1
|
Shen Y, Xiao Y, Xie E, Puig-Bargués J, Yao Y, Kuang N, Li Y. Biofouling control strategy through denatured extracellular proteins: An empirical evidence from reclaimed water distribution systems. WATER RESEARCH 2025; 280:123538. [PMID: 40156976 DOI: 10.1016/j.watres.2025.123538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Biofouling remains a significant challenge in water treatment fields, leading to a decline in the hydraulic performance, increased operational costs, and potential health risks. Previous biofouling control strategies primarily focused on the removal of particulates and microorganisms, often neglecting the role of extracellular proteins. Using a reclaimed water distribution system as an example, this study proposes a strategy to inhibit biofouling formation by utilizing urea, a reported protein denaturant with fertilizer functionality. Results indicated that urea significantly slowed the accumulation of biofouling, leading to a 16.4-49.4 % decrease in biofouling weight, an 18.6-55.3 % decrease in extracellular protein content, and a 25.9-45.3 % reduction in extracellular polymer substance (EPS) content. Urea mitigated biofouling through two mechanisms: (1) disrupting protein structures, which convert tightly bound EPS to loosely bound EPS, and (2) downregulating biofilm-forming signaling proteins, thereby inhibiting biofouling formation. In the process, proteins, polysaccharides, and microorganisms exhibited clear mutual promotion relationships. Additionally, urea weakened microbial symbiotic interactions by affecting protein signaling molecules, inhibiting microbial growth and polysaccharide metabolism. The research confirms that denaturing extracellular proteins to mitigate biofouling is a feasible and efficient approach. The findings aim to provide valuable insights for the development of sustainable and effective biofouling cleaning strategies.
Collapse
Affiliation(s)
- Yan Shen
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China
| | - Yang Xiao
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China
| | - En Xie
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China
| | - Jaume Puig-Bargués
- Department of Chemical and Agricultural Engineering and Technology, University of Girona, Girona 17003, Spain
| | - Yuqian Yao
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China
| | - Naikun Kuang
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China
| | - Yunkai Li
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China.
| |
Collapse
|
2
|
Mustafa M, Epelle EI, Macfarlane A, Cusack M, Burns A, Yaseen M. Innovative approaches to greywater micropollutant removal: AI-driven solutions and future outlook. RSC Adv 2025; 15:12125-12151. [PMID: 40264878 PMCID: PMC12013613 DOI: 10.1039/d5ra00489f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Greywater constitutes a significant portion of urban wastewater and is laden with numerous emerging contaminants that have the potential to adversely impact public health and the ecosystem. Understanding greywater's characteristics and measuring the contamination levels is crucial for designing an effective recycling system. However, wastewater treatment is an intricate process involving significant uncertainties, leading to variations in effluent quality, costs, and environmental risks. This review addresses the existing knowledge gap in utilising artificial intelligence (AI) to enhance the laundry greywater recycling process and elucidates the optimal treatment technologies for the most prevalent micropollutants, including microplastics, nutrients, surfactants, synthetic dyes, pharmaceuticals, and organic matter. The development of laundry greywater treatment technologies is also highlighted with a critical discussion of physicochemical, biological, and advanced oxidation processes (AOPs) based on their functions, methods, associated limitations, and future trends. Artificial neural networks (ANN) stand out as the most prevalent and extensively applied AI model in the domain of wastewater treatment. Utilising ANN models mitigates certain limitations inherent in traditional adsorption models, particularly by offering enhanced predictive accuracy under varied operating conditions and multicomponent adsorption systems. Moreover, tremendous success has been recorded with the random forest (RF) model, exhibiting 100% prediction accuracy for both sessile and effluent microbial communities within a bioreactor. The precise prediction or simulation of membrane fouling behaviours using AI techniques is also of paramount importance for understanding fouling mechanisms and formulating efficient strategies to mitigate membrane fouling.
