both surfactants could effectively reduce the bioavailability of heavy metals (HMs) and the relative abundance of resistance genes, especially rhamnolipids. The potential functional bacteria affecting heavy metal passivation were identified by the changes of microbial community. Redundancy analysis (RDA) showed that protease (PRT) activity was the key factor affecting the fractions of the second group of HMs including ZnF1, CuF1, CuF2, PbF1 and PbF3. These findings indicate that addition of anionic surfactants can reduce the bioavailability of HMs and the abundance of resistance genes in compost products, which is of guiding significance for the reduction of health risks in the harmless utilization of livestock and poultry manure.
Collapse
Affiliation(s)
- Qinghong Sun
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; College of Resources and Environment, South China Agricultural University, Guangzhou 510640, China
| | - Qiao Zhang
- College of Resources and Environment, South China Agricultural University, Guangzhou 510640, China
| | - Hanhao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou 510640, China
| | - Chenshu Ming
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianpeng Gao
- College of Resources and Environment, South China Agricultural University, Guangzhou 510640, China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou 510640, China
| | - Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
43
|
Yue Z, Zhang J, Zhang J, Wang X, Li L, Yu H, Liu B, Li Q, Zhu D, Zou Y. Combined virome analysis and metagenomic sequencing to reveal the viral communities and risk of virus-associated antibiotic resistance genes during composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132088. [PMID: 37482039 DOI: 10.1016/j.jhazmat.2023.132088] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The issue of antibiotic resistance genes (ARGs) pollution in manure has garnered significant attention, with viruses now being recognized as crucial carriers and disseminators of ARGs. However, the virus-associated ARG profiles and potential health risks in composts are still unclear. In this study, the viral communities and associated ARGs in biogas residue and pig faeces composts were profiled by virome analysis. The viral communities were dominated by Caudovirales, and non-thermophilic viruses were inactivated during composting. The diversity and abundance of ARGs were lower in virome than in metagenome, while ARGs' risk was greater in virome than in metagenome. There were six bacterial genera identified as viral hosts at the genomic level, Pseudomonas and Clostridium carried high-risk ARGs. Virus-associated ARGs in viral hosts had a higher risk rank than non-virus-associated ARGs. Composting reduced the diversity, abundance and risk of viral ARGs. The risk of ARGs in biogas residues was significantly lower than that of pig faeces in the initial period of composting, and the two different substracts equally less harmful after composting. These results revealed that viruses play a non-negligible role in spreading ARGs, posing high risk to environmental and human health.
Collapse
Affiliation(s)
- Zhengfu Yue
- Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Jing Zhang
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education (School of Plant Protection), Hainan University, Haikou 570228, China
| | - Jing Zhang
- Department of Environmental Sciences, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571199, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lirong Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Haiyang Yu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Beibei Liu
- Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Qinfen Li
- Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yukun Zou
- Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| |
Collapse
|
44
|
Chen T, Liu T, Wu Z, Wang B, Chen Q, Zhang M, Liang E, Ni J. Virus-pathogen interactions improve water quality along the Middle Route of the South-to-North Water Diversion Canal. THE ISME JOURNAL 2023; 17:1719-1732. [PMID: 37524909 PMCID: PMC10504254 DOI: 10.1038/s41396-023-01481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Bacterial pathogens and viruses are the leading causes of global waterborne diseases. Here, we discovered an interesting natural paradigm of water "self-purification" through virus-pathogen interactions over a 1432 km continuum along the Middle Route of the South-to-North Water Diversion Canal (MR-SNWDC) in China, the largest water transfer project in the world. Due to the extremely low total phosphorus (TP) content (ND-0.02 mg/L) in the MR-SNWDC, the whole canal has experienced long-lasting phosphorus (P) limitation since its operation in 2015. Based on 4443 metagenome-assembled genomes (MAGs) and 40,261 nonredundant viral operational taxonomic units (vOTUs) derived from our recent monitoring campaign, we found that residential viruses experiencing extreme P constraints had to adopt special adaptive strategies by harboring smaller genomes to minimize nucleotide replication, DNA repair, and posttranslational modification costs. With the decreasing P supply downstream, bacterial pathogens showed repressed environmental fitness and growth potential, and a weakened capacity to maintain P acquisition, membrane formation, and ribonucleotide biosynthesis. Consequently, the unique viral predation effects under P limitation, characterized by enhanced viral lytic infections and an increased abundance of ribonucleotide reductase (RNR) genes linked to viral nuclear DNA replication cycles, led to unexpectedly lower health risks from waterborne bacterial pathogens in the downstream water-receiving areas. These findings highlighted the great potential of water self-purification associated with virus-pathogen dynamics for water-quality improvement and sustainable water resource management.
