1
|
Rapisarda P, Conti GO, Pulvirenti E, Cristaldi A, Favara C, Fiore M, Copat C, Grasso A, Castrogiovanni M, Mancini G, Ferrante M. Ecotoxicological evaluation of urban wastewater treatment plants: a Sicilian study. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:511-521. [PMID: 39633176 DOI: 10.1007/s10646-024-02840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
(1) Background: Ecotoxicological screening evaluates the acute toxicity of WWs. The Vibrio fischeri ecotoxicological assay analyses inlet and outlet wastewater samples from two urban wastewater treatment plants in Catania, Sicily, Italy. (2) Methods: The APAT CNR IRSA 8030 Man 29 method was used as method; (3) Results: The results showed toxicity values below the limit of the Italian Legislative Decree 152/06; (4) Conclusions: This monitoring study allows to verify the efficacy, and the outlet quality of WWs discharged to sea water. This ecotoxicological assay is a valuable tool for evaluating the combined toxicity of various pollutants that underline the total damage of the studied matrices detecting the true effect of complex mixtures on the environment and its fauna.
Collapse
Affiliation(s)
- Paola Rapisarda
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
- CRIAB, Interdepartmental Research Center for the implementation of physical, chemical and biological monitoring processes in Aquaculture and Bioremediation systems, London, UK
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
- CRIAB, Interdepartmental Research Center for the implementation of physical, chemical and biological monitoring processes in Aquaculture and Bioremediation systems, London, UK.
| | - Eloise Pulvirenti
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy.
- CRIAB, Interdepartmental Research Center for the implementation of physical, chemical and biological monitoring processes in Aquaculture and Bioremediation systems, London, UK.
| | - Antonio Cristaldi
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
- CRIAB, Interdepartmental Research Center for the implementation of physical, chemical and biological monitoring processes in Aquaculture and Bioremediation systems, London, UK
| | - Claudia Favara
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
- CRIAB, Interdepartmental Research Center for the implementation of physical, chemical and biological monitoring processes in Aquaculture and Bioremediation systems, London, UK
| | - Maria Fiore
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
- CRIAB, Interdepartmental Research Center for the implementation of physical, chemical and biological monitoring processes in Aquaculture and Bioremediation systems, London, UK
| | - Chiara Copat
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
- CRIAB, Interdepartmental Research Center for the implementation of physical, chemical and biological monitoring processes in Aquaculture and Bioremediation systems, London, UK
| | - Alfina Grasso
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
- CRIAB, Interdepartmental Research Center for the implementation of physical, chemical and biological monitoring processes in Aquaculture and Bioremediation systems, London, UK
| | - Maria Castrogiovanni
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
- CRIAB, Interdepartmental Research Center for the implementation of physical, chemical and biological monitoring processes in Aquaculture and Bioremediation systems, London, UK
| | - Giuseppe Mancini
- CRIAB, Interdepartmental Research Center for the implementation of physical, chemical and biological monitoring processes in Aquaculture and Bioremediation systems, London, UK
- Department of Electric, Electronic and Computer Engineering, University of Catania, Viale A. Doria 6, Catania, CT, 95125, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
- CRIAB, Interdepartmental Research Center for the implementation of physical, chemical and biological monitoring processes in Aquaculture and Bioremediation systems, London, UK
| |
Collapse
|
2
|
Bacha LF, Oliveira MDAP, Landuci F, Vicente AC, Paz PH, Lima M, Hilário M, Campos LS, Thompson M, Chueke C, Tschoeke D, Ottoni A, Teixera LM, Cosenza C, de Souza W, de Rezende C, Thompson C, Thompson F. Antibiotic-resistance genes and metals increase in polluted tropical rivers of the Baia da Ilha Grande, Rio de Janeiro, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178778. [PMID: 39986042 DOI: 10.1016/j.scitotenv.2025.178778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Baia da Ilha Grande (BIG), Rio de Janeiro, Brazil, is one of the largest bays in the world. BIG is important because it serves as a route for the mining and oil industries and plays a vital role in mariculture activities. However, BIG has suffered significant impacts in recent years due to increased pollution and climate change, culminating in a local mariculture collapse. We examined the pollution levels of the bay. Biogeochemical, microbiological, and metagenomics analyses were conducted in ten rivers during the 2022 dry and rainy seasons. Combined data analyses showed that the bay's ten most significant rivers are polluted and classified into three decreasing levels of pollution groups (P1-P3). The P1 group (Centro, Japuíba, Jacuecanga) had the worst-case scenario for all pollution types, and the highest number of the nearby populations, nautical workshops and hospitals. Whereas the P2 (Jacarei, Perequeaçu and Taquari) and P3 (Frade, Bracuí, Mambucaba, São Roque) had relatively reduced pollution, as shown mainly by fecal bacteria. Metals, such as Al (>0.3 mg/L), Fe (>1.4 mg/L), Pb (>0.15 mg/L), and resistance genes (∼2 % metagenomic profile) were also more abundant in P1. High levels of metals and antibiotic resistance genes were a strong indication of pollution. The results from this study shed light on the health status of BIG rivers for further conservation programs and public policies to prevent rivers and marine biodiversity losses, and they serves as a warning on the urgent need to treat effluents in the region.