Collapse
Affiliation(s)
- Mohamed Mustafa
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland Paisley PA1 2BE UK
| | - Emmanuel I Epelle
- School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh Edinburgh EH9 3JL UK
| | | | | | | | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland Paisley PA1 2BE UK
| |
Collapse
|
3
|
Peiyuan L, Jinxin C, Tianzhi W, Manuel F, Yujie Z, Khu ST. Control mechanism of Escherichia coli invasion by micro-nano bubbles in drinking water distribution system. ENVIRONMENTAL RESEARCH 2025; 270:120897. [PMID: 39828194 DOI: 10.1016/j.envres.2025.120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Sudden biological contamination in Drinking Water Distribution System (DWDS) significantly threatens the safety of drinking water, with E. coli invasions being particularly hazardous to human health. Traditional disinfection methods (i.e., chlorine, ultraviolet and ozone) provide partial microbial reduction. Micro-nano bubbles (MNBs) offer a promising alternative due to easy preparation, environmental friendliness, and generating ·OH in situ. This study explored the control mechanism of MNBs using different gas sources (i.e., nitrogen, air, oxygen, and ozone) on E. coli invasion in drinking water of the secondary water supply tanks. MNB characteristics, water quality changes, bacterial concentration, and microbial communities were evaluated. Results indicated that E. coli gradually became the dominant bacterium by promoting species interaction and influencing the process of microbial community construction, leading to a 6.25% increase in bacterial counts in water. MNBs generated via a dissolved gas release method exhibited particle sizes ranging from 500 to 800 nm and Zeta of -0.6 to -3.1 mV, and the bubble collapse effect generated a large amount of ·OH (0.11-0.40 mmol/L), which reduced bacterial abundance by 66.53% and microbial community richness, as revealed by decreases in the Chao (10.53%) and ACE (3.75%) indexes. The oxidative stress induced by ·OH inhibited protein transcription and energy production, which damaged DNA repair mechanisms. Thus, the relative abundance of Gammaproteobacteria, including E. coli as the dominant strain, decreased by 47.6%, leading to a balanced microbial community. Additionally, MNBs showed a complete reduction of bacteria, such as Caldisericia and Fusobacteria, thereby improving the drinking water safety and biological stability. This study highlights the potential of MNBs to address sudden exogenous biological pollution in DWDS, providing critical theoretical support to ensure the safety of drinking water quality.
Collapse
Affiliation(s)
- Luo Peiyuan
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Chen Jinxin
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Wang Tianzhi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Key Laboratory of Pollution Prevention- Control and Carbon Sink Along Land-sea Waters, Tianjin, 300350, China.
| | - Fiallos Manuel
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhao Yujie
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Soon-Thiam Khu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
4
|
Xiao Y, Liu H, Sun C, Wang D, Li L, Shao L, Hu J. Research progress of micro-nano bubbles in environmental remediation: Mechanisms, preparation methods, and applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124387. [PMID: 39904246 DOI: 10.1016/j.jenvman.2025.124387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Micro-nano bubble technology, with its unique physicochemical properties, has demonstrated remarkable application potential in the field of environmental remediation. Compared to traditional macro-bubbles, micro-nano bubbles exhibit exceptional stability in solutions due to their minute size, superior mass transfer efficiency, and pronounced interfacial potential characteristics, effectively resisting coalescence and rupture, thereby prolonging their persistence in environmental media. Currently, the pressurized dissolution of micro-nano bubbles stands as an outstanding approach in environmental governance. This process not only fosters the generation of free radicals and the release of energy but also significantly enhances gas transfer efficiency, effectively disrupting the oxidative structures of pollutants and facilitating the transport and transformation of pollutant residues as a carrier. Micro-nano bubbles play pivotal roles across multiple domains of environmental remediation. In the realm of oil contamination, whether it be soil or oily sludge remediation, micro-nano bubbles demonstrate formidable degradation capabilities. In terms of water pollution treatment, ranging from surface water, groundwater, to industrial wastewater, micro-nano bubble technology proves effective, markedly enhancing water purification efficiency. In the field of agricultural remediation, micro-nano bubbles can save water, increase production, clean and decontaminate. In addition, it also plays an important role in the fields of material modification and membrane fouling remediation. Finally, the economic benefits of micro-nano bubbles and the existing research gaps are further analyzed, and its development direction is speculated: pollution control lacks long-term tracking, and there is a lack of attention to the possible secondary pollution caused by catalysts. The behavior and mechanism of micro-nano bubbles under different environmental conditions are further explored. Optimize its preparation and application methods, pay attention to the energy consumption and economic possibilities of the process, and promote its application in actual environmental remediation.
Collapse
Affiliation(s)
- Yatao Xiao
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hailin Liu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chaoxiang Sun
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dezhe Wang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lianhao Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Long Shao
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianjun Hu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Luo P, Wang T, Lin F, Luo A, Fiallos M, Ahmed AKA, Khu ST. Promoting strategies for biological stability in drinking water distribution system from the perspective of micro-nano bubbles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176615. [PMID: 39349192 DOI: 10.1016/j.scitotenv.2024.176615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Microorganisms thriving in drinking water distribution system (DWDS) reduces biological stability of water, causing numerous threats to residents' drinking water safety. Traditional disinfection methods have intrinsic drawbacks, including microbial reactivation and byproduct formation, leading to waterborne diseases. Thus, effective disinfection techniques are required to ensure the microorganism's inactivation and enhance biological stability. Micro-nano bubbles (MNB) provide a promising result to these issues. This study simulates the hydraulic conditions of the tank of DWDS to investigate the enhancement of biological stability in the tank using MNBs with distinct gas sources. The analysis focused on water quality characteristics, biological stability indicators, and microbial community composition. The results showed that the dissolved gas method could generate abundant bubbles with a particle size below 1000 nm, with a concentration exceeding 106/mL in water. The particle size and Zeta potential of bubbles were crucial factors influencing in situ the ·OH generation; hence, the ·OH concentration was highly sensitive to changes in bubble size. In addition, MNBs inhibited the growth of target bacteria in water, degraded organic matter, and improved the biological stability of drinking water, reaching significant degradation rates for biodegradable dissolved organic carbon (42.74 %), assimilable organic carbon (49.49 %), and total bacteria (51.32 %). MNBs directly degraded organic matter in water by ·OH generation in situ, reducing the microbial nutrient source, thereby inhibiting microbial metabolism and activity, which induced optimum disinfection effects on Proteobacteria, Cyanobacteria, and Planctomycetota in water. In particular, the proposed experiment achieved a 100 % disinfection rate for Acinetobacter in Proteobacteria, disrupting metabolic intermediate functions with the microbial community after MNB treatment. Therefore, this study has demonstrated the potential of MNBs to enhance the biological stability of drinking water, improve water quality, and ensure residents' water health, providing valuable technical support for drinking water safety.
Collapse
Affiliation(s)
- Peiyuan Luo
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Tianzhi Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China; Tianjin key Laboratory of Pollution Prevention-Control and Carbon Sink Along Land-Sea Waters, Tianjin 300350, China.
| | - Fawei Lin
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Aibao Luo
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Manuel Fiallos
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Ahmed Khaled Abdella Ahmed
- Sanitary and Environmental Engineering, Civil Engineering Department, Faculty of Engineering, Sohag University, Sohag, Egypt
| | - Soon-Thiam Khu
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China; Engineering Research Center of City Intelligence and Digital Governance, Ministry of Education of the People's Republic of China, Tianjin 300350, China
| |
Collapse
|
6
|
Guo P, Wang T, Wang J, Niu J, Peng C, Shan J, Zhang Y, Huang H, Chen J. Role of polylactic acid microplastics during anaerobic co-digestion of cow manure and Chinese cabbage waste enhanced by nanobubble. CHEMOSPHERE 2024; 367:143639. [PMID: 39490760 DOI: 10.1016/j.chemosphere.2024.143639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
With the increasing use of plastic products globally, environmental pollution by plastic waste is becoming increasingly problematic. This study investigated the impacts of two types of polylactic acid microplastics, clear microplastics and aluminised film microplastics, on methane yield, microbial community, and volatile fatty acid accumulation during anaerobic co-digestion of cow manure and Chinese cabbage waste under different temperature conditions. The influence of the addition of air nanobubbles on microplastic degradation in the anaerobic digestion system we also examined. The results revealed that under thermophilic conditions, clear and aluminised film microplastics increased the methane yield, with the latter resulting in greater improvement. Conversely, under mesophilic conditions, the presence of microplastics reduced the methane yield, but the addition of air-nanobubble partially mitigated this effect. Microplastics also affected the microbial community, with specific species showing correlations with methane yield. Methanothermobacter, which is linked to lactic acid conversion, was positively correlated with methane yield, whereas Methanomassiliicoccus levels increased in the presence of microplastics, particularly in the inhibited state of the digester. These results suggest that, under thermophilic conditions, microplastics may increase the cumulative methane yield by facilitating the degradation of lactic acid monomers. Furthermore, the aluminised film on microplastics could serve as an electrically conductive material during anaerobic digestion, potentially increasing the methane yield.
Collapse
Affiliation(s)
- Peilin Guo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Tianfeng Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Jie Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jiazi Niu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Cheng Peng
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jiabei Shan
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yu Zhang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Haizhou Huang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jixiang Chen
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
7
|
Xiao Y, Zhangzhong L, Tan S, Song P, Zheng W, Li Y. Effect of nanobubble concentrations on fouling control capacity in biogas slurry wastewater distribution systems. BIORESOURCE TECHNOLOGY 2024; 396:130455. [PMID: 38360221 DOI: 10.1016/j.biortech.2024.130455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Nanobubble (NB) represents a promising practice for mitigating fouling in biogas slurry distribution systems. However, its anti-fouling effectiveness and optimal use dosage are unknown. This study investigated the NB anti-fouling capacity at six concentrations (0 %-100 %, denoting the ratio of maximum NB-infused water; particle concentrations in 0 % and 100 % ratios were 1.08 × 107 and 1.19 × 109 particles mL-1, respectively). Results showed that NB effectively mitigated multiple fouling at 50 %-100 % ratios, whereas low NB concentration exacerbated fouling. NB functioned both as an activator and a bactericide for microorganisms, significantly promoting biofouling at 5 %-25 %, and inhibiting biofouling at 50 %-100 %. Owing to an enhanced biofilm biomineralization ability, low NB concentration aggravated precipitate fouling, whereas high NB doses effectively mitigated precipitates. Additionally, higher NB concentrations demonstrated superior control efficiency against particulate fouling. This study contributes insights into NB effectiveness in controlling various fouling types within wastewater distribution systems.
Collapse
Affiliation(s)
- Yang Xiao
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Lili Zhangzhong
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Siyuan Tan
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China; Institute of Modern Agriculture on Yellow River Delta, Shandong Academy of Agricultural Sciences, Dongying 257000, China
| | - Wengang Zheng
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China; Institute of Modern Agriculture on Yellow River Delta, Shandong Academy of Agricultural Sciences, Dongying 257000, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Liu Z, Xiao Y, Muhammad T, Zhou Y, Hou P, Zha Y, Yu R, Qu S, Ma C, Li Y. Combination of magnetic field and ultraviolet for fouling control in saline wastewater distribution systems. WATER RESEARCH 2024; 251:121118. [PMID: 38219689 DOI: 10.1016/j.watres.2024.121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Fouling is a significant challenge for recycling and reusing saline wastewaters for industrial, agricultural or municipal applications. In this study, we propose a novel approach of magnetic field (MaF) and ultraviolet (UV) combined application for fouling mitigation. Results showed, combination of MaF and UV (MaF-UV) significantly decreased the content of biofouling and reduced the complexity of microbial networks, compared to UV and MaF alone treatments. This was due to MaF as pretreatment effectively reduced the water turbidity, improve the influent water quality of UV disinfection and increases UV transmittance, eliminating the adverse impacts of UV scattering and shielding, hence increased the inactivation effectiveness of UV disinfection process. MaF assisted UV also reduced the abundance of UV-resistant bacteria and inhibited the risk of bacterial photoreactivation and dark repair. Meanwhile, MaF-UV drastically reduced the contents of precipitates and particulate fouling by accelerating the transformation rate of CaCO3 crystal from compact calcite to loosen hydrated amorphous CaCO3, and enhancing the flocculation process. These findings demonstrated that MaF-UV is an effective anti-fouling strategy, and provide insights for sustainable application of saline wastewaters.
Collapse
Affiliation(s)
- Zeyuan Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China; Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot 010070, China
| | - Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China
| | - Tahir Muhammad
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yunpeng Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China
| | - Peng Hou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China
| | - Yingdong Zha
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot 010070, China
| | - Shen Qu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot 010070, China
| | - Changjian Ma
- State Key Laboratory of Nutrient Use and Management, National Agricultural Experimental Station for Soil Quality (Jinan), Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China.
| |
Collapse
|
9
|
Bu F, Liu M, Xie Z, Chen X, Li G, Wang X. Targeted Anti-Biofilm Therapy: Dissecting Targets in the Biofilm Life Cycle. Pharmaceuticals (Basel) 2022; 15:1253. [PMID: 36297365 PMCID: PMC9611117 DOI: 10.3390/ph15101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/13/2024] Open
Abstract
Biofilm is a crucial virulence factor for microorganisms that causes chronic infection. After biofilm formation, the bacteria present improve drug tolerance and multifactorial defense mechanisms, which impose significant challenges for the use of antimicrobials. This indicates the urgent need for new targeted technologies and emerging therapeutic strategies. In this review, we focus on the current biofilm-targeting strategies and those under development, including targeting persistent cells, quorum quenching, and phage therapy. We emphasize biofilm-targeting technologies that are supported by blocking the biofilm life cycle, providing a theoretical basis for design of targeting technology that disrupts the biofilm and promotes practical application of antibacterial materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Yaparatne S, Doherty ZE, Magdaleno AL, Matula EE, MacRae JD, Garcia-Segura S, Apul OG. Effect of air nanobubbles on oxygen transfer, oxygen uptake, and diversity of aerobic microbial consortium in activated sludge reactors. BIORESOURCE TECHNOLOGY 2022; 351:127090. [PMID: 35358670 DOI: 10.1016/j.biortech.2022.127090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Nanobubbles have the potential to curtail the loss of oxygen during activated sludge aeration due to their extensive surface areas and lack of buoyance in solution. In this study, nanobubble aeration was explored as a novel approach to enhance aerobic activated sludge treatment and benchmarked against coarse bubble aeration at the lab scale. Nanobubble aerated activated sludge reactors achieved greater dissolved oxygen levels at faster rates. Higher soluble chemical oxygen demand removal by 10% was observed when compared to coarse bubble aeration with the same amount of air. The activated sludge produced compact sludge yielding easier waste sludge for subsequent sludge handling. The samples showed fewer filamentous bacteria with a lower relative abundance of floc forming Corynebacterium, Pseudomonas, and Zoogloea in the sludge. The microbiome of the nanobubble-treated activated sludge showed significant shifts in the abundance of community members at the genus level and significantly lower alpha and beta diversities.
Collapse
Affiliation(s)
- Sudheera Yaparatne
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Zachary E Doherty
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Andre L Magdaleno
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Emily E Matula
- NASA Johnson Space Center, Houston TX 77058, United States
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
11
|
Movahed SMA, Sarmah AK. Global trends and characteristics of nano- and micro-bubbles research in environmental engineering over the past two decades: A scientometric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147362. [PMID: 33957600 DOI: 10.1016/j.scitotenv.2021.147362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The present study has two primary goals, the first goal is to investigate a bibliometric analysis and assess the trends to evaluate the global scientific production of microbubbles and nanobubbles from 2000 to 2020. The aim is to elucidate the cornucopia of benefits the two technologies (micro and nanobubbles) can offer in environmental sciences and environmental amelioration such as wastewater treatment, seed germination, separation processes, etc. The second goal is to explicate the reason behind every chart and trend through environmental engineering perspectives, which can confer value to each analysis. The data was acquired from the Web of Science and was delineated by VOS viewer software and GraphPad Prism. Considering 1034 publications in the area of micro-and nanobubbles, this study was conducted on four major aspects, including publication growth trend, countries contribution assessment, categories, journals and productivity, and keywords co-occurrence network analysis. This article revealed a notable growth in microbubbles and nanobubbles-related publications and a general growth trend in published articles in a 20-year period. China had the most significant collaboration with other countries, followed by the USA and Japan. The most dominant categories for microbubbles were environmental sciences and environmental engineering comprising 22.5% of the total publications, while multidisciplinary subjects such as nanotechnology and nanosciences (8%) were among the dominant categories for nanobubbles. Keyword's analysis results showed that microbubbles had reached the apex since their discovery. Consequently, they are being used mostly in water/wastewater treatment or environmental improvement. On the other hand, nanobubbles are still in their infancy, and their pervasive use is yet to be fully materialized. Most of the publications are still striving to understand the nature of nanobubbles and their stability; however, a critical analysis showed that during the past two years, the trend of using nanobubbles as a cost-effective and environmentally friendly approach has already begun.
Collapse
Affiliation(s)
- Saman Moftakhari Anasori Movahed
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
12
|
Song P, Xiao Y, Ren ZJ, Brooks JP, Lu L, Zhou B, Zhou Y, Freguia S, Liu Z, Zhang N, Li Y. Electrochemical biofilm control by reconstructing microbial community in agricultural water distribution systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123616. [PMID: 32781280 DOI: 10.1016/j.jhazmat.2020.123616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 05/14/2023]
Abstract
Biofilm causes considerable technical challenges in agricultural water distribution systems. Electrochemical treatment (ECT) is a potential technique for controlling biofilm in the systems. Given the limited information on how ECT performance changes of irrigation systems and microbial biofilm community shifts. In this study, the effect of anti-biofilm was assessed. Illumina Miseq high-throughput sequencing, combined with molecular ecological network analysis, were applied to detect the effects of ECT on attached biofilm microbial communities. We found that ECT effectively mitigated biofilm formation with the fixed-biofilm biomass reduced by 37.5 %-79.9 %. ECT significantly shifted the bacterial community structures in the biofilm, reduced the communities' diversity, and changed the dominant species. Molecular ecological network analysis showed that the complexity and size of bacterial networks were destabilized under ECT and decreased the interactions among bacterial species. The reconstruction in bacterial community and networks were responsible for the decline in extracellular polymer substances and biofilm biomass. However, chlorine-resistant bacteria were found increased after ECT, and higher relative abundance and low biofilm removal was identified in continuous ECT as compared with intermittent ECT. These results aimed to highlight the opportunity for biofouling mitigation by ECT for irrigation systems, and reveal the potential anti-biofilm microbial mechanisms of ECT.
Collapse
Affiliation(s)
- Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States
| | - John P Brooks
- Genetics and Sustainable Agricultural Research Unit, United States Department of Agriculture, Starkville, MS 39762, USA
| | - Lu Lu
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunpeng Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Stefano Freguia
- Advanced Water Management Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhidan Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Ning Zhang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
13
|
Tan B, Li Y, Liu T, Tan X, He Y, You X, Leong KH, Liu C, Li L. Response of Plant Rhizosphere Microenvironment to Water Management in Soil- and Substrate-Based Controlled Environment Agriculture (CEA) Systems: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:691651. [PMID: 34456936 PMCID: PMC8385539 DOI: 10.3389/fpls.2021.691651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/16/2021] [Indexed: 05/06/2023]
Abstract
As natural agroecology deteriorates, controlled environment agriculture (CEA) systems become the backup support for coping with future resource consumption and potential food crises. Compared with natural agroecology, most of the environmental parameters of the CEA system rely on manual management. Such a system is dependent and fragile and prone to degradation, which includes harmful bacteria proliferation and productivity decline. Proper water management is significant for constructing a stabilized rhizosphere microenvironment. It has been proved that water is an efficient tool for changing the availability of nutrients, plant physiological processes, and microbial communities within. However, for CEA issues, relevant research is lacking at present. The article reviews the interactive mechanism between water management and rhizosphere microenvironments from the perspectives of physicochemical properties, physiological processes, and microbiology in CEA systems. We presented a synthesis of relevant research on water-root-microbes interplay, which aimed to provide detailed references to the conceptualization, research, diagnosis, and troubleshooting for CEA systems, and attempted to give suggestions for the construction of a high-tech artificial agricultural ecology.
Collapse
Affiliation(s)
- Bo Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Yihan Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Tiegang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Xiao Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Yuxin He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Xueji You
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
- *Correspondence: Chao Liu,
| | - Longguo Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
- Longguo Li,
| |
Collapse
|