1
|
England-Mason G, MacEachern SJ, Amador K, Soomro MH, Reardon AJF, MacDonald AM, Kinniburgh DW, Letourneau N, Giesbrecht GF, Martin JW, Forkert ND, Dewey D. Using machine learning to investigate the influence of the prenatal chemical exposome on neurodevelopment of young children. Neurotoxicology 2025; 108:218-230. [PMID: 40222479 DOI: 10.1016/j.neuro.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Research investigating the prenatal chemical exposome and child neurodevelopment has typically focused on a limited number of chemical exposures and controlled for sociodemographic factors and maternal mental health. Emerging machine learning approaches may facilitate more comprehensive examinations of the contributions of chemical exposures, sociodemographic factors, and maternal mental health to child neurodevelopment. A machine learning pipeline that utilized feature selection and ranking was applied to investigate which common prenatal chemical exposures and sociodemographic factors best predict neurodevelopmental outcomes in young children. Data from 406 maternal-child pairs enrolled in the APrON study were used. Maternal concentrations of 32 environmental chemical exposures (i.e., phthalates, bisphenols, per- and polyfluoroalkyl substances (PFAS), metals, trace elements) measured during pregnancy and 11 sociodemographic factors, as well as measures of maternal mental health and urinary creatinine were entered into the machine learning pipeline. The pipeline, which consisted of a RReliefF variable selection algorithm and support vector machine regression model, was used to identify and rank the best subset of variables predictive of cognitive, language, and motor development outcomes on the Bayley Scales of Infant Development-Third Edition (Bayley-III) at 2 years of age. Bayley-III cognitive scores were best predicted using 29 variables, resulting in a correlation coefficient of r = 0.27 (R2=0.07). For language outcomes, 45 variables led to the best result (r = 0.30; R2=0.09), whereas for motor outcomes 33 variables led to the best result (r = 0.28, R2=0.09). Environmental chemicals, sociodemographic factors, and maternal mental health were found to be highly ranked predictors of cognitive, language, and motor development in young children. Our findings demonstrate the potential of machine learning approaches to identify and determine the relative importance of different predictors of child neurodevelopmental outcomes. Future developmental neurotoxicology research should consider the prenatal chemical exposome as well as sample characteristics such as sociodemographic factors and maternal mental health as important predictors of child neurodevelopment.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah J MacEachern
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta
| | - Kimberly Amador
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Munawar Hussain Soomro
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony J F Reardon
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta; Department of Community Health Sciences, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Li T, Tao S, Jiang T, Che W, Zou L, Yang Y, Tao F, Wu X. Moderating effects of insomnia on the association between urinary phthalate metabolites and depressive symptoms in Chinese college students: focus on gender differences. BMC Public Health 2025; 25:802. [PMID: 40016718 PMCID: PMC11869618 DOI: 10.1186/s12889-025-21986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVES To investigate the rates of depressive symptoms in college students, explore the relationship between urinary phthalate metabolites and depressive symptoms and their gender differences, and further explore the moderating role of insomnia in this association. METHODS A total of 1 179 college students were recruited from 2 universities in Hefei and Shangrao cities from April to May 2019. The depressive symptoms and insomnia of college students were investigated by the Patient Health Questionnaire 9 and Insomnia Severity Index. The high-performance liquid chromatography-tandem mass spectrometry was adapted to determine the concentration of urinary phthalate metabolites. The generalized linear model was used to analyze the relationship of phthalate metabolites with depressive symptoms. Moderating analysis was used to examine whether insomnia moderated the relationship of phthalate metabolites with depressive symptoms. RESULTS The rates of mild depression, and moderate depression and above in college students were 31.9% and 9.2%, respectively. The phthalate metabolites exhibited a median and mean concentration spanning from 2.98 ∼ 156.55 ng/mL and 6.12 ∼ 205.53 ng/mL. The generalized linear model results showed that monobutyl phthalate (MBP) (β = 1.160, 95%CI: 0.423 ∼ 1.896) and low molecular weight phthalate (LMWP) (β = 1.230, 95%CI: 0.348 ∼ 2.113) were positively correlated with depressive symptoms, and MBP (β = 1.320, 95%CI: 0.453 ∼ 2.187) and LMWP (β = 1.396, 95%CI: 0.351 ∼ 2.440) were positively correlated with depressive symptoms only in female college students after stratified by gender. Furthermore, insomnia has a positive moderating role between MBP, LMWP, and depressive symptoms and has a sex-based difference. CONCLUSIONS This study suggests that there is a positive association of phthalate metabolites with depressive symptoms among Chinese college students, as well as insomnia plays a positive moderating role in this association.
Collapse
Affiliation(s)
- Tingting Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuman Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tangjun Jiang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wanyu Che
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Liwei Zou
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yajuan Yang
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, 230601, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
England-Mason G, Reardon AJF, Reynolds JE, Grohs MN, MacDonald AM, Kinniburgh DW, Martin JW, Lebel C, Dewey D. Maternal concentrations of perfluoroalkyl sulfonates and alterations in white matter microstructure in the developing brains of young children. ENVIRONMENTAL RESEARCH 2025; 267:120638. [PMID: 39681179 DOI: 10.1016/j.envres.2024.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Maternal exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to child neurodevelopmental difficulties. Neuroimaging research has linked these neurodevelopmental difficulties to white matter microstructure alterations, but the effects of PFAS on children's white matter microstructure remains unclear. We investigated associations between maternal blood concentrations of six common perfluoroalkyl sulfonates and white matter alterations in young children using longitudinal neuroimaging data. METHODS This study included 84 maternal-child pairs from a Canadian pregnancy cohort. Maternal second trimester blood concentrations of perfluorohexanesulfonate (PFHxS) and five perfluorooctane sulfonate (PFOS) isomers were quantified. Children underwent magnetic resonance imaging scans between ages two and six (279 scans total). Adjusted linear mixed models investigated associations between each exposure and white matter fractional anisotropy (FA) and mean diffusivity (MD). RESULTS Higher maternal concentrations of perfluoroalkyl sulfonates were associated with higher MD and lower FA in the body and splenium of the corpus callosum of young children. Multiple sex-specific associations were found. In males, PFHxS was negatively associated with FA in the superior longitudinal fasciculus, while PFOS isomers were positively associated with MD in the inferior longitudinal fasciculus (ILF). In females, PFOS isomers were positively associated with FA in the pyramidal fibers and MD in the fornix, but negatively associated with MD in the ILF. CONCLUSION Maternal exposure to perfluoroalkyl sulfonates may alter sex-specific white matter development in young children, potentially contributing to neurodevelopmental difficulties. Larger studies are needed to replicate these findings and examine the neurotoxicity of these chemicals.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony J F Reardon
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta, Canada
| | - Jess E Reynolds
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Melody N Grohs
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Catherine Lebel
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Choi JW, Bennett DH, Calafat AM, Tancredi DJ, Miller M, Schmidt RJ, Shin HM. Gestational phthalate exposure and behavioral problems in preschool-aged children with increased likelihood of autism spectrum disorder. Int J Hyg Environ Health 2025; 263:114483. [PMID: 39499998 DOI: 10.1016/j.ijheh.2024.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Experimental studies have shown associations between gestational phthalate exposure and behavioral problems among offspring; however, epidemiological evidence is still mixed. This study aims to investigate whether gestational phthalate exposure is associated with behavioral problems in preschool-aged children. METHODS Participants include 178 mother-child pairs from MARBLES (Markers of Autism Risk in Babies - Learning Early Signs), a cohort with high familial likelihood of autism spectrum disorder (ASD). We quantified 14 phthalate metabolites in multiple maternal urine samples collected during the 2nd and 3rd trimesters. Preschool behavior problems were assessed using the Child Behavioral Checklist (CBCL), a standardized instrument for evaluating behavior problems of children aged 1.5-5 years. To examine associations of CBCL scores with both individual phthalate biomarker concentrations and their mixture, we used negative binomial regression and weighted quantile sum regression. RESULTS Overall, maternal phthalate biomarker concentrations were not associated with child behavior problems. Monoisobutyl phthalate (MiBP) concentrations were inversely associated with child anxious/depressed symptoms and somatic complaints. Mono-hydroxy-isobutyl phthalate (MHiBP) and monobenzyl phthalate (MBzP) were also inversely associated with somatic complaints. When assessing trimester-specific associations, more behavior problems were associated with the 2nd trimester biomarker concentrations: mono(3-carboxypropyl) phthalate (MCPP) and monocarboxyisononyl phthalate (MCNP) were positively associated with somatic complaints. All associations became non-significant after false discovery rate correction. No association between a mixture of phthalates and CBCL scores was found. CONCLUSIONS Our study observed no clear evidence of gestational phthalate exposure on child behavior problems. However, our findings based on the biomonitoring assessment of multiple samples per participant could improve our understanding of gestational phthalate exposure in association with behavior problems in preschool-aged children.
Collapse
Affiliation(s)
- Jeong Weon Choi
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Daniel J Tancredi
- Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Meghan Miller
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA; MIND Institute, Sacramento, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California, Davis, CA, USA; MIND Institute, Sacramento, CA, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
5
|
Irvine N, Bell RC, Subhan FB, Field CJ, Liu J, MacDonald AM, Kinniburgh DW, Martin JW, Dewey D, England-Mason G. Maternal pre-pregnancy BMI influences the associations between bisphenol and phthalate exposures and maternal weight changes and fat accumulation. ENVIRONMENTAL RESEARCH 2024; 257:119276. [PMID: 38830392 DOI: 10.1016/j.envres.2024.119276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Bisphenols and phthalates are two classes of endocrine-disrupting chemicals (EDCs) thought to influence weight and adiposity. Limited research has investigated their influence on maternal weight changes, and no prior work has examined maternal fat mass. We examined the associations between exposure to these chemicals during pregnancy and multiple maternal weight and fat mass outcomes. METHODS This study included a sample of 318 women enrolled in a Canadian prospective pregnancy cohort. Second trimester urinary concentrations of 2 bisphenols and 12 phthalate metabolites were quantified. Self-reported and measured maternal weights and measured skinfold thicknesses were used to calculate gestational weight gain, 3-months and 3- to 5-years postpartum weight retention, late pregnancy fat mass gain, total postpartum fat mass loss, and late postpartum fat mass retention. Adjusted robust regressions examined associations between chemicals and outcomes in the entire study population and sub-groups stratified by pre-pregnancy body mass index (BMI). Bayesian kernel machine regression examined chemical mixture effects. RESULTS Among women with underweight or normal pre-pregnancy BMIs, MBzP was negatively associated with weight retention at 3- to 5-years postpartum (B = -0.04, 95%CI: -0.07, -0.01). Among women with overweight or obese pre-pregnancy BMIs, MEHP and MMP were positively associated with weight retention at 3-months and 3- to 5-years postpartum, respectively (B's = 0.12 to 0.63, 95%CIs: 0.02, 1.07). DEHP metabolites and MCNP were positively associated with late pregnancy fat mass gain and late postpartum fat mass retention (B's = 0.04 to 0.18, 95%CIs: 0.001, 0.32). Further, the mixture of EDCs was positively associated with late pregnancy fat mass gain. CONCLUSION In this cohort, pre-pregnancy BMI was a key determinant of the associations between second trimester exposure to bisphenols and phthalates and maternal weight changes and fat accumulation. Investigations of underlying physiological mechanisms, windows of susceptibility, and impacts on maternal and infant health are needed.
Collapse
Affiliation(s)
- Nathalie Irvine
- Bachelor of Health Sciences Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Fatheema B Subhan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Department of Nutrition and Food Science, California State Polytechnic University, Pomona, California, United States
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary. Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary. Alberta, Canada.
| |
Collapse
|
6
|
Salamanca-Fernández E, Espín-Moreno L, Olivas-Martínez A, Pérez-Cantero A, Martín-Rodríguez JL, Poyatos RM, Barbone F, Rosolen V, Mariuz M, Ronfani L, Palkovičová Murínová Ľ, Fábelová L, Szigeti T, Kakucs R, Sakhi AK, Haug LS, Lindeman B, Snoj Tratnik J, Kosjek T, Jacobs G, Voorspoels S, Jurdáková H, Górová R, Petrovičová I, Kolena B, Esteban M, Pedraza-Díaz S, Kolossa-Gehring M, Remy S, Govarts E, Schoeters G, Fernández MF, Mustieles V. Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies. TOXICS 2024; 12:642. [PMID: 39330570 PMCID: PMC11436069 DOI: 10.3390/toxics12090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Based on toxicological evidence, children's exposure to phthalates may contribute to altered neurodevelopment and abnormal regulation of brain-derived neurotrophic factor (BDNF). We analyzed data from five aligned studies of the Human Biomonitoring for Europe (HBM4EU) project. Ten phthalate metabolites and protein BDNF levels were measured in the urine samples of 1148 children aged 6-12 years from Italy (NACII-IT cohort), Slovakia (PCB-SK cohort), Hungary (InAirQ-HU cohort) and Norway (NEBII-NO). Serum BDNF was also available in 124 Slovenian children (CRP-SLO cohort). Children's total, externalizing and internalizing behavioral problems were assessed using the Child Behavior Checklist at 7 years of age (only available in the NACII-IT cohort). Adjusted linear and negative binomial regression models were fitted, together with weighted quantile sum (WQS) regression models to assess phthalate mixture associations. Results showed that, in boys but not girls of the NACII-IT cohort, each natural-log-unit increase in mono-n-butyl phthalate (MnBP) and Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) was cross-sectionally associated with higher externalizing problems [incidence rate ratio (IRR): 1.20; 95% CI: 1.02, 1.42 and 1.26; 95% CI: 1.03, 1.55, respectively]. A suggestive mixture association with externalizing problems was also observed per each tertile mixture increase in the whole population (WQS-IRR = 1.15; 95% CI: 0.97, 1.36) and boys (IRR = 1.20; 95% CI: 0.96, 1.49). In NACII-IT, PCB-SK, InAirQ-HU and NEBII-NO cohorts together, urinary phthalate metabolites were strongly associated with higher urinary BDNF levels, with WQS regression confirming a mixture association in the whole population (percent change (PC) = 25.9%; 95% CI: 17.6, 34.7), in girls (PC = 18.6%; 95% CI: 7.92, 30.5) and mainly among boys (PC = 36.0%; 95% CI: 24.3, 48.9). Among CRP-SLO boys, each natural-log-unit increase in ∑DINCH concentration was associated with lower serum BDNF levels (PC: -8.8%; 95% CI: -16.7, -0.3). In the NACII-IT cohort, each natural-log-unit increase in urinary BDNF levels predicted worse internalizing scores among all children (IRR: 1.15; 95% CI: 1.00, 1.32). Results suggest that (1) children's exposure to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) metabolites is associated with more externalizing problems in boys, (2) higher exposure to DINCH may associate with lower systemic BDNF levels in boys, (3) higher phthalate exposure is associated with higher urinary BDNF concentrations (although caution is needed since the possibility of a "urine concentration bias" that could also explain these associations in noncausal terms was identified) and (4) higher urinary BDNF concentrations may predict internalizing problems. Given this is the first study to examine the relationship between phthalate metabolite exposure and BDNF biomarkers, future studies are needed to validate the observed associations.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | | | | | - Ainhoa Pérez-Cantero
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
| | - José L Martín-Rodríguez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Rafael M Poyatos
- Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa di Risparmio 10, 34121 Trieste, Italy
| | - Marika Mariuz
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Luca Ronfani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Tamás Szigeti
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Réka Kakucs
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Amrit K Sakhi
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Line S Haug
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | | | - Tina Kosjek
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Griet Jacobs
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Stefan Voorspoels
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Helena Jurdáková
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Renáta Górová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Ida Petrovičová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Branislav Kolena
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Marta Esteban
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - Vicente Mustieles
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| |
Collapse
|
7
|
England-Mason G, Merrill SM, Liu J, Martin JW, MacDonald AM, Kinniburgh DW, Gladish N, MacIsaac JL, Giesbrecht GF, Letourneau N, Kobor MS, Dewey D. Sex-Specific Associations between Prenatal Exposure to Bisphenols and Phthalates and Infant Epigenetic Age Acceleration. EPIGENOMES 2024; 8:31. [PMID: 39189257 PMCID: PMC11348373 DOI: 10.3390/epigenomes8030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
We examined whether prenatal exposure to two classes of endocrine-disrupting chemicals (EDCs) was associated with infant epigenetic age acceleration (EAA), a DNA methylation biomarker of aging. Participants included 224 maternal-infant pairs from a Canadian pregnancy cohort study. Two bisphenols and 12 phthalate metabolites were measured in maternal second trimester urines. Buccal epithelial cell cheek swabs were collected from 3 month old infants and DNA methylation was profiled using the Infinium MethylationEPIC BeadChip. The Pediatric-Buccal-Epigenetic tool was used to estimate EAA. Sex-stratified robust regressions examined individual chemical associations with EAA, and Bayesian kernel machine regression (BKMR) examined chemical mixture effects. Adjusted robust models showed that in female infants, prenatal exposure to total bisphenol A (BPA) was positively associated with EAA (B = 0.72, 95% CI: 0.21, 1.24), and multiple phthalate metabolites were inversely associated with EAA (Bs from -0.36 to -0.66, 95% CIs from -1.28 to -0.02). BKMR showed that prenatal BPA was the most important chemical in the mixture and was positively associated with EAA in both sexes. No overall chemical mixture effects or male-specific associations were noted. These findings indicate that prenatal EDC exposures are associated with sex-specific deviations in biological aging, which may have lasting implications for child health and development.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sarah M. Merrill
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jonathan W. Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
| | - Amy M. MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David W. Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Gladish
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Julia L. MacIsaac
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Gerald F. Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Letourneau
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
8
|
Merrill SM, Letourneau N, Giesbrecht GF, Edwards K, MacIsaac JL, Martin JW, MacDonald AM, Kinniburgh DW, Kobor MS, Dewey D, England-Mason G, The APrON Study Team. Sex-Specific Associations between Prenatal Exposure to Di(2-ethylhexyl) Phthalate, Epigenetic Age Acceleration, and Susceptibility to Early Childhood Upper Respiratory Infections. EPIGENOMES 2024; 8:3. [PMID: 38390895 PMCID: PMC10885049 DOI: 10.3390/epigenomes8010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer that can affect immune system development and susceptibility to infection. Aging processes (measured as epigenetic age acceleration (EAA)) may mediate the immune-related effects of prenatal exposure to DEHP. This study's objective was to examine associations between prenatal DEHP exposure, EAA at three months of age, and the number of upper respiratory infections (URIs) from 12 to 18 months of age using a sample of 69 maternal-child pairs from a Canadian pregnancy cohort. Blood DNA methylation data were generated using the Infinium HumanMethylation450 BeadChip; EAA was estimated using Horvath's pan-tissue clock. Robust regressions examined overall and sex-specific associations. Higher prenatal DEHP exposure (B = 6.52, 95% CI = 1.22, 11.81) and increased EAA (B = 2.98, 95% CI = 1.64, 4.32) independently predicted more URIs. In sex-specific analyses, some similar effects were noted for boys, and EAA mediated the association between prenatal DEHP exposure and URIs. In girls, higher prenatal DEHP exposure was associated with decreased EAA, and no mediation was noted. Higher prenatal DEHP exposure may be associated with increased susceptibility to early childhood URIs, particularly in boys, and aging biomarkers such as EAA may be a biological mechanism. Larger cohort studies examining the potential developmental immunotoxicity of phthalates are needed.
Collapse
Affiliation(s)
- Sarah M Merrill
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Nicole Letourneau
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Karlie Edwards
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael S Kobor
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - The APrON Study Team
- University of Calgary, Calgary, AB T2N 1N4, Canada
- University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
9
|
Barrett ES, Day DB, Szpiro A, Peng J, Loftus CT, Ziausyte U, Kannan K, Trasande L, Zhao Q, Nguyen RHN, Swan S, Karr CJ, LeWinn KZ, Sathyanarayana S, Bush NR. Prenatal exposures to phthalates and life events stressors in relation to child behavior at age 4-6: A combined cohort analysis. ENVIRONMENT INTERNATIONAL 2024; 183:108425. [PMID: 38199129 PMCID: PMC10863744 DOI: 10.1016/j.envint.2024.108425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Prenatal exposures to chemical and psychosocial stressors can impact the developing brain, but few studies have examined their joint effects. We examined associations between prenatal phthalate exposures and child behavior, hypothesizing that prenatal stressful life events (PSLEs) may exacerbate risks. To do so, we harmonized data from three U.S. pregnancy cohorts comprising the ECHO-PATHWAYS consortium. Phthalate metabolites were measured in single mid-pregnancy urine samples. When children were ages 4-6 years, mothers completed the Child Behavior Checklist (CBCL), from which a Total Problems score was calculated. Mothers additionally provided recall on their exposure to 14 PSLEs during pregnancy. Primary models examined problem behaviors in relation to: (1) phthalate mixtures calculated through weighted quantile sums regression with permutation test-derived p-values; and (2) joint exposure to phthalate mixtures and PSLEs (counts) using interaction terms. We subsequently refitted models stratified by child sex. Secondarily, we fit linear and logistic regression models examining individual phthalate metabolites. In our main, fully adjusted models (n = 1536 mother-child dyads), we observed some evidence of weak main effects of phthalate mixtures on problem behaviors in the full cohort and stratified by child sex. Interaction models revealed unexpected relationships whereby greater gestational exposure to PSLEs predicted reduced associations between some phthalates (e.g., the metabolites of di-2-ethylhexyl phthalate, di-n-octyl phthalate, di-iso-nonyl phthalate) and problem behaviors, particularly in males. Few associations were observed in females. Additional research is needed to replicate results and examine potential mechanisms.
Collapse
Affiliation(s)
- Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | - Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - James Peng
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Christine T Loftus
- Department of Occupational and Environmental Health, University of Washington, Seattle, WA 98195, USA
| | - Ugne Ziausyte
- Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | | | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Ruby H N Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Shanna Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine J Karr
- Department of Occupational and Environmental Health, University of Washington, Seattle, WA 98195, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98104, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sheela Sathyanarayana
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Occupational and Environmental Health, University of Washington, Seattle, WA 98195, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98104, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Camerota M, Bagley J, McGowan EC, Carter BS, Check J, Dansereau LM, DellaGrotta SA, Helderman JB, Hofheimer JA, Loncar CM, Neal CR, O’Shea TM, Pastyrnak SL, Smith LM, Everson TM, Lester BM. Agreement Between Two Behavioral Rating Scales in Preschoolers Born Very Preterm. J Dev Behav Pediatr 2024; 45:e72-e78. [PMID: 38146850 PMCID: PMC10922403 DOI: 10.1097/dbp.0000000000001238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Broadband parent rating scales are commonly used to assess behavioral problems in children. Multiple rating scales are available, yet agreement between them is not well-understood. The objective of this study was to evaluate agreement between the Behavior Assessment System for Children, Third Edition (BASC-3), and Child Behavior Checklist 1.5 to 5 years (CBCL) in a sample of children born very preterm. METHOD We assessed 73 children born < 30 weeks' gestational age whose caregivers completed the BASC-3 and CBCL at age 4. We examined correlations, within-person differences, and agreement in clinical categorization for all corresponding subscales and composites. RESULTS Comparable subscales on the BASC-3 and CBCL were significantly correlated, albeit to differing magnitudes. Subscales indexing hyperactivity and attention problems were the most comparable across the 2 measures, evidenced by strong correlations and few to no differences in mean T-scores. Composite scores indexing internalizing, externalizing, and total problems were also strongly correlated, and there were no differences in the mean T-scores for externalizing or total problems across measures. Agreement in clinical classifications were weak to moderate, though again, the highest agreement was found for hyperactivity, attention, externalizing, and total problems. CONCLUSION Agreement between BASC-3 and CBCL subscales was weak to moderate, with the exception of subscales related to attention and hyperactivity, as well as composite scores indicating overall behavior problems. Researchers and clinicians should consider these discrepancies when interpreting the results of behavior rating scales with preschool children because conclusions could differ based on the assessment that is used.
Collapse
Affiliation(s)
- Marie Camerota
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Jessica Bagley
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Elisabeth C. McGowan
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Brian S. Carter
- Department of Pediatrics-Neonatology, Children’s Mercy Hospital, Kansas City, MO
| | - Jennifer Check
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC
| | - Lynne M. Dansereau
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Sheri A. DellaGrotta
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | | | - Julie A. Hofheimer
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Cynthia M. Loncar
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Charles R. Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Steven L. Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen DeVos Hospital, Grand Rapids, MI
| | - Lynne M. Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Todd M. Everson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Barry M. Lester
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| |
Collapse
|
11
|
Munk Andreasen S, Frederiksen H, Bilenberg N, Andersson AM, Juul A, Kyhl HB, Kold Jensen T. Maternal concentrations of phthalates and Attention-Deficit Hyperactivity Disorder (ADHD-) related symptoms in children aged 2 to 4 years from Odense child cohort. ENVIRONMENT INTERNATIONAL 2023; 180:108244. [PMID: 37797478 DOI: 10.1016/j.envint.2023.108244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/11/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Phthalates are endocrine disrupting chemicals used in everyday consumer products. Several epidemiological studies have examined the association between prenatal phthalate concentration and Attention-Deficit Hyperactivity Disorder (ADHD) in offspring, but the findings have been inconclusive. OBJECTIVES To investigate the association between maternal urinary concentrations of phthalate metabolites during pregnancy and ADHD related symptoms in children at 2 to 4 years in a large prospective cohort. METHODS In the Odense Child Cohort from Denmark were women recruited in early pregnancy from 2010 to 2012. Phthalate concentrations were measured in urine samples collected in 3rd trimester and separated into low and high weight phthalates. Parents filled in the Child Behavior Checklist for ages 1.5 to 5 years (CBCL/1½-5), including a 6-item ADHD symptom scale at children aged 2 to 4 years. Data were analysed by use of adjusted negative binomial regression. RESULTS A total of 658 mother-child pairs were included. Urinary phthalate metabolite concentrations were generally low compared to previous cohorts. A doubling in maternal concentration of the low-weighted phthalate metabolite MCPP was significantly associated with lower ADHD symptoms score in children (IRR: 0.95 (95 % CI 0.91-0.98)), strongest in girls (IRR: 0.92 (0.87-0.98)). Sex differences were observed. High maternal phthalate metabolite concentrations were associated with lower ADHD symptom score in girls, significant trends across tertile of MCPP and MnBP (p = 0.018, p = 0.038, respectively). In boys, maternal concentrations of high-molecular-weight phthalates (MBzP, ∑DiNP and ∑DEHP) were associated with an almost significantly higher ADHD symptom score (IRR for a doubling in concentration: 1.04 (95 % CI: 0.99-1.10), IRR: 1.05 (95 % CI: 0.97-1.13), IRR: 1.04 (95 % CI: 0.99-1.10), respectively). CONCLUSION Maternal concentration of the low-weighted phthalate metabolite MCPP was significantly associated with a lower ADHD symptom score in children, strongest in girls. Maternal concentrations of high-molecular-weight phthalates were associated with non-significant increase in ADHD symptom score in boys.
Collapse
Affiliation(s)
- Sarah Munk Andreasen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen, Denmark
| | - Niels Bilenberg
- Department of Child and Adolescent Psychiatry, Odense, Mental Health Services in Region of Southern Denmark, University of Southern Denmark, Odense, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; OPEN Patient data Explorative Network, Odense, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; OPEN Patient data Explorative Network, Odense, Denmark.
| |
Collapse
|
12
|
Dewey D, Martin JW, MacDonald AM, Kinniburgh DW, Letourneau N, Giesbrecht GF, Field CJ, Bell RC, England-Mason G. Sex-specific associations between maternal phthalate exposure and neurodevelopmental outcomes in children at 2 years of age in the APrON cohort. Neurotoxicology 2023; 98:48-60. [PMID: 37517784 DOI: 10.1016/j.neuro.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND There is inconsistent evidence regarding the sex-specific associations between prenatal phthalate exposure and children's neurodevelopment. This could be due to differences in the phthalate exposures investigated and the neurodevelopmental domains assessed. OBJECTIVE To evaluate the associations between prenatal phthalate exposure and sex-specific outcomes on measures of cognition, language, motor, executive function, and behaviour in children 2 years of age in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. METHODS We evaluated the associations between prenatal phthalate exposure and sex-specific neurodevelopmental outcomes in children at 2 years of age using data from 448 mothers and their children (222 girls, 226 boys). Nine phthalate metabolites were measured in maternal urine collected in the second trimester of pregnancy. Children's cognitive, language, and motor outcomes were assessed using the Bayley Scales of Infant Development - Third Edition (Bayley-III). Parents completed questionnaires on children's executive function and behavior, the Behavior Rating Inventory of Executive Function- Preschool Version (BRIEF-P) and Child Behavior Checklist (CBCL), respectively. Sex-stratified robust multivariate regressions were performed. RESULTS Higher maternal concentrations of ΣDEHP and its metabolites were associated with lower scores on the Bayley-III Cognitive (β's from -11.8 to -0.07 95% CI's from -21.3 to -0.01), Language (β's from -11.7 to -0. 09, 95% CI's from -22.3 to -0.02) and Motor (β's from -10.9 to -0.07, 95% CI from -20.4 to -0.01) composites in boys. The patterns of association in girls were in the opposite direction on the Cognitive and Language composites; on the Motor composite they were in the same direction as boys, but of reduced strength. Higher concentrations of ΣDEHP and its metabolites were associated with higher scores (i.e., more difficulties) on all measures of executive function in girls: inhibitory self-control (B's from 0.05 to 0.11, 95% CI s from -0.01 to 0.15), flexibility (B's from 0.04 to 0.11, 95% CI s from 0.01 to 0.21) and emergent metacognition (B's from -0.01 to 0.06, 95% CIs from -0.01 to 0.20). Similar patterns of attenuated associations were seen in boys. Higher concentrations of ΣDEHP and its metabolites were associated with more Externalizing Problems in girls and boys (B's from 0.03 to 6.82, 95% CIs from -0.08 to 12.0). Two phthalates, MMP and MBP, had sex-specific adverse associations on measures of executive function and behaviour, respectively, while MEP was positively associated with boys' cognitive, language, and motor performance. Limited associations were observed between mixtures of maternal phthalates and sex-specific neurodevelopmental outcomes. CONCLUSIONS Maternal prenatal concentrations of DEHP phthalates were associated with sex specific difference on measures of cognition and language at 2 years of age, specifically, poorer outcomes in boys. Higher exposure to DEHP was associated with poorer motor, executive function, and behavioural outcomes in girls and boys but the strength of these associations differed by sex. Limited associations were noted between phthalate mixtures and child neurodevelopment.
Collapse
Affiliation(s)
- Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Jonathan W Martin
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, Univerity of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutrition Science, University of Alberta, Edmonton, Alberta, Canada
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutrition Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Geiger SD, Musaad S, Hill J, Aguiar A, Schantz S. Sex-specific associations between urinary bisphenols concentrations during pregnancy and problematic child behaviors at age 2 years. Neurotoxicol Teratol 2023; 96:107152. [PMID: 36642394 PMCID: PMC10170945 DOI: 10.1016/j.ntt.2023.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Effects of prenatal bisphenol A (BPA) exposure on child behavior are mixed with some reports suggesting increased problematic behaviors in girls (e.g., aggression and emotional reactivity) and in boys (i.e., externalizing behaviors), while other reports suggest decreased problematic behaviors in girls. Little is known about the potential impact of pregnancy bisphenol S (BPS) exposure on child behavior. In a prospective cohort study (n = 68), five maternal spot urine samples collected across pregnancy were pooled and analyzed for BPA and BPS. Child behavior at 2 years was assessed using the Child Behavior Checklist (CBCL). Linear regression models were used to assess associations between bisphenols concentrations and both composite and syndrome CBCL scales. Exposure x child sex interactions were included in addition to their main effects and sex-stratified analyses were conducted. Models were adjusted for maternal age, number of siblings, and child age at CBCL intake. Mean maternal age was 29.7 years. Most women were White (88%), had an annual household income ≥$50,000 (66%), and at least a college degree (81%). Median concentrations were 1.3 ng/mL (range 0.4-7.2) for BPA and 0.3 ng/mL (range 0.1-3.5) for BPS. Sex modified the relationship between BPA and scores on several syndrome scales-anxious-depressed, aggressive, and sleep problems-where the association was consistently inverse in males in lower BPA concentrations, and positive (more reported behavior problems) among girls in the higher BPA group. Higher BPS was associated with more problematic internalizing behaviors among girls but not boys, and sex modified the relationship between BPS and emotionally reactive behaviors (Pinteraction = 0.128), with sex-specific estimates revealing more emotionally reactive behaviors among girls (expβ = 3.92 95% CI 1.16, 13.27; P = 0.028) but not boys. Findings were mixed overall, but one notable finding was that BPS, a replacement for BPA, was associated with increased problematic behaviors. There is a need for replication of findings due to our small sample size.
Collapse
Affiliation(s)
- Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.
| | - Salma Musaad
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Jennifer Hill
- Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Andréa Aguiar
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America; Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States of America
| | - Susan Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America; Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States of America
| |
Collapse
|
14
|
Chen HK, Wang SL, Chang YH, Sun CW, Wu MT, Chen ML, Lin YJ, Hsieh CJ. Associations between maternal phthalate exposure and neonatal neurobehaviors: The Taiwan maternal and infant cohort study (TMICS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120956. [PMID: 36581241 DOI: 10.1016/j.envpol.2022.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Previous studies have shown associations between prenatal phthalate exposure and neurobehavioral changes in children. However, few studies have focused on neonatal neurobehavioral development. This study aimed to examine the associations between prenatal phthalate exposure and neonatal neurobehavioral development in the early days of life after birth. This cohort study included 283 mother-infant pairs who participated in the Taiwan Mother Infant Cohort Study during 2012-2015. Each mother was interviewed, and urine samples were collected during the third trimester of pregnancy (weeks 29-40). Eleven common phthalate metabolites in maternal urine were analyzed. The Chinese version of the Neonatal Neurobehavioral Examination was used to evaluate early infant neurobehavioral development within five days of birth. We performed multiple linear regressions to explore the associations between phthalate exposure and neonatal neurobehavioral development. Sex differences in the association between phthalate metabolites and neonatal neurobehaviors were noted. Among girls, tertiles of phthalate metabolite concentrations were associated with worse behavioral responses and tone and motor patterns in the high-molecular-weight phthalate (HMW) and low-molecular-weight phthalate (LMW) groups. Girls in the highest tertile of di-2-ethylhexyl phthalate (DEHP) and mono-isobutyl phthalate (MiBP) had a negative association with tone and motor patterns. Girls in the highest tertile of mono-n-butyl phthalate (MnBP) and MiBP showed a negative association with behavioral responses. In contrast, tertiles of phthalate metabolite exposure were associated with improved neurobehaviors in mono-methyl phthalate (MMP) among boys. The highest tertile of MMP was positively associated with behavioral responses, primitive reflexes, and tone and motor patterns. Our findings suggest that maternal phthalate exposure affects neonatal neurobehavioral development in a sex-specific manner. Despite the relatively small sample size, our findings add to the existing research linking maternal phthalate exposure to neonatal neurobehavioral development. Additional research is needed to determine the potential long-term effects of prenatal phthalate exposure on children.
Collapse
Affiliation(s)
- Hsing-Kang Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Yuli Hospital, Ministry of Health and Welfare, Hualien, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Public Health, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi General Hospital, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jie Lin
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Chia-Jung Hsieh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Public Health, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
15
|
Oh J, Kim K, Kannan K, Parsons PJ, Mlodnicka A, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH. Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. RESEARCH SQUARE 2023:rs.3.rs-2565914. [PMID: 36798220 PMCID: PMC9934759 DOI: 10.21203/rs.3.rs-2565914/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background Agrowing body of literature investigated childhood exposure to environmental chemicals in association with attention deficit hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay, and typical development. Methods A total of 574 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study was administered the Aberrant Behavior Checklist (ABC). This study focused on the Hyperactivity subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in >70% samples were used in statistical analyses. Weighted quantile sum regression for negative binomial outcomes with repeated holdout validation was performed to investigate covariate-adjusted associations between mixtures and ABC scores in 574 children. The mixture analyses were further restricted to 232 children with ASD. Results Phthalate metabolite mixtures, weighted for mono-n-butylphthalate (MNBP), mono-2-heptyl phthalate, and mono-carboxy isononyl phthalate, were associated with the Hyperactivity subscale (mean incidence rate ratio [mIRR] = 1.11; 2.5th, 97.5th percentile: 1.00, 1.23), especially the hyperactivity/impulsivity subdomain (mIRR = 1.14; 2.5th, 97.5th percentile: 1.06, 1.26). These associations remained similar after restricting to children with ASD. The inattention subdomain was associated with a phenols/parabens mixture, weighted for several parabens and bisphenols (mIRR = 1.13; 2.5th, 97.5th percentile: 1.00, 1.28) and a total mixture, weighted for 3,4-dihydroxy benzoic acid, MNBR and mono-(2-ethyl-5-carboxypentyl) phthalate (mIRR = 1.11; 2.5th, 97.5th percentile: 1.01,1.25) only among children with ASD. Conclusions Concurrent exposure to phthalate mixtures was associated with hyperactivity in early childhood. Though causal inference cannot be made based on our cross-sectional findings, this study warrants further research on mixtures of larger number of chemicals from multiple classes in association with ADHD-related behaviors in young children.
Collapse
|
16
|
England-Mason G, Merrill SM, Gladish N, Moore SR, Giesbrecht GF, Letourneau N, MacIsaac JL, MacDonald AM, Kinniburgh DW, Ponsonby AL, Saffery R, Martin JW, Kobor MS, Dewey D. Prenatal exposure to phthalates and peripheral blood and buccal epithelial DNA methylation in infants: An epigenome-wide association study. ENVIRONMENT INTERNATIONAL 2022; 163:107183. [PMID: 35325772 DOI: 10.1016/j.envint.2022.107183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to phthalates has been associated with adverse health and neurodevelopmental outcomes. DNA methylation (DNAm) alterations may be a mechanism underlying these effects, but prior investigations of prenatal exposure to phthalates and neonatal DNAm profiles are limited to placental tissue and umbilical cord blood. OBJECTIVE Conduct an epigenome-wide association study (EWAS) of the associations between prenatal exposure to phthalates and DNAm in two accessible infant tissues, venous buffy coat blood and buccal epithelial cells (BECs). METHODS Participants included 152 maternal-infant pairs from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Maternal second trimester urine samples were analyzed for nine phthalate metabolites. Blood (n = 74) or BECs (n = 78) were collected from 3-month-old infants and profiled for DNAm using the Infinium HumanMethylation450 (450K) BeadChip. Robust linear regressions were used to investigate the associations between high (HMWPs) and low molecular weight phthalates (LMWPs) and change in methylation levels at variable Cytosine-phosphate-Guanine (CpG) sites in infant tissues, as well as the sensitivity of associations to potential confounders. RESULTS One candidate CpG in gene RNF39 reported by a previous study examining prenatal exposure to phthalates and cord blood DNAm was replicated. The EWAS identified 12 high-confidence CpGs in blood and another 12 in BECs associated with HMWPs and/or LMWPs. Prenatal exposure to bisphenol A (BPA) associated with two of the CpGs associated with HMWPs in BECs. DISCUSSION Prenatal exposure to phthalates was associated with DNAm variation at CpGs annotated to genes associated with endocrine hormone activity (i.e., SLCO4A1, TPO), immune pathways and DNA damage (i.e., RASGEF1B, KAZN, HLA-A, MYO18A, DIP2C, C1or109), and neurodevelopment (i.e., AMPH, NOTCH3, DNAJC5). Future studies that characterize the stability of these associations in larger samples, multiple cohorts, across tissues, and investigate the potential associations between these biomarkers and relevant health and neurodevelopmental outcomes are needed.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah M Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Södermanland, Sweden
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| |
Collapse
|
17
|
Prenatal Exposure to an EDC Mixture, NeuroMix: Effects on Brain, Behavior, and Stress Responsiveness in Rats. TOXICS 2022; 10:toxics10030122. [PMID: 35324748 PMCID: PMC8954446 DOI: 10.3390/toxics10030122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022]
Abstract
Humans and wildlife are exposed to endocrine-disrupting chemicals (EDCs) throughout their lives. Environmental EDCs are implicated in a range of diseases/disorders with developmental origins, including neurodevelopment and behavior. EDCs are most often studied one by one; here, we assessed outcomes induced by a mixture designed to represent the real-world situation of multiple simultaneous exposures. The choice of EDCs, which we refer to as “NeuroMix,” was informed by evidence for neurobiological effects in single-compound studies and included bisphenols, phthalates, vinclozolin, and perfluorinated, polybrominated, and polychlorinated compounds. Pregnant Sprague Dawley rats were fed the NeuroMix or vehicle, and then offspring of both sexes were assessed for effects on postnatal development and behaviors and gene expression in the brain in adulthood. In order to determine whether early-life EDCs predisposed to subsequent vulnerability to postnatal life challenges, a subset of rats were also given a stress challenge in adolescence. Prenatal NeuroMix exposure decreased body weight and delayed puberty in males but not females. In adulthood, NeuroMix caused changes in anxiety-like, social, and mate preference behaviors only in females. Effects of stress were predominantly observed in males. Several interactions of NeuroMix and stress were found, especially for the mate preference behavior and gene expression in the brain. These findings provide novel insights into how two realistic environmental challenges lead to developmental and neurobehavioral deficits, both alone and in combination, in a sex-specific manner.
Collapse
|
18
|
Cediel-Ulloa A, Lupu DL, Johansson Y, Hinojosa M, Özel F, Rüegg J. Impact of endocrine disrupting chemicals on neurodevelopment: the need for better testing strategies for endocrine disruption-induced developmental neurotoxicity. Expert Rev Endocrinol Metab 2022; 17:131-141. [PMID: 35255767 DOI: 10.1080/17446651.2022.2044788] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Brain development is highly dependent on hormonal regulation. Exposure to chemicals disrupting endocrine signaling has been associated with neurodevelopmental impairment. This raises concern about exposure to the suspected thousands of endocrine disruptors, and has resulted in efforts to improve regulation of these chemicals. Yet, the causal links between endocrine disruption and developmental neurotoxicity, which would be required for regulatory action, are still largely missing. AREAS COVERED In this review, we illustrate the importance of two endocrine systems, thyroid hormone and retinoic acid pathways, for neurodevelopment. We place special emphasis on TH and RA synthesis, metabolism, and how endocrine disrupting chemicals known or suspected to affect these systems are associated with developmental neurotoxicity. EXPERT OPINION While it is clear that neurodevelopment is dependent on proper hormonal functioning, and evidence is increasing for developmental neurotoxicity induced by endocrine disrupting chemicals, this is not grasped by current chemical testing. Thus, there is an urgent need to develop test methods detecting endocrine disruption in the context of neurodevelopment. Key to this development is further mechanistic insights on the involvement of endocrine signaling in neurodevelopment as well as increased support to develop and validate new test methods for the regulatory context.
Collapse
Affiliation(s)
| | | | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Maria Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Fatih Özel
- Department of Organismal Biology, Uppsala University, Sweden
- Centre for Women's Mental Health during the Reproductive Lifespan - Womher, Uppsala University, Sweden
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Sweden
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
19
|
Transgenerational Effects of Prenatal Endocrine Disruption on Reproductive and Sociosexual Behaviors in Sprague Dawley Male and Female Rats. TOXICS 2022; 10:toxics10020047. [PMID: 35202233 PMCID: PMC8875130 DOI: 10.3390/toxics10020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) lead to endocrine and neurobehavioral changes, particularly due to developmental exposures during gestation and early life. Moreover, intergenerational and transgenerational phenotypic changes may be induced by germline exposure (F2) and epigenetic germline transmission (F3) generation, respectively. Here, we assessed reproductive and sociosexual behavioral outcomes of prenatal Aroclor 1221 (A1221), a lightly chlorinated mix of PCBs known to have weakly estrogenic mechanisms of action; estradiol benzoate (EB), a positive control; or vehicle (3% DMSO in sesame oil) in F1-, F2-, and F3-generation male and female rats. Treatment with EDCs was given on embryonic day (E) 16 and 18, and F1 offspring monitored for development and adult behavior. F2 offspring were generated by breeding with untreated rats, phenotyping of F2s was performed in adulthood, and the F3 generation were similarly produced and phenotyped. Although no effects of treatment were found on F1 or F3 development and physiology, in the F2 generation, body weight in males and uterine weight in females were increased by A1221. Mating behavior results in F1 and F2 generations showed that F1 A1221 females had a longer latency to lordosis. In males, the F2 generation showed decreased mount frequency in the EB group. In the F3 generation, numbers of ultrasonic vocalizations were decreased by EB in males, and by EB and A1221 when the sexes were combined. Finally, partner preference tests in the F3 generation revealed that naïve females preferred F3-EB over untreated males, and that naïve males preferred untreated over F3-EB or F3-A1221 males. As a whole, these results show that each generation has a unique, sex-specific behavioral phenotype due to direct or ancestral EDC exposure.
Collapse
|
20
|
Review of the Existing Evidence for Sex-Specific Relationships between Prenatal Phthalate Exposure and Children's Neurodevelopment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413013. [PMID: 34948625 PMCID: PMC8700807 DOI: 10.3390/ijerph182413013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022]
Abstract
Phthalates are well-known, ubiquitous environmental contaminants influencing children's health and their neurodevelopment. However, results of the previously conducted studies are not entirely conclusive. The aim of this review is to present the current state of knowledge with respect to the association between the prenatal phthalate exposure and sex-specific child neurodevelopmental outcomes. A systematic search of the literature was carried out to identify the studies that analyse the sex-specific association between prenatal exposure to phthalates and cognitive, psychomotor outcomes and behavioural and emotional problems. The search was conducted in May 2021, and it was limited to the papers published in English between January 2015 and April 2021. The following databases were used: PubMed, Scopus and Elsevier. The selection process was carried out by two independent authors according to the inclusion criteria. Of a total of 7542 records, 17 epidemiological studies met the inclusion criteria with regards to phthalate exposure and sex-specific differences in child neurobehavioural development. The review shows no clear pattern of association between maternal exposure to phthalates during pregnancy and offspring neurodevelopment. No clearly pronounced sex specific effects, except for BBzP exposure and decreased motor ablates among girls, have been indicated. Inconsistences in the results, as well as unsolved issues related to the interpretation of the results in the context of the exposure level, outcomes, confounders, and biological plausibility highlight the necessity for further research in the field.
Collapse
|
21
|
Guilbert A, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Slama R, Guichardet K, Philippat C. Associations between a mixture of phenols and phthalates and child behaviour in a French mother-child cohort with repeated assessment of exposure. ENVIRONMENT INTERNATIONAL 2021; 156:106697. [PMID: 34147998 DOI: 10.1016/j.envint.2021.106697] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Synthetic phenols and phthalates can interfere with biological pathways involved in brain development. Despite the high within-subject temporal variability of urinary concentrations observed for their metabolites, studies investigating effects of phenols and phthalates on child behaviour often relied on a limited number of spot biospecimens to assess exposure. Besides, the majority did not consider mixture effects. OBJECTIVES To study the combined effect of prenatal exposure to synthetic phenols and phthalates on child behaviour using repeated exposure measurements. METHODS We assessed concentrations of 12 phenols, 13 phthalate and 2 non-phthalate plasticizer metabolites in within-subject pools of multiple urine samples (median = 21 samples per individual pool) collected at two distinct time points during pregnancy in 416 mother-child pairs from the French SEPAGES cohort. Child behaviour was evaluated at two years using the Child Behaviour Checklist 1.5-5 (CBCL). Associations between a mixture of biomarkers of exposure and externalizing and internalizing behaviour scores were studied using adjusted Weighted Quantile Sum (WQS) regressions with a repeated holdout validation (100 repetitions). RESULTS The positive WQS indexes were associated with both the externalizing and internalizing behaviour scores in the whole population, indicating greater risk of behavioural problems. Stratification for child sex suggested stronger associations in girls than boys. On average, girls externalizing and internalizing scores increased by 3.67 points (95% CI: 1.24, 6.10) and 2.47 points (95 %CI: 0.60, 4.33) respectively, for an increase of one tertile in the WQS index, compared with 1.70 points (95 %CI: -0.42, 3.81) and 1.17 points (95 %CI: -0.50, 2.84) in boys. Main contributors for the associations observed in girls were bisphenol A (weight of 18%), triclosan (17%) and monoethyl phthalate (MEP, 15%) for the externalizing score and MEP (19%), mono-benzyl phthalate (MBzP, 19%) and mono-n-butyl phthalate (MnBP, 16%) for the internalizing score. DISCUSSION Our results suggest adverse associations between in utero exposure to a mixture of phenols and phthalates and child behaviour, mainly in girls. Public health consequences may be substantial due to the widespread exposure of the population to these compounds.
Collapse
Affiliation(s)
- Ariane Guilbert
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Matthieu Rolland
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Isabelle Pin
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France; Pediatric Department, Grenoble Alpes University Hospital, 38700 La Tronche, France.
| | | | | | | | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, 38700 La Tronche, France.
| | - Claire Philippat
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| |
Collapse
|
22
|
Gestational Phthalate Exposure and Preschool Attention Deficit Hyperactivity Disorder in Norway. ENVIRONMENTAL EPIDEMIOLOGY (PHILADELPHIA, PA.) 2021; 5:e161. [PMID: 34414345 PMCID: PMC8367074 DOI: 10.1097/ee9.0000000000000161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is available in the text. Prenatal phthalate exposure has been linked to altered neurobehavioral development in both animal models and epidemiologic studies, but whether or not these associations translate to increased risk of neurodevelopmental disorders is unclear. We used a nested case-cohort study design to assess whether maternal urinary concentrations of 12 phthalate metabolites at 17 weeks gestation were associated with criteria for Attention Deficit Hyperactivity Disorder (ADHD) classified among 3-year-old children in the Norwegian Mother, Father and Child Cohort Study (MoBa). Between 2007 and 2011, 260 children in this substudy were classified with ADHD using a standardized, on-site clinical assessment; they were compared with 549 population-based controls. We modeled phthalate levels both linearly and by quintiles in logistic regression models adjusted for relevant covariates and tested for interaction by child sex. Children of mothers in the highest quintile of di-iso-nonyl phthalate (∑DiNP) metabolite levels had 1.70 times the odds of being classified with ADHD compared with those in the lowest quintile (95% confidence interval [CI] = 1.03 to 2.82). In linear models, there was a trend with the sum of di-2-ethylhexyl phthalate metabolites (∑DEHP); each natural log-unit increase in concentration was associated with 1.22 times the odds of ADHD (95% CI = 0.99 to 1.52). In boys, but not girls, mono-n-butyl phthalate exposure was associated with increased odds of ADHD (odds ratio [OR] 1.42; 95% CI = 1.07 to 1.88). Additional adjustment for correlated phthalate metabolites attenuated estimates. These results suggest gestational phthalate exposure may impact the behavior of children as young as 3 years.
Collapse
|
23
|
Huang HB, Siao CY, Lo YTC, Shih SF, Lu CH, Huang PC. Mediation effects of thyroid function in the associations between phthalate exposure and glucose metabolism in adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116799. [PMID: 33743268 DOI: 10.1016/j.envpol.2021.116799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
The mediating influence of thyroid function on the association of phthalate exposure with glucose metabolism, including insulin resistance, remains unclear. We explored the mediating influence of thyroid hormone levels on the phthalate exposure-insulin resistance association. This cross-sectional study of 217 Taiwanese adults assessed insulin resistance (Homeostatic Model Assessment for Insulin Resistance, HOMA-IR scores) and the levels of 11 urinary phthalate metabolites and 5 thyroid hormones. Multiple regression models were used to analyze the associations among serum thyroid hormone levels, urinary phthalate metabolite levels, and HOMA-IR scores. The mediation analysis assessed the influence of thyroid function on the phthalate exposure-HOMA-IR association. Our data indicated urinary mono-ethylhexyl phthalate (MEHP) levels was negatively associated with free thyroxine (T4) (β = -0.018; 95% confidence interval [CI]: -0.031, -0.005) and positively associated with HOMA-IR scores (β = 0.051, 95% CI: 0.012, 0.090). The study also revealed urinary mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) levels was negatively associated with free T4 (β = -0.036, 95% CI: -0.056, -0.017) and HOMA-IR (β = 0.070, 95% CI: 0.013, 0.126). Free T4 and HOMA-IR had a negative association (β = -0.757, 95% CI: -1.122, -0.392). In the mediation analysis, free T4 mediated 24% and 35% of the associations of urinary MEHP and MEOHP with HOMA-IR, respectively. Our findings revealed the mediating role of thyroid function in the phthalate exposure-glucose metabolism association in adults.
Collapse
Affiliation(s)
- Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Ying Siao
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Ting C Lo
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Fang Shih
- Department of Health Administration, College of Health Professions, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chieh-Hua Lu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chin Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
24
|
Day DB, Collett BR, Barrett ES, Bush NR, Swan SH, Nguyen RHN, Szpiro AA, Sathyanarayana S. Phthalate mixtures in pregnancy, autistic traits, and adverse childhood behavioral outcomes. ENVIRONMENT INTERNATIONAL 2021; 147:106330. [PMID: 33418196 PMCID: PMC9291724 DOI: 10.1016/j.envint.2020.106330] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Prenatal exposure to multiple phthalates is ubiquitous, and yet few studies have evaluated these exposures as a mixture in relation to child autistic traits and behavioral problems. OBJECTIVES To assess cumulative associations between prenatal phthalate mixtures and child behaviors, including effect modification by exposure timing and child sex. METHODS Analyses included 501 mother/child pairs from the multicenter pregnancy cohort The Infant Development and Environment Study (TIDES). Nine maternal urinary phthalate metabolites were measured in early and late pregnancy, and behavior was assessed at ages 4-5 years using composite T scores for the Behavioral Assessment System for Children (BASC-2), which measures several dimensions of child behavior, and the Social Responsiveness Scale (SRS-2), which measures social impairment consistent with autistic traits. We utilized weighted quantile sum (WQS) regressions to examine pregnancy period-specific associations between phthalate mixtures and behavioral outcomes. Full-sample 95% WQS confidence intervals are known to be anti-conservative, so we calculated a confirmatory p-value using a permutation test. Effect modification by sex was examined with stratified analyses. RESULTS A one-quintile increase in the early pregnancy phthalate mixture was associated with increased SRS-2 total score (coefficient = 1.0, confirmatory p = 0.01) and worse adaptive skills (coefficient = -1.0, confirmatory p = 0.06) in both sexes. In sex-stratified analyses, the early pregnancy phthalate mixture was associated with increased SRS-2 total score in boys (coefficient = 1.2, confirmatory p = 0.04) and girls (coefficient = 1.0, confirmatory p = 0.10) and worse BASC-2 adaptive skills score in girls (coefficient = -1.5, confirmatory p = 0.06), while the late pregnancy phthalate mixture was associated with increased BASC-2 externalizing score in boys (coefficient = 1.3, confirmatory p = 0.03). CONCLUSION Our results suggest cumulative adverse associations between prenatal phthalate mixtures and multiple facets of childhood behavior.
Collapse
Affiliation(s)
- Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA 98101, USA.
| | - Brent R Collett
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA 98101, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | - Emily S Barrett
- Department of Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Nicole R Bush
- Center for Health and Community, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, Department of Pediatrics, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 E. 102nd Street, CAM Building, 3 West, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Ruby H N Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA.
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195, USA.
| | - Sheela Sathyanarayana
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Praveena SM, Munisvaradass R, Masiran R, Rajendran RK, Lin CC, Kumar S. Phthalates exposure and attention-deficit/hyperactivity disorder in children: a systematic review of epidemiological literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44757-44770. [PMID: 32895790 DOI: 10.1007/s11356-020-10652-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological studies have proven that children mental health can be affected by environmental pollutants which are believed to be visible in the form of psychological disorder later in their childhood. Moreover, the effects of children mental health are evidently clear in the case of phthalates which have been observed to increase psychological disorder, specifically attention-deficit hyperactivity disorder (ADHD). Hence, the present study aims to conduct a systematic review and provide an overview of the existing literature on the association between urinary phthalate metabolite concentrations and ADHD symptoms among children by emphasizing the confounding factors and limitations. Additionally, this review addressed the possible phthalate mechanism insights in human body including its impact on ADHD symptoms. In this case, 16 epidemiological studies (five cross-sectional, nine cohort and two case control studies) that met all the inclusion criteria were selected out of the total of 427 papers screened to show varying quantitative associations between phthalate exposure and ADHD symptoms among children with confounding factors and limitations in the existing studies in regard to the exposure and outcomes. This review also attempted to present possible explanation on phthalate mechanism in children body and its connection on neurodevelopment and ADHD symptom development which remains unclear in most of the studies. Finally, it is highly recommended for further research to carefully design cohort studies from prenatal to later childhood development with a complete sample size in order to understand phthalate impacts on children health.
Collapse
Affiliation(s)
- Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Food Safety and Food Integrity, Institute of Tropical, Agriculture and Food Security, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| | - Rusheni Munisvaradass
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Ruziana Masiran
- Department of Psychiatry, Faculty of Medicine and Health Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Ranjith Kumar Rajendran
- Graduate Institute of Environmental Engineering, National Central University, No.300, Zhongda Rd., Zhongli District, Taoyuan City, 32001, Taiwan
| | - Chu-Ching Lin
- Graduate Institute of Environmental Engineering, National Central University, No.300, Zhongda Rd., Zhongli District, Taoyuan City, 32001, Taiwan
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biotechnology, BIHER, Bharath University, Chennai, 600 073, Tamil Nadu, India
| |
Collapse
|
26
|
Sex-biased impact of endocrine disrupting chemicals on behavioral development and vulnerability to disease: Of mice and children. Neurosci Biobehav Rev 2020; 121:29-46. [PMID: 33248148 DOI: 10.1016/j.neubiorev.2020.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/16/2020] [Accepted: 11/14/2020] [Indexed: 12/14/2022]
Abstract
Sex is a fundamental biological characteristic that influences many aspects of an organism's phenotype, including neurobiological functions and behavior as a result of species-specific evolutionary pressures. Sex differences have strong implications for vulnerability to disease and susceptibility to environmental perturbations. Endocrine disrupting chemicals (EDCs) have the potential to interfere with sex hormones functioning and influence development in a sex specific manner. Here we present an updated descriptive review of findings from animal models and human studies regarding the current evidence for altered sex-differences in behavioral development in response to early exposure to EDCs, with a focus on bisphenol A and phthalates. Overall, we show that animal and human studies have a good degree of consistency and that there is strong evidence demonstrating that EDCs exposure during critical periods of development affect sex differences in emotional and cognitive behaviors. Results are more heterogeneous when social, sexual and parental behaviors are considered. In order to pinpoint sex differences in environmentally-driven disease vulnerabilities, researchers need to consider sex-biased developmental effects of EDCs.
Collapse
|
27
|
Shin HM, Dhar U, Calafat AM, Nguyen V, Schmidt RJ, Hertz-Picciotto I. Temporal Trends of Exposure to Phthalates and Phthalate Alternatives in California Pregnant Women during 2007-2013: Comparison with Other Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13157-13166. [PMID: 32940456 PMCID: PMC8237562 DOI: 10.1021/acs.est.0c03857] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phthalates with potential adverse health effects are being replaced by other phthalates or phthalate alternatives. Little is known about temporal trends of phthalate exposure in pregnant women in the United States. We quantified 16 metabolites of eight phthalates and di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) in 656 urine samples collected from 192 California pregnant women in 2007-2013 during their second and third trimesters of pregnancy who participated in the MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) study. We used multiple regression to estimate least squares geometric means of phthalate biomarker concentrations and annual percent changes over the study period. Biomarker concentrations of diethyl phthalate (DEP) and three phthalates with known toxicity and adverse health effects (i.e., butyl benzyl phthalate [BBzP], dibutyl phthalate [DBP], di(2-ethylhexyl) phthalate [DEHP]) decreased, while those of di-isobutyl phthalate [DiBP], di-isononyl phthalate [DiNP], and di-n-octyl phthalate [DOP] increased in California pregnant women during our study period. To understand broad social forces that may influence temporal trends and geographic variations in phthalate exposure across countries, we compared our phthalate biomarker concentrations with those of other populations. We observed over a factor of 2 differences in exposure across countries for some phthalate biomarkers and between pregnant and nonpregnant women for DEP.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, USA
- Corresponding author: Hyeong-Moo Shin, Ph.D., University of Texas, Arlington, 500 Yates Street, Box 19049, Arlington, Texas 76019,
| | - Upasana Dhar
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, USA
| | | | - Vy Nguyen
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, California, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, California, USA
| |
Collapse
|