Collapse
Affiliation(s)
- Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tang Liu
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zongzhi Wu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Bingxue Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qian Chen
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- State Environmental Protection Key Laboratory of All Materials Fluxes in River Ecosystems, Peking University, Beijing, 100871, PR China
| | - Mi Zhang
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Enhang Liang
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
45
|
Liu H, Shi B, Liu W, Wang L, Zhu L, Wang J, Kim YM, Wang J. Effects of magnesium-modified biochar on antibiotic resistance genes and microbial communities in chicken manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108553-108564. [PMID: 37752398 DOI: 10.1007/s11356-023-29804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Abatement of antibiotic resistance genes (ARGs) in livestock manure by composting has attracted attention. This study investigated the effect of adding magnesium-modified biochar (MBC) on ARGs and microbial communities in chicken manure composting. Twelve genes for tetracyclines, sulfonamides, and macrolides, and mobile genetic elements were measured in the compost pile. The results showed that after 45 days of the composting, the treatment groups of MBC had longer high temperature periods, significantly higher germination indices (GI) and lower phytotoxicity. There were four major dominant phyla (Firmicutes, Actinobacteriota, Proteobacteria, and Bacteroidota) in the compost. The abundance of Firmicutes decreased significantly during the compost cooling period; tetracycline resistance genes demonstrated an extremely significant positive correlation with Firmicutes, showing a trend of the same increase and decrease with composting time; tetT, tetO, tetM, tetW, ermB, and intI2 were reduced in the MBC group; the total abundance of resistance genes in the 2% MBC addition group was 0.67 times that of the control; Proteobacteria and Chloroflexi were also significantly lower than the other treatment groups. Most ARGs were significantly associated with mobile genetic elements (MGEs); MBC can reduce the spread and diffusion of ARGs by reducing the abundance of MGEs and inhibiting horizontal gene transfer (HGT).
Collapse
Affiliation(s)
- Hunan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Baihui Shi
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Wenwen Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lanjun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Jinhua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
46
|
Abdugheni R, Li L, Yang ZN, Huang Y, Fang BZ, Shurigin V, Mohamad OAA, Liu YH, Li WJ. Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms 2023; 11:1897. [PMID: 37630456 PMCID: PMC10456746 DOI: 10.3390/microorganisms11081897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Livestock excrement is a major pollutant yielded from husbandry and it has been constantly imported into various related environments. Livestock excrement comprises a variety of microorganisms including certain units with health risks and these microorganisms are transferred synchronically during the management and utilization processes of livestock excrement. The livestock excrement microbiome is extensively affecting the microbiome of humans and the relevant environments and it could be altered by related environmental factors as well. The zoonotic microorganisms, extremely zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and environmental safety. In this review, we highlight the main feature of the microbiome of livestock excrement and elucidate the composition and structure of the repertoire of microbes, how these microbes transfer from different spots, and they then affect the microbiomes of related habitants as a whole. Overall, the environmental problems caused by the microbiome of livestock excrement and the potential risks it may cause are summarized from the microbial perspective and the strategies for prediction, prevention, and management are discussed so as to provide a reference for further studies regarding potential microbial risks of livestock excrement microbes.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Ni Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
47
|