Collapse
Affiliation(s)
- Leonardo F Bacha
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo de A P Oliveira
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Felipe Landuci
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Pedro H Paz
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Michele Lima
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcella Hilário
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucia S Campos
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mateus Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Caroline Chueke
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Adacto Ottoni
- Departamento de Engenharia Sanitária E Do Meio Ambiente (DESMA), Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Lúcia Martins Teixera
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos Cosenza
- Lab Fuzzy, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Carlos de Rezende
- Laboratory of Environmental Sciences (LCA), Center of Biosciences and Biotechnology (CBB), State University of Northern of Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - Cristiane Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Moreira DS, Santos G, Yanai AE, de Souza PB, de Melo PVF, Mota E. LoRaBB: An Algorithm for Parameter Selection in LoRa-Based Communication for the Amazon Rainforest. SENSORS (BASEL, SWITZERLAND) 2025; 25:1200. [PMID: 40006429 PMCID: PMC11859736 DOI: 10.3390/s25041200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
The interference of human activities in water bodies has contributed to a deterioration in water quality. With the advancement of the Internet of Things (IoT), aided by transmission technologies such as LoRa (Long Range), low-cost solutions have emerged for long-distance environment monitoring scenarios. One key challenge in such IoT-based systems is selecting LoRa transmission parameters to ensure efficient data exchange among nodes, adapting to varying network conditions. Well-known strategies adapt transmission parameters according to network context through information exchange among nodes and LoRa gateway(s). In this work, we introduce a novel LoRa parameter selection algorithm by incorporating three major LoRa metrics (RSSI, SNR, and PDR) and conducting a comprehensive characterization and validation in the forest environment to build a set of reference values of transmission quality, which are employed in a binary search methodology, utilizing the R-array, representing the transmission quality according to LoRa parameters. The experimental results indicate that the proposed algorithm achieves a 16.20% reduction in Time on Air (ToA). Furthermore, our algorithm optimized the transmission power (TP) selection, achieving at least 38% lower energy consumption than ADR TP parameters. These results highlight that our proposed algorithm can enhance the transmissions in a rainforest environment.
Collapse
Affiliation(s)
- Diogo Soares Moreira
- Institute of Computing (IComp), Federal University of Amazonas, Manaus 69080-900, Brazil; (G.S.); (P.B.d.S.); (P.V.F.d.M.); (E.M.)
| | - Gilmara Santos
- Institute of Computing (IComp), Federal University of Amazonas, Manaus 69080-900, Brazil; (G.S.); (P.B.d.S.); (P.V.F.d.M.); (E.M.)
| | - Angela Emi Yanai
- Biblioteca Central (BC), Federal University of Amazonas, Manaus 69080-900, Brazil;
| | - Pedro Barreto de Souza
- Institute of Computing (IComp), Federal University of Amazonas, Manaus 69080-900, Brazil; (G.S.); (P.B.d.S.); (P.V.F.d.M.); (E.M.)
| | - Paulo Victor Fernandes de Melo
- Institute of Computing (IComp), Federal University of Amazonas, Manaus 69080-900, Brazil; (G.S.); (P.B.d.S.); (P.V.F.d.M.); (E.M.)
| | - Edjair Mota
- Institute of Computing (IComp), Federal University of Amazonas, Manaus 69080-900, Brazil; (G.S.); (P.B.d.S.); (P.V.F.d.M.); (E.M.)
| |
Collapse
|
4
|
Ribeiro Trisotto LF, Figueredo CC, Gomes MP. Rivers at risks: The interplay of "COVID kit" medication misuse and urban waterway contaminants. CHEMOSPHERE 2025; 370:143933. [PMID: 39672345 DOI: 10.1016/j.chemosphere.2024.143933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
This study investigates the environmental impact of the widespread use of "COVID Kit" drugs-azithromycin (AZI), ivermectin (IVE), and hydroxychloroquine (HCQ)-in urban rivers of Curitiba in Brazil, during and after the COVID-19 pandemic. The research focuses on the occurrence and concentrations of these pharmaceuticals in water and sediment samples collected from key urban rivers. Concentrations of AZI, IVE, and HCQ in water ranged from 326 to 3340 ng/L, 130-3340 ng/L, and 304-3314 ng/L, respectively, while in sediment, they ranged from 18 to 249 ng/g, 21-480 ng/g, and 38-673 ng/g, respectively. Results indicate a significant increase in AZI, IVE, and HCQ concentrations during the pandemic. Concentrations of these drugs peaked in September 2020 and March 2021, declining after the start of Brazil's vaccination campaign. However, the levels of these pharmaceuticals remained elevated in some areas even after the decline in their usage. Environmental risk assessments were conducted to evaluate the potential ecological hazards posed by these pharmaceuticals, revealing the long-term persistence of these drugs in aquatic environments and their potential to contribute to antimicrobial resistance. The findings of this study underscore the critical need for robust regulatory measures and improved wastewater treatment processes to prevent pharmaceutical contamination in urban water systems, particularly during global health crises.
Collapse
Affiliation(s)
- Luiz Felipe Ribeiro Trisotto
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C. P. 19031, Curitiba, 81531-980, Paraná, Brazil
| | - Cleber Cunha Figueredo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
| | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C. P. 19031, Curitiba, 81531-980, Paraná, Brazil.
| |
Collapse
|
5
|
de Souza DCD, Viana LF, Kummrow F, Cardoso CAL, de Lima NA, Lacerda IAR, Crispim BDA, Barufatti A, Dias LAV, Florentino AC. Bioaccumulation of Metals in Fish Collected from Macapá Urban Aquatic Environments (Brazilian Amazon) and the Risks to Human Health. TOXICS 2025; 13:67. [PMID: 39997885 PMCID: PMC11860544 DOI: 10.3390/toxics13020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025]
Abstract
Macapá City, located in the Brazilian Amazon, faces critical aquatic pollution challenges due to inadequate sanitation infrastructure, leading to metal contamination in fish within its urban water bodies. Our study evaluated the concentrations of metals (Cu, Cd, Cr, Fe, Mn, Ni, Pb, Zn, and Hg) in muscle tissues of fish from igarapés, ressaca areas, and canals. Samples were collected from six sampling sites to investigate the bioaccumulation of these metals and their potential human health risks. All metals were quantified by atomic absorption spectrometry, except Hg, which was quantified by inductively coupled plasma optical emission spectrometry. Metal concentrations were determined in three carnivorous and seven omnivorous fish species. Cd concentrations exceeded the Brazilian maximum limit established for human consumption in all fish species evaluated. The estimated daily intake (EDI) of Pb and Hg exceeded their reference doses. Our risk assessment, which combined the risk quotient (RQ) for individual metals and the risk index (RI) for metal mixtures, indicated health risks associated with the consumption of fish collected from the study areas. These results demonstrated a worrying exposure to metals (mainly Cd, Pb, and Hg), highlighting the need for environmental management measures and continuous monitoring to protect public health in vulnerable urban areas.
Collapse
Affiliation(s)
- Debora Cristina Damasceno de Souza
- Programa de Pós-Graduação em Biodiversidade Tropical (PPGBIO), Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02-Jardim Marco Zero, Macapá 68903-419, AP, Brazil; (D.C.D.d.S.); (L.A.V.D.)
| | - Lucilene Finoto Viana
- Faculdade de Ciências Exatas e Tecnologia–FACET, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Federal da Grande Dourados (UFGD), Rod. Dourados Itahum km 12, Dourados 79804-970, MS, Brazil; (L.F.V.); (N.A.d.L.)
| | - Fábio Kummrow
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (Unifesp)-campus Diadema, Rua São Nicolau, 210-Centro, Diadema 09913-030, SP, Brazil;
| | - Claudia Andrea Lima Cardoso
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