1
|
Fernandes CF, da Silva Iúdice TN, Bezerra NV, Pontes AN. Biodegradation of oil-derived hydrocarbons by marine actinobacteria: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125509. [PMID: 39667573 DOI: 10.1016/j.envpol.2024.125509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
The intensive use of oil and its derivatives is related to a greater frequency of accidents involving the release of pollutants that cause harmful effects on ecosystems. Actinobacteria are cosmopolitan and saprophytic microorganisms of great commercial interest, but because they are predominantly found in soil, most research into the products of this phylum's metabolism has focused on this habitat. Marine actinobacteria exhibit unique metabolic characteristics in response to extreme conditions in their habitat, which distinguishes them from terrestrial actinobacteria. This systematic review aims to describe cultivable hydrocarbonoclastic marine actinobacteria, analyze their biodegradation rates, as well as discuss their respective potential for application in bioremediation techniques and their limitations. Twenty-one actinobacteria were found to be capable of degrading one or more hydrocarbons derived from petroleum. The majority of these bacteria belonged to the genera Rhodococcus, Gordonia, Pseudonocardia, Isoptericola, Microbacterium, Citricoccus, Kocuria, Brevibacterium, and Cellulosimicrobium. The highest degradation rate was obtained by the species R. ruber, which degraded 100 % of fluorene at a concentration of 100 mg/L. On the other hand, the species Streptomyces gougerotti and Micromonospora matsumotoense were able to degrade polyethylene and use the carbon derived from it to produce polylactic acid (PLA), which represents an excellent candidate for making safely degradable bioplastics, with a view to recycling and replacing conventional petroleum-based plastics. An approach that integrates physicochemical and biological methods, and optimized growth conditions can lead to greater success in decontaminating environments. Despite the number of bacteria found in the research, this number may be significantly higher. This review provides valuable information to support further studies.
Collapse
Affiliation(s)
- Caroline Ferreira Fernandes
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil.
| | - Tirça Naiara da Silva Iúdice
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil; Institute of Health Sciences, Federal University of Pará (UFPA), Av. Augusto Corrêa, Belém, Pará, Brazil
| | - Nilson Veloso Bezerra
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil
| | - Altem Nascimento Pontes
- Center of Natural Sciences and Technology., University of Pará State (UEPA), av. Eneas, 2626, Belém, Pará, Brazil
| |
Collapse
|
2
|
Back LS, Manso IS, Sordi MB, Magrin GL, Aragonês Á, Magini RDS, Gruber R, Cruz ACC. Evaluating Bioassays for the Determination of Simvastatin's Osteogenic Activity: A Systematic Review. J Funct Biomater 2025; 16:61. [PMID: 39997596 PMCID: PMC11855937 DOI: 10.3390/jfb16020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE Osteogenic differentiation is a complex process, and its analysis requires several biomarkers. Allied with this, there are no standardized bioassays to monitor the activity of simvastatin in osteogenesis in vitro. Therefore, identifying the most efficient and sensitive bioassays may enhance the quality of in vitro studies, bridging the gap with in vivo findings, saving time and resources, and benefiting the community. This systematic review aimed to determine the most efficient bioassay for simvastatin's osteogenic activity in vitro, in terms of sensitivity. MATERIALS AND METHODS In vitro studies evaluating undifferentiated mesenchymal cells treated with simvastatin were considered eligible. References were selected in a two-phase process. Electronic databases and the grey literature were screened up to September 2023. The Office of Health Assessment and Translation (OHAT) tool was used to assess the risk of bias. Certainty in cumulative evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria. Data were analyzed considering extracellular matrix mineralization, alkaline phosphatase, and the expression of potential target genes, such as bone morphogenetic protein-2 (BMP-2), collagen type I, Runt-related transcription factor 2, osterix, osteocalcin, and osteopontin. RESULTS Fourteen studies were included. A "probably low" or a "definitely low" risk of bias was assigned to the included studies. The simvastatin concentration ranged from 0.1 nM to 10 µM. Considering a minimum 4-fold increase, simvastatin caused robust mineralization of the extracellular matrix in four studies (4.0-, 4.4-, 5.0-, and 39.5-fold). Moreover, simvastatin substantially increased BMP-2 expression in mesenchymal cells in three studies (4-, 11-, and 19-fold). CONCLUSION Therefore, mineralization of the extracellular matrix and BMP-2 expression in mesenchymal cells are the most efficient bioassays for determining the osteogenic activity of simvastatin in vitro (high certainty level). These findings provide a standardized approach that can enhance the reliability and comparability of in vitro studies, bridging the gap with in vivo research and optimizing resources in the field of bone regeneration.
Collapse
Affiliation(s)
- Lara Steiner Back
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Isabella Schönhofen Manso
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Mariane Beatriz Sordi
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Gabriel Leonardo Magrin
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Águedo Aragonês
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Ricardo de Souza Magini
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Ariadne Cristiane Cabral Cruz
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
- Applied Virology Laboratory, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil
| |
Collapse
|
3
|
Romeo S, Sannino A, Rosaria Scarfì M, Lagorio S, Zeni O. Genotoxicity of radiofrequency electromagnetic fields on mammalian cells in vitro: A systematic review with narrative synthesis. ENVIRONMENT INTERNATIONAL 2024; 193:109104. [PMID: 39476595 DOI: 10.1016/j.envint.2024.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Over the last decades, great concern has been raised about possible adverse effects to human health due to exposures to radiofrequency electromagnetic fields (RF-EMF, 100 kHz - 300 GHz) emitted by wireless communication technologies. In 2011 the International Agency for Research on Cancer classified RF-EMF as possibly carcinogenic to humans, highlighting that the evidence was weak and far from conclusive. Updated systematic reviews of the scientific literature on this topic are lacking, especially for mechanistic studies. OBJECTIVES To perform a systematic review of the scientific literature on genotoxic effects induced by RF-EMF in in vitro experimental models. The overall aim is to assess the confidence and level of evidence of the induced effects in mammalian cell cultures. METHODS Full details regarding the eligibility criteria, information sources, and methods developed to assess risk of bias in the included study, are reported in our published protocol (Romeo et al. 2021). The databases NCBI PubMed, Web of Science, and EMF-Portal were used as information sources (last searched on 31st December 2022). In developing the systematic review, we followed the guidelines provided by the National Toxicology Program-Office of Health Assessment and Translation (NTP-OHAT), adapted to the evaluation of in vitro studies. A narrative synthesis of the body of evidence was performed by tabulating data classified according to meaningful groups (endpoints) and sub-groups (exposure parameters). This report, abstract included, conforms to the PRISMA 2020 (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines. RESULTS Out of 7750 unique records identified, 159 articles were eligible for inclusion. From the extracted data, we identified 1111 experiments (defined as independent specific combinations of diverse biological and electromagnetic parameters). The large majority (80%) of experiments reviewed did not show statistically significant genotoxic effects of RF-EMF exposures, and most "positive" studies were rated as of moderate to low quality, with negative ratings in the key bias domains. A qualitative evidence appraisal was conducted at the endpoint level, and then integrated across endpoints. DISCUSSION To the best of our knowledge, this is the first systematic review of the scientific literature on genotoxic effects in mammalian cell cultures in relation to RF-EMF exposure, which confirms and strengthens conclusions from previous syntheses of this specific topic thanks to the use of transparently reported methods, pre-defined inclusion criteria, and formal assessment of susceptibility to bias. Limitations of the evidence included the frequent reporting of findings in graphical display only, and the large heterogeneity of experimental data, which precluded a meta-analysis. CONCLUSIONS In the assessment restricted to studies reporting a significant effect of the exposure on the outcome, we reached an overall assessment of "low" confidence in the evidence that RF-EMF induce genotoxic effects in mammalian cells. However, 80% of experiments reviewed showed no effect of RF exposure on the large majority of endpoints, especially the irreversible ones, independently of the exposure features, level, and duration (moderate evidence of no effect). Therefore, we conclude that the analysis of the papers included in this review, although only qualitative, suggests that RF exposure does not increase the occurrence of genotoxic effects in vitro. FRAMEWORK AND FUNDING This systematic review addresses one of the evidence streams considered in a larger systematic review of the scientific literature on the potential carcinogenicity of RF-EMF, performed by scientists from several Italian public research agencies. The project is supported by the Italian Workers' Compensation Authority (INAIL) in the framework of the CRA with the Istituto Superiore di Sanità "BRiC 2018/06 - Scientific evidence on the carcinogenicity of electromagnetic fields".
Collapse
Affiliation(s)
- Stefania Romeo
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| | - Anna Sannino
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| | - Maria Rosaria Scarfì
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| | - Susanna Lagorio
- Department of Oncology and Molecular Medicine, National Institute of Health, 00161 Roma, Italy.
| | - Olga Zeni
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| |
Collapse
|
4
|
Kim D, Shin Y, Park JI, Lim D, Choi H, Choi S, Baek YW, Lim J, Kim Y, Kim HR, Chung KH, Bae ON. A systematic review and BMD modeling approach to develop an AOP for humidifier disinfectant-induced pulmonary fibrosis and cell death. CHEMOSPHERE 2024; 364:143010. [PMID: 39098349 DOI: 10.1016/j.chemosphere.2024.143010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
Dosimetry modeling and point of departure (POD) estimation using in vitro data are essential for mechanism-based hazard identification and risk assessment. This study aimed to develop a putative adverse outcome pathway (AOP) for humidifier disinfectant (HD) substances used in South Korea through a systematic review and benchmark dose (BMD) modeling. We collected in vitro toxicological studies on HD substances, including polyhexamethylene guanidine hydrochloride (PHMG-HCl), PHMG phosphate (PHMG-p), a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one (CMIT/MIT), CMIT, and MIT from scientific databases. A total of 193 sets of dose-response data were extracted from 34 articles reporting in vitro experimental results of HD toxicity. The risk of bias (RoB) in each study was assessed following the office of health assessment and translation (OHAT) guideline. The BMD of each HD substance at different toxicity endpoints was estimated using the US Environmental Protection Agency (EPA) BMD software (BMDS). Interspecies- or interorgan differences or most critical effects in the toxicity of the HD substances were analyzed using a 95% lower confidence limit of the BMD (BMDL). We found a critical molecular event and cells susceptible to each HD substance and constructed an AOP of PHMG-p- or CMIT/MIT-induced damage. Notably, PHMG-p induced ATP depletion at the lowest in vitro concentration, endoplasmic reticulum (ER) stress, epithelial-to-mesenchymal transition (EMT), inflammation, leading to fibrosis. CMIT/MIT enhanced mitochondrial reactive oxygen species (ROS) production, oxidative stress, mitochondrial dysfunction, resulting in cell death. Our approach will increase the current understanding of the effects of HD substances on human health and contribute to evidence-based risk assessment of these compounds.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Yusun Shin
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Jong-In Park
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Donghyeon Lim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Hyunjoon Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Seongwon Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Envrironmental Research, Incheon, 22689, South Korea
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Envrironmental Research, Incheon, 22689, South Korea
| | - Younghee Kim
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Envrironmental Research, Incheon, 22689, South Korea
| | - Ha Ryong Kim
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Kyu Hyuck Chung
- College of Pharmacy, Kyungsung University, Busan, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea.
| |
Collapse
|
5
|
Cordelli E, Ardoino L, Benassi B, Consales C, Eleuteri P, Marino C, Sciortino M, Villani P, H Brinkworth M, Chen G, P McNamee J, Wood AW, Belackova L, Verbeek J, Pacchierotti F. Effects of radiofrequency electromagnetic field (RF-EMF) exposure on male fertility: A systematic review of experimental studies on non-human mammals and human sperm in vitro. ENVIRONMENT INTERNATIONAL 2024; 185:108509. [PMID: 38492496 DOI: 10.1016/j.envint.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The World Health Organization is coordinating an international project aimed at systematically reviewing the evidence regarding the association between radiofrequency electromagnetic field (RF-EMF) exposure and adverse health effects. Reproductive health outcomes have been identified among the priority topics to be addressed. OBJECTIVES To evaluate the effect of RF-EMF exposure on male fertility of experimental mammals and on human sperm exposed in vitro. METHODS Three electronic databases (PubMed, Scopus and EMF Portal) were last searched on September 17, 2022. Two independent reviewers screened the studies, which were considered eligible if met the following criteria: 1) Peer-reviewed publications of sham controlled experimental studies, 2) Non-human male mammals exposed at any stage of development or human sperm exposed in vitro, 3) RF-EMF exposure within the frequency range of 100 kHz-300 GHz, including electromagnetic pulses (EMP), 4) one of the following indicators of reproductive system impairment:Two reviewers extracted study characteristics and outcome data. We assessed risk of bias (RoB) using the Office of Health Assessment and Translation (OHAT) guidelines. We categorized studies into 3 levels of overall RoB: low, some or high concern. We pooled study results in a random effects meta-analysis comparing average exposure to no-exposure and in a dose-response meta-analysis using all exposure doses. For experimental animal studies, we conducted subgroup analyses for species, Specific Absorption Rate (SAR) and temperature increase. We grouped studies on human sperm exposed in vitro by the fertility status of sample donors and SAR. We assessed the certainty of the evidence using the GRADE approach after excluding studies that were rated as "high concern" for RoB. RESULTS One-hundred and seventeen papers on animal studies and 10 papers on human sperm exposed in vitro were included in this review. Only few studies were rated as "low concern" because most studies were at RoB for exposure and/or outcome assessment. Subgrouping the experimental animal studies by species, SAR, and temperature increase partly accounted for the heterogeneity of individual studies in about one third of the meta-analyses. In no case was it possible to conduct a subgroup analysis of the few human sperm in vitro studies because there were always 1 or more groups including less than 3 studies. Among all the considered endpoints, the meta-analyses of animal studies provided evidence of adverse effects of RF-EMF exposure in all cases but the rate of infertile males and the size of the sired litters. The assessment of certainty according to the GRADE methodology assigned a moderate certainty to the reduction of pregnancy rate and to the evidence of no-effect on litter size, a low certainty to the reduction of sperm count, and a very low certainty to all the other meta-analysis results. Studies on human sperm exposed in vitro indicated a small detrimental effect of RF-EMF exposure on vitality and no-effect on DNA/chromatin alterations. According to GRADE, a very low certainty was attributed to these results. The few studies that used EMP exposure did not show effects on the outcomes. A low to very low certainty was attributed to these results. DISCUSSION Many of the studies examined suffered of severe limitations that led to the attribution of uncertainty to the results of the meta-analyses and did not allow to draw firm conclusions on most of the endpoints. Nevertheless, the associations between RF-EMF exposure and decrease of pregnancy rate and sperm count, to which moderate and low certainty were attributed, are not negligible, also in view of the indications that in Western countries human male fertility potential seems to be progressively declining. It was beyond the scope of our systematic review to determine the shape of the dose-response relationship or to identify a minimum effective exposure level. The subgroup and the dose-response fitting analyses did not show a consistent relationship between the exposure levels and the observed effects. Notably, most studies evaluated RF-EMF exposure levels that were higher than the levels to which human populations are typically exposed, and the limits set in international guidelines. For these reasons we cannot provide suggestions to confirm or reconsider current human exposure limits. Considering the outcomes of this systematic review and taking into account the limitations found in several of the studies, we suggest that further investigations with better characterization of exposure and dosimetry including several exposure levels and blinded outcome assessment were conducted. PROTOCOL REGISTRATION Protocols for the systematic reviews of animal studies and of human sperm in vitro studies were published in Pacchierotti et al., 2021. The former was also registered in PROSPERO (CRD42021227729 https://www.crd.york.ac.uk/prospero/display_record.php?RecordID = 227729) and the latter in Open Science Framework (OSF Registration DOI https://doi.org/10.17605/OSF.IO/7MUS3).
Collapse
Affiliation(s)
- Eugenia Cordelli
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| | - Lucia Ardoino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Barbara Benassi
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Claudia Consales
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Patrizia Eleuteri
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Carmela Marino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | | | - Paola Villani
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Martin H Brinkworth
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - James P McNamee
- Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Andrew W Wood
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Australia
| | - Lea Belackova
- University Medical Centers Amsterdam, Coronel Institute of Occupational Health, Cochrane Work, Amsterdam, the Netherlands
| | - Jos Verbeek
- University Medical Centers Amsterdam, Coronel Institute of Occupational Health, Cochrane Work, Amsterdam, the Netherlands
| | - Francesca Pacchierotti
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| |
Collapse
|
6
|
Squier K, Mousavizadeh R, Damji F, Beck C, Hunt M, Scott A. In vitro collagen biomarkers in mechanically stimulated human tendon cells: a systematic review. Connect Tissue Res 2024; 65:89-101. [PMID: 38375562 DOI: 10.1080/03008207.2024.2313582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE The aim of this study was to comprehensively examine and summarize the available in vitro evidence regarding the relationship between mechanical stimulation and biomarkers of collagen synthesis in human-derived tendon cells. METHODS Systematic review with narrative analyses and risk of bias assessment guided by the Health Assessment and Translation tool. The electronic databases MEDLINE (Ovid), EMBASE (Ovid), CENTRAL (Ovid) and COMPENDEX (Engineering Village) were systematically searched from inception to 3 August 2023. Inclusion criteria encompassed English language, original experimental, or quasi-experimental in vitro publications that subjected human tendon cells to mechanical stimulation, with collagen synthesis (total collagen, type I, III, V, XI, XII, and XIV) and related biomarkers (matrix metalloproteinases, transforming growth factor β, scleraxis, basic fibroblast growth factor) as outcomes. RESULTS Twenty-one publications were included. A pervasive definite high risk of bias was evident in all included studies. Owing to incomplete outcome reporting and heterogeneity in mechanical stimulation protocols, planned meta-analyses were unfeasible. Reviewed data suggested that human tendon cells respond to mechanical stimulation with increased synthesis of collagen (e.g., COL1A1, procollagen, total soluble collagen, etc.), scleraxis and several matrix metalloproteinases. Results also indicate that mechanical stimulation dose magnitude may influence synthesis in several biomarkers. CONCLUSIONS A limited number of studies, unfortunately characterized by a definite high risk of bias, suggest that in vitro mechanical stimulation primarily increases type I collagen synthesis by human tendon cells. Findings from this systematic review provide researchers and clinicians with biological evidence concerning the possible beneficial influence of exercise and loading on cellular-level tendon adaptation.
Collapse
Affiliation(s)
- Kipling Squier
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rouhollah Mousavizadeh
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Faraz Damji
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Charlotte Beck
- Woodward Library, University of British Columbia, Vancouver, Canada
| | - Michael Hunt
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Alexander Scott
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Vitale E, Mea R. Comorbidity, Eating Behaviors and Smartphone Addiction in Italian Nurses' Characteristics. Endocr Metab Immune Disord Drug Targets 2024; 24:1431-1444. [PMID: 38317462 DOI: 10.2174/0118715303271067231129103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Evidence suggested how nurses experienced worse lifestyles than the general population by recording deterioration rates in healthy conditions. AIM To assess differences between comorbidity, eating behavior, and smartphone addiction according to sex, Body Mass Index (BMI), age, work experience, shift, alcohol assumption, and physical activity in Italian nurses. METHODS An online questionnaire was spread through some professional internet pages. Data included demographic characteristics, the Charlson Comorbidity Index (CCI), the Italian Version of the Dutch Eating Behavior Questionnaire, and the Smartphone Addiction Scale (SAS-SV). RESULTS A total of 456 nurses were recruited. Significant differences were registered in the smartphone addiction score (p=0.030) and BMI scores and work experience (p=0.001), as underweight participants reported higher scores in the smartphone addiction attitude (2.4714 ± 1.25812) than the other subjects and also participants with the highest number of years in work experience also reported higher smartphone addiction scores (2.8074 ± 1.2022). Significant difference was reported in the CCI scores according to age (p<0.001): subjects aged over 61 years recorded higher scores in the CCI (1.67 ± 1.528) and also according to work experience and CCI scores (p<0.001), as participants employed between 21 and 30 years reported higher scores in the CCI (1.27 ± 1.382) and also to night shift (p=0.037), as participants who worked during the night shift also reported higher scores in the CCI. A significant difference was reported only for restrained eating attitude (p=0.034), as participants who declared to assume alcohol 2-3 times per month recorded higher levels in this eating attitude aspect (32.32 ± 7.181). CONCLUSION Female nurses, overweight and obese nurses with low physical activity practice, seemed to spend more time with their smartphones. Healthcare organizations should consider findings to prevent unhealthy lifestyles among nurses, which could negatively influence the whole healthcare system.
Collapse
Affiliation(s)
- Elsa Vitale
- Centre of Mental Health, Modugno, Local Health Company Bari, Bari, Italy
| | - Rocco Mea
- Department of Cardiology, San Carlo Hospital, Potenza, Italy
| |
Collapse
|
8
|
Petroulakis N, Mattsson MO, Chatziadam P, Simko M, Gavrielides A, Yiorkas AM, Zeni O, Scarfi MR, Soudah E, Otin R, Schettino F, Migliore MD, Miaoudakis A, Spanoudakis G, Bolte J, Korkmaz E, Theodorou V, Zarogianni E, Lagorio S, Biffoni M, Schiavoni A, Boldi MR, Feldman Y, Bilik I, Laromaine A, Gich M, Spirito M, Ledent M, Segers S, Vargas F, Colussi L, Pruppers M, Baaken D, Bogdanova A. NextGEM: Next-Generation Integrated Sensing and Analytical System for Monitoring and Assessing Radiofrequency Electromagnetic Field Exposure and Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6085. [PMID: 37372672 DOI: 10.3390/ijerph20126085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023]
Abstract
The evolution of emerging technologies that use Radio Frequency Electromagnetic Field (RF-EMF) has increased the interest of the scientific community and society regarding the possible adverse effects on human health and the environment. This article provides NextGEM's vision to assure safety for EU citizens when employing existing and future EMF-based telecommunication technologies. This is accomplished by generating relevant knowledge that ascertains appropriate prevention and control/actuation actions regarding RF-EMF exposure in residential, public, and occupational settings. Fulfilling this vision, NextGEM commits to the need for a healthy living and working environment under safe RF-EMF exposure conditions that can be trusted by people and be in line with the regulations and laws developed by public authorities. NextGEM provides a framework for generating health-relevant scientific knowledge and data on new scenarios of exposure to RF-EMF in multiple frequency bands and developing and validating tools for evidence-based risk assessment. Finally, NextGEM's Innovation and Knowledge Hub (NIKH) will offer a standardized way for European regulatory authorities and the scientific community to store and assess project outcomes and provide access to findable, accessible, interoperable, and reusable (FAIR) data.
Collapse
Affiliation(s)
- Nikolaos Petroulakis
- Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH-ICS), 70013 Heraklion, Greece
| | | | - Panos Chatziadam
- Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH-ICS), 70013 Heraklion, Greece
| | | | | | | | - Olga Zeni
- Institute for Electromagnetic Sensing of the Environment, Consiglio Nazionale delle Ricerche (CNR-IREA), 80124 Napoli, Italy
| | - Maria Rosaria Scarfi
- Institute for Electromagnetic Sensing of the Environment, Consiglio Nazionale delle Ricerche (CNR-IREA), 80124 Napoli, Italy
| | - Eduardo Soudah
- International Centre for Numerical Methods in Engineering (CIMNE), 08034 Barcelona, Spain
| | - Ruben Otin
- International Centre for Numerical Methods in Engineering (CIMNE), 08034 Barcelona, Spain
| | - Fulvio Schettino
- Department of Electrical and Computer Science Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Marco Donald Migliore
- Department of Electrical and Computer Science Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | | | | | - John Bolte
- Research Group Smart Sensor Systems, The Hague University of Applied Sciences, 2628 AL Delft, The Netherlands
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Erdal Korkmaz
- Research Group Smart Sensor Systems, The Hague University of Applied Sciences, 2628 AL Delft, The Netherlands
| | | | | | | | - Mauro Biffoni
- Italian National Institute of Health, 00161 Rome, Italy
| | | | | | - Yuri Feldman
- Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Igal Bilik
- Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), 08193 Barcelona, Spain
| | - Martí Gich
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), 08193 Barcelona, Spain
| | - Marco Spirito
- Department of Microelectronics, Delft University of Technology, 2628 CN Delft, The Netherlands
| | | | | | | | - Loek Colussi
- Dutch Authority for Digital Infrastructure, 9700 AL Groningen, The Netherlands
| | - Mathieu Pruppers
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Dan Baaken
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Anna Bogdanova
- Institute of Veterinary Physiology, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
9
|
Ravaioli F, Bacalini MG, Giuliani C, Pellegrini C, D’Silva C, De Fanti S, Pirazzini C, Giorgi G, Del Re B. Evaluation of DNA Methylation Profiles of LINE-1, Alu and Ribosomal DNA Repeats in Human Cell Lines Exposed to Radiofrequency Radiation. Int J Mol Sci 2023; 24:9380. [PMID: 37298336 PMCID: PMC10253908 DOI: 10.3390/ijms24119380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
A large body of evidence indicates that environmental agents can induce alterations in DNA methylation (DNAm) profiles. Radiofrequency electromagnetic fields (RF-EMFs) are radiations emitted by everyday devices, which have been classified as "possibly carcinogenic"; however, their biological effects are unclear. As aberrant DNAm of genomic repetitive elements (REs) may promote genomic instability, here, we sought to determine whether exposure to RF-EMFs could affect DNAm of different classes of REs, such as long interspersed nuclear elements-1 (LINE-1), Alu short interspersed nuclear elements and ribosomal repeats. To this purpose, we analysed DNAm profiles of cervical cancer and neuroblastoma cell lines (HeLa, BE(2)C and SH-SY5Y) exposed to 900 MHz GSM-modulated RF-EMF through an Illumina-based targeted deep bisulfite sequencing approach. Our findings showed that radiofrequency exposure did not affect the DNAm of Alu elements in any of the cell lines analysed. Conversely, it influenced DNAm of LINE-1 and ribosomal repeats in terms of both average profiles and organisation of methylated and unmethylated CpG sites, in different ways in each of the three cell lines studied.
Collapse
Affiliation(s)
- Francesco Ravaioli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Maria Giulia Bacalini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy;
| | - Camilla Pellegrini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Chiara D’Silva
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Sara De Fanti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Gianfranco Giorgi
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Brunella Del Re
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
10
|
Pang KL, Mai CW, Chin KY. Molecular Mechanism of Tocotrienol-Mediated Anticancer Properties: A Systematic Review of the Involvement of Endoplasmic Reticulum Stress and Unfolded Protein Response. Nutrients 2023; 15:1854. [PMID: 37111076 PMCID: PMC10145773 DOI: 10.3390/nu15081854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Tocotrienol, a type of vitamin E, is well known for its anti-cancer and other biological activities. This systematic review aims to summarize the involvement of endoplasmic reticulum stress (ERS) and subsequent unfolded protein response (UPR) as the underlying molecular mechanisms for the anticancer properties of tocotrienol. METHOD A comprehensive literature search was performed in March 2023 using the PubMed, Scopus, Web of Science, and EMBASE databases. In vitro, in vivo, and human studies were considered. RESULT A total of 840 articles were retrieved during the initial search, and 11 articles that fit the selection criteria were included for qualitative analysis. The current mechanistic findings are based solely on in vitro studies. Tocotrienol induces cancer cell growth arrest, autophagy, and cell death primarily through apoptosis but also through paraptosis-like cell death. Tocotrienol-rich fractions, including α-, γ- and δ-tocotrienols, induce ERS, as evidenced by upregulation of UPR markers and/or ERS-related apoptosis markers. Early endoplasmic reticulum calcium ion release, increased ceramide level, proteasomal inhibition, and upregulation of microRNA-190b were suggested to be essential in modulating tocotrienol-mediated ERS/UPR transduction. Nevertheless, the upstream molecular mechanism of tocotrienol-induced ERS is largely unknown. CONCLUSION ERS and UPR are essential in modulating tocotrienol-mediated anti-cancer effects. Further investigation is needed to elucidate the upstream molecular mechanism of tocotrienol-mediated ERS.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Malaysia
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
11
|
Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells 2023; 12:cells12040594. [PMID: 36831261 PMCID: PMC9954667 DOI: 10.3390/cells12040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
During modern era, mobile phones, televisions, microwaves, radio, and wireless devices, etc., have become an integral part of our daily lifestyle. All these technologies employ radiofrequency (RF) waves and everyone is exposed to them, since they are widespread in the environment. The increasing risk of male infertility is a growing concern to the human population. Excessive and long-term exposure to non-ionizing radiation may cause genetic health effects on the male reproductive system which could be a primitive factor to induce cancer risk. With respect to the concerned aspect, many possible RFR induced genotoxic studies have been reported; however, reports are very contradictory and showed the possible effect on humans and animals. Thus, the present review is focusing on the genomic impact of the radiofrequency electromagnetic field (RF-EMF) underlying the male infertility issue. In this review, both in vitro and in vivo studies have been incorporated explaining the role of RFR on the male reproductive system. It includes RFR induced-DNA damage, micronuclei formation, chromosomal aberrations, SCE generation, etc. In addition, attention has also been paid to the ROS generation after radiofrequency radiation exposure showing a rise in oxidative stress, base adduct formation, sperm head DNA damage, or cross-linking problems between DNA & protein.
Collapse
|
12
|
Hogenes AM, Overduin CG, Slump CH, van Laarhoven CJHM, Fütterer JJ, ten Broek RPG, Stommel MWJ. The Influence of Irreversible Electroporation Parameters on the Size of the Ablation Zone and Thermal Effects: A Systematic Review. Technol Cancer Res Treat 2023; 22:15330338221125003. [PMID: 36598035 PMCID: PMC9830580 DOI: 10.1177/15330338221125003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/16/2022] [Accepted: 08/08/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: The aim of this study was to review the effect of irreversible electroporation parameter settings on the size of the ablation zone and the occurrence of thermal effects. This insight would help to optimize treatment protocols and effectively ablate a tumor while controlling the occurrence of thermal effects. Methods: Various individual studies report the influence of variation in electroporation parameters on the ablation zone size or occurrence of thermal effects. However, no connections have yet been established between these studies. With the aim of closing the gap in the understanding of and personalizing irreversible electroporation parameter settings, a systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A quality assessment was performed using an in-house developed grading tool based on components of commonly used grading domains. Data on the electroporation parameters voltage, number of electrodes, inter-electrode distance, active needle length, pulse length/number/protocol/frequency, and pulse interval were extracted. Ablation zone size and temperature data were grouped per parameter. Spearman correlation and linear regression were used to define the correlation with outcome measures. Results: A total of 7661 articles were screened, of which 18 preclinical studies (animal and phantom studies) met the inclusion criteria. These studies were graded as moderate (4/18) and low (14/18) quality. Only the applied voltage appeared to be a significant linear predictor of ablation zone size: length, surface, and volume. The pulse number was moderately but nonlinearly correlated with the ablation zone length. Thermal effects were more likely to occur for higher voltages (≥2000 V), higher number of electrodes, and increased active needle length. Conclusion: Firm conclusions are limited since studies that investigated and precisely reported the influence of electroporation parameters on the ablation zone size and thermal effects were scarce and mostly graded low quality. High-quality studies are needed to improve the predictability of the combined effect of variation in parameter combinations and optimize irreversible electroporation treatment protocols.
Collapse
Affiliation(s)
- Annemiek M Hogenes
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christiaan G Overduin
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cornelis H Slump
- Department of Robotics and Mechatronics, University of Twente, Enschede, the Netherlands
| | | | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Robotics and Mechatronics, University of Twente, Enschede, the Netherlands
| | | | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Al-Khlaiwi T, Habib SS, Alshalan M, Al-Qhatani M, Alsowiegh S, Queid S, Alyabis O, Al-Khliwi H. Comparison of mobile phone usage and physical activity on glycemic status, body composition & lifestyle in male Saudi mobile phone users. Heliyon 2022; 8:e10646. [PMID: 36158074 PMCID: PMC9489969 DOI: 10.1016/j.heliyon.2022.e10646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/12/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022] Open
Abstract
Background &Objectives: This study aimed to compare the effects of mobile phone usage and physical activity on HbA1c, body composition, and lifestyle among male Saudi Arabian mobile phone users. Methods The study was conducted in the Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia from July 2020 to July 2021. The study sample consisted of 203 non-smoker male Saudi participants aged from 20 to 60 years who used mobile phones. Personal information was obtained through interviews using a proforma. The participants were divided into three groups according to their daily mobile phone usage: Group (1): less than 2 h, Group (2): 2–3 h, and Group (3): more than 3 h, and according to their physical activities: Group (1): sedentary, Group (2): average, and Group (3): athletes. Glycated Hemoglobin (HbA1c), Bioelectrical Impedance Analysis (BIA), and (SF) 36- items survey was performed. Results The mean age of 203 Saudi male adult participants was 28.0 ± 10.4 years. Mobile phone usage in the less than 2 h group was (33.5%), between 2-3 h (22.7%), and more than 3 h (43.8%) respectively. The mean age of Group (3), who used mobile phones for more than 3 h, was the lowest (23.9 ± 5.7). The results showed that HbA1C levels were almost equal in all three groups (5.8 ± 0.4, 5.7 ± 0.4, and 5.7 ± 0.3 respectively). In addition, emotional well-being and social functioning showed insignificant decreases in the more than 3 h group compared to other groups of mobile phone usage (69.3 ± 15.7, 70.9 ± 15.5, 65.2 ± 16.0, p = .091 and 82.9 ± 201, 81.2 ± 18.7, 77.6 ± 21.6, p = .267) respectively. No effect was detected between groups regarding various body compositions. Regarding physical activity classifications: the sedentary group constituted (36%) of the sample, whereas the average and athlete groups represented (53.7%) and (10.3%) of the total sample respectively. There was a significant decrease in BMI (29.6 ± 7.8, 25.3 ± 5.1,24.7 ± 5.6, p = .000), fat mass (24.7 ± 15.0, 17.1 ± 9.1, 15.3 ± 10.6, p = .000), and free fat mass (64.0 ± 10.2, 56.8 ± 8.7, 57.5 ± 8.0, p = .000) in the average and the athletic groups compared to the sedentary group. No significant difference was found in HbA1c between physical activity groups (5.8 ± 0.4, 5.7 ± 0.4, 5.7 ± 0.4, p = .218). Conclusions Mobile phone usage does not affect HbA1c and body composition parameters. Furthermore, we found the youngers used mobile phones longer than others. Insignificant decrease in emotional well-being and social functioning parameters of the style of life due to long mobile phone usage which needs more attention.
Collapse
Affiliation(s)
- Thamir Al-Khlaiwi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Syed Shahid Habib
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | - Saud Queid
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Omar Alyabis
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
14
|
Sun A, Zhao X, Li Z, Gao Y, Liu Q, Zhou H, Dong G, Wang C. Effects of Long-Term and Multigeneration Exposure of Caenorhabditis elegans to 9.4 GHz Microwaves. Bioelectromagnetics 2022; 43:336-346. [PMID: 35544783 DOI: 10.1002/bem.22409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/23/2022] [Accepted: 04/24/2022] [Indexed: 11/11/2022]
Abstract
A large number of studies on the biological effects of microwaves are carried out using rodents and cells, but the conditions are difficult to control, and the irradiation period is short; the results obtained have always been controversial and difficult to reproduce. In this study, we expose nematodes to an electromagnetic environment for a long-term and multigeneration period to explore the possible biological effects. Wild-type N2 strains of Caenorhabditis elegans are exposed to 9.4 GHz microwaves at a specific adsorption rate of 4 W/kg for 10 h per day from L1 larvae to adults. Then, adult worms are washed off, and the laid eggs are kept to hatch L1 larvae, which are continuously exposed to microwaves until passing through 20 generations. The worms of the 10th, 15th, and 20th generations are collected for index detection. Interestingly, we found that the fecundity of C. elegans decreased significantly in the exposed group from the 15th generation. At the same time, we found that the growth of C. elegans decreased, motility decreased, and oxidative stress occurred in the exposed group from the 10th generation, which may play roles in the decreased spawning in worms. We preliminarily believe that the microwave energy received by worms leads to oxidative stress, which causes a decrease in the spawning rate, and the underlying mechanism needs to be further studied. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Aihua Sun
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Xuelong Zhao
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Zhihui Li
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Yan Gao
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Qi Liu
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Hongmei Zhou
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Guofu Dong
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Changzhen Wang
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| |
Collapse
|
15
|
A Systematic Review to Define the Multi-Faceted Role of Lysine Methyltransferase SETD7 in Cancer. Cancers (Basel) 2022; 14:cancers14061414. [PMID: 35326563 PMCID: PMC8946661 DOI: 10.3390/cancers14061414] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Histone–lysine N-methyltransferase SETD7 regulates a variety of cancer-related processes, in a tissue-type and signalling context-dependent manner. To date, there is no consensus regarding SETD7´s biological functions, or potential for cancer diagnostics and therapeutics. In this work, we summarised the literature on SETD7 expression and function in cancer, to identify the contexts where SETD7 expression and targeting can lead to improvements in cancer diagnosis and therapy. The most studied cancers were found to be lung and osteosarcoma followed by colorectal and breast cancers. SETD7 mRNA and/or protein expression in human cancer tissue was evaluated using public databases and/or in-house cohorts, but its prognostic significance remains inconclusive. The most studied cancer-related processes regulated by SETD7 were cell proliferation, apoptosis, epithelial-mesenchymal transition, migration and invasion with special relevance to the pRb/E2F-1 pathway. SETD7 consistently prevented epithelial to mesenchymal transition in different cancer types, and inhibition of its function appears to be associated with improved response to DNA-damaging agents in most of the analysed studies. Stabilising mutations in SETD7 target proteins prevent their methylation or promote other competing post-translational modifications that can override the SETD7 effect. This indicates that a clear discrimination of these mutations and competing signalling pathways must be considered in future functional studies.
Collapse
|
16
|
Romeo S, Zeni O, Scarfì MR, Poeta L, Lioi MB, Sannino A. Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of In Vitro Studies on Mammalian Cells. Int J Mol Sci 2022; 23:2322. [PMID: 35216437 PMCID: PMC8877695 DOI: 10.3390/ijms23042322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In the last decades, experimental studies have been carried out to investigate the effects of radiofrequency (RF, 100 kHz-300 GHz) electromagnetic fields (EMF) exposure on the apoptotic process. As evidence-based critical evaluation of RF and apoptosis in vitro is lacking, we performed a scoping literature review with the aim of systematically mapping the research performed in this area and identifying gaps in knowledge. Eligible for inclusion were in vitro studies assessing apoptosis in mammalian cells exposed to RF-EMF, which met basic quality criteria (sham control, at least three independent experiments, appropriate dosimetry analysis and temperature monitoring). We conducted a systematic literature review and charted data in order to overview the main characteristics of included studies. From the 4362 papers retrieved with our search strategy, 121 were pertinent but, among them, only 42 met basic quality criteria. We pooled data with respect to exposure (frequency, exposure level and duration) and biological parameters (cell type, endpoint), and highlighted some qualitative trends with respect to the detection of significant effect of RF-EMF on the apoptotic process. We provided a qualitative picture of the evidence accumulated so far, and highlighted that the quality of experimental methodology still needs to be highly improved.
Collapse
Affiliation(s)
- Stefania Romeo
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Olga Zeni
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Maria Rosaria Scarfì
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Loredana Poeta
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Maria Brigida Lioi
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 85100 Potenza, Italy
| | - Anna Sannino
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| |
Collapse
|
17
|
Joushomme A, Garenne A, Dufossée M, Renom R, Ruigrok HJ, Chappe YL, Canovi A, Patrignoni L, Hurtier A, Poulletier de Gannes F, Lagroye I, Lévêque P, Lewis N, Priault M, Arnaud-Cormos D, Percherancier Y. Label-Free Study of the Global Cell Behavior during Exposure to Environmental Radiofrequency Fields in the Presence or Absence of Pro-Apoptotic or Pro-Autophagic Treatments. Int J Mol Sci 2022; 23:ijms23020658. [PMID: 35054844 PMCID: PMC8776001 DOI: 10.3390/ijms23020658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
It remains controversial whether exposure to environmental radiofrequency signals (RF) impacts cell status or response to cellular stress such as apoptosis or autophagy. We used two label-free techniques, cellular impedancemetry and Digital Holographic Microscopy (DHM), to assess the overall cellular response during RF exposure alone, or during co-exposure to RF and chemical treatments known to induce either apoptosis or autophagy. Two human cell lines (SH-SY5Y and HCT116) and two cultures of primary rat cortex cells (astrocytes and co-culture of neurons and glial cells) were exposed to RF using an 1800 MHz carrier wave modulated with various environmental signals (GSM: Global System for Mobile Communications, 2G signal), UMTS (Universal Mobile Telecommunications System, 3G signal), LTE (Long-Term Evolution, 4G signal, and Wi-Fi) or unmodulated RF (continuous wave, CW). The specific absorption rates (S.A.R.) used were 1.5 and 6 W/kg during DHM experiments and ranged from 5 to 24 W/kg during the recording of cellular impedance. Cells were continuously exposed for three to five consecutive days while the temporal phenotypic signature of cells behavior was recorded at constant temperature. Statistical analysis of the results does not indicate that RF-EMF exposure impacted the global behavior of healthy, apoptotic, or autophagic cells, even at S.A.R. levels higher than the guidelines, provided that the temperature was kept constant.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - André Garenne
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Mélody Dufossée
- Univ. Bordeaux, CNRS, IBGC/UMR 5095, F-33000 Bordeaux, France; (M.D.); (M.P.)
| | - Rémy Renom
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Hermanus Johannes Ruigrok
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Yann Loick Chappe
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Anne Canovi
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Lorenza Patrignoni
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Annabelle Hurtier
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Florence Poulletier de Gannes
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Isabelle Lagroye
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
- Paris Sciences et Lettres Research University, F-75006 Paris, France
| | - Philippe Lévêque
- Univ. Limoges, CNRS, XLIM/UMR 7252, F-87000 Limoges, France; (P.L.); (D.A.-C.)
| | - Noëlle Lewis
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Muriel Priault
- Univ. Bordeaux, CNRS, IBGC/UMR 5095, F-33000 Bordeaux, France; (M.D.); (M.P.)
| | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM/UMR 7252, F-87000 Limoges, France; (P.L.); (D.A.-C.)
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Yann Percherancier
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
- Correspondence: ; Tel.: +33-5-40-00-27-24
| |
Collapse
|
18
|
Pacchierotti F, Ardoino L, Benassi B, Consales C, Cordelli E, Eleuteri P, Marino C, Sciortino M, Brinkworth MH, Chen G, McNamee JP, Wood AW, Hooijmans CR, de Vries RBM. Effects of Radiofrequency Electromagnetic Field (RF-EMF) exposure on male fertility and pregnancy and birth outcomes: Protocols for a systematic review of experimental studies in non-human mammals and in human sperm exposed in vitro. ENVIRONMENT INTERNATIONAL 2021; 157:106806. [PMID: 34454359 PMCID: PMC8484860 DOI: 10.1016/j.envint.2021.106806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Radiofrequency Electromagnetic Fields (RF-EMF) at environmental level have been reported to induce adverse effects on the male reproductive system and developing embryos. However, despite the number of experiments conducted since the 1970s, the diversity of testing approaches and exposure conditions, inconsistencies among results, and dosimetric flaws have not yet permitted a solid assessment of the relationship between RF-EMF exposure and such effects, warranting a more systematic and methodologically rigorous approach to the evaluation of available data. OBJECTIVES This study aims at evaluating the effects of RF-EMF exposure on male fertility and pregnancy outcomes by a systematic review (SR) of experimental studies, conducted in compliance with international guidelines. The evidence will be organized into three streams: 1) Studies evaluating the impact of RF-EMF on the male reproductive system of experimental mammals; 2) studies evaluating the impact of RF-EMF on human sperm exposed in vitro; 3) studies evaluating the impact of RF-EMF on adverse pregnancy, birth outcomes and delayed effects in experimental mammals exposed in utero. STUDY ELIGIBILITY AND CRITERIA Eligible studies will include peer-reviewed articles reporting of original results about effects of controlled exposures to RF-EMF in the frequency range 100 kHz-300 GHz on the selected outcomes without any language or year-of-publication restrictions. Eligible studies will be retrieved by calibrated search strings applied to three electronic databases, PubMed, Scopus and EMF Portal and by manual search of the list of references of included papers and published reviews. STUDY APPRAISAL AND SYNTHESIS METHOD The internal validity of the studies will be evaluated using the Risk of Bias (RoB) Rating Tool developed by National Toxicology Program/Office of Health Assessment and Translation (NTP/OHAT) integrated with input from the SYRCLE RoB tool. Given sufficient commensurate data, meta-analyses will be performed, otherwise narrative syntheses will be produced. Finally, the certainty of the effects of RF-EMF exposure on male fertility and pregnancy and birth outcomes will be established following GRADE. FUNDING The study is financially supported by the World Health Organization. REGISTRATION OSF Registration DOI https://doi.org/10.17605/OSF.IO/7MUS3; PROSPERO CRD42021227729, CRD42021227746.
Collapse
Affiliation(s)
- Francesca Pacchierotti
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| | - Lucia Ardoino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Barbara Benassi
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Claudia Consales
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Eugenia Cordelli
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Patrizia Eleuteri
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Carmela Marino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maurizio Sciortino
- Section Technology Transfer to Developing Countries Relating to Climate Change, ENEA, Rome, Italy
| | - Martin H Brinkworth
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - James P McNamee
- Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Andrew William Wood
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Australia
| | - Carlijn R Hooijmans
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Rob B M de Vries
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|