Zhao Z, Yu C, Yang C, Gao B, Jiménez N, Wang C, Li F, Ao Y, Zheng L, Huang F, Tomberlin JK, Ren Z, Yu Z, Zhang J, Cai M. Mitigation of antibiotic resistome in swine manure by black soldier fly larval conversion combined with composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163065. [PMID: 36966826 DOI: 10.1016/j.scitotenv.2023.163065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) in animal manure has attracted considerable attention because of their potential contribution to the development of multidrug resistance worldwide. Insect technology may be a promising alternative for the rapid attenuation of ARGs in manure; however, the underlying mechanism remains unclear. This study aimed to evaluate the effects of black soldier fly (BSF, Hermetia illucens [L.]) larvae conversion combined with composting on ARGs dynamics in swine manure and to uncover the mechanisms through metagenomic analysis. Compared to natural composting (i.e. without BSF), BSFL conversion combined with composting reduced the absolute abundance of ARGs by 93.2 % within 28 days. The rapid degradation of antibiotics and nutrient reformulation during BSFL conversion combined with composting indirectly altered manure bacterial communities, resulting in a lower abundance and richness of ARGs. The number of main antibiotic-resistant bacteria (e.g., Prevotella, Ruminococcus) decreased by 74.9 %, while their potential antagonistic bacteria (e.g., Bacillus, Pseudomonas) increased by 128.7 %. The number of antibiotic-resistant pathogenic bacteria (e.g., Selenomonas, Paenalcaligenes) decreased by 88.3 %, and the average number of ARGs carried by each human pathogenic bacterial genus declined by 55.8 %. BSF larvae gut microbiota (e.g., Clostridium butyricum, C. bornimense) could help reduce the risk of multidrug-resistant pathogens. These results provide insight into a novel approach to mitigate multidrug resistance from the animal industry in the environment by using insect technology combined with composting, in particular in light of the global "One Health" requirements.
Collapse
Affiliation(s)
- Zhengzheng Zhao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chongrui Yang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Bingqi Gao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Núria Jiménez
- Department of Chemical Engineering, Vilanova i la Geltrú School of Engineering (EPSEVG), Universitat Politècnica de Catalunya · BarcelonaTech, Vilanova i la Geltrú 08800, Spain
| | - Chen Wang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Fang Li
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Yue Ao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | | | - Zhuqing Ren
- Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China; Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China.
| |
Collapse
|
48
|
Zhou S, Li H, Wu Z, Li S, Cao Z, Ma B, Zou Y, Zhang N, Liu Z, Wang Y, Liao X, Wu Y. The addition of nano zero-valent iron during compost maturation effectively removes intracellular and extracellular antibiotic resistance genes by reducing the abundance of potential host bacteria. BIORESOURCE TECHNOLOGY 2023:129350. [PMID: 37352990 DOI: 10.1016/j.biortech.2023.129350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Applying compost to soil may lead to the spread of antibiotic resistance genes (ARGs) in the environment. Therefore, removing ARGs from compost is critical. In this study, for the first time, nano zero-valent iron (nZVI) was added to compost during the maturation stage to remove ARGs. After adding 1 g/kg of nZVI, the abundance of total intracellular and total extracellular ARGs was decreased by 97.62% and 99.60%, and that of total intracellular and total extracellular mobile genetic elements (MGEs) was decreased by 92.39% and 99.31%, respectively. A Mantel test and network analysis indicated that the reduction in potential host bacteria and intI1 after nZVI treatment promoted the removal of intracellular and extracellular ARGs. The addition of nZVI during composting reduced the horizontal transfer of ARGs and improve the total nitrogen and germination index of compost, allowing it to meet the requirements for organic fertilizers.
Collapse
Affiliation(s)
- Shizheng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Hualing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Zhiyin Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Si Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Zhen Cao
- Wen's Foodstuff Group Co., Ltd., Yunfu, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, Foshan, China
| | - Ziyu Liu
- Jinnuo Biotech Co.Ltd., Beijing, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China.
| |
Collapse
|
49
|
Liu S, Xu Q, Lou S, Tu J, Yin W, Li X, Jin Y, Radnaeva LD, Nikitina E, Makhinov AN, Araruna JT, Fedorova IV. Spatiotemporal distributions of sulfonamide and tetracycline resistance genes and microbial communities in the coastal areas of the Yangtze River Estuary. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115025. [PMID: 37216861 DOI: 10.1016/j.ecoenv.2023.115025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
In this paper, water and sediments were sampled at eight monitoring stations in the coastal areas of the Yangtze River Estuary in summer and autumn 2021. Two sulfonamide resistance genes (sul1 and sul2), six tetracycline resistance genes (tetM, tetC, tetX, tetA, tetO, and tetQ), one integrase gene (intI1), 16 S rRNA genes, and microbial communities were examined and analyzed. Most resistance genes showed relatively higher abundance in summer and lower abundance in autumn. One-way analysis of variance (ANOVA) showed significant seasonal variation of some ARGs (7 ARGs in water and 6 ARGs in sediment). River runoff and WWTPs are proven to be the major sources of resistance genes along the Yangtze River Estuary. Significant and positive correlations between intI1 and other ARGs were found in water samples (P < 0.05), implying that intI1 may influence the spread and propagation of resistance genes in aquatic environments. Proteobacteria was the dominant phylum along the Yangtze River Estuary, with an average proportion of 41.7%. Redundancy analysis indicated that the ARGs were greatly affected by temperature, dissolved oxygen, and pH in estuarine environments. Network analysis showed that Proteobacteria and Cyanobacteria were the potential host phyla for ARGs in the coastal areas of the Yangtze River Estuary.
Collapse
Affiliation(s)
- Shuguang Liu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, China
| | - Qiuhong Xu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
| | - Sha Lou
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, China.
| | - Junbiao Tu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xin Li
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
| | - Yuchen Jin
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
| | - Larisa Dorzhievna Radnaeva
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Republic of Buryatia, Russian Republic, Russia
| | - Elena Nikitina
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Republic of Buryatia, Russian Republic, Russia
| | | | | | - Irina Viktorovna Fedorova
- Institute of Earth Sciences, Saint Petersburg State University, 7-9 Universitetskaya Embankment, St Petersburg, Russia
| |
Collapse
|
50
|
Zhang S, Li T, Hu J, Li K, Liu D, Li H, Wang F, Chen D, Zhang Z, Fan Q, Cui X, Che R. Reforestation substantially changed the soil antibiotic resistome and its relationships with metal resistance genes, mobile genetic elements, and pathogens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118037. [PMID: 37178462 DOI: 10.1016/j.jenvman.2023.118037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Revealing the effects of reforestation on soil antibiotic resistome is essential for assessing ecosystem health, yet related studies remain scarce. Here, to determine the responses of the soil antibiotic resistome to reforestation, 30 pairs of cropland and forest soil samples were collected from southwestern China, a region with high environmental heterogeneity. All the forests had been derived from croplands more than one decade ago. The diversity and abundance of soil antibiotic resistance genes (ARGs), metal resistance genes (MRGs), mobile genetic elements (MGEs), and pathogens were determined by metagenomic sequencing and real-time PCR. The results showed that reforestation significantly increased soil microbial abundance and the contents of Cu, total carbon, total nitrogen, total organic carbon, and ammonium nitrogen. Nevertheless, it decreased the contents of soil Zn, Ba, nitrate nitrogen, and available phosphorus. The main soil ARGs identified in this region were vancomycin, multidrug, and bacitracin resistance genes. Reforestation significantly increased the soil ARG abundance by 62.58%, while it decreased the ARG richness by 16.50%. Reforestation exerted no significant effects on the abundance of heavy metal resistance genes and pathogens, but it doubled the abundance of MGEs. Additionally, reforestation substantially decreased the co-occurrence frequencies of ARGs with MRGs and pathogens. In contrast, the correlation between ARGs and MGEs was greatly enhanced by reforestation. Similarly, the correlations between soil ARG abundance and environmental factors were also strengthened by reforestation. These findings suggest that reforestation can substantially affect the soil antibiotic resistome and exerts overall positive effects on soil health by decreasing ARG richness, providing critical information for assessing the effects of "grain for green" project on soil health.
Collapse
Affiliation(s)
- Song Zhang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ting Li
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinming Hu
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China
| | - Kexin Li
- Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Dong Liu
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Haixia Li
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Fang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danhong Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China
| | - Zejin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuping Fan
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China.
| |
Collapse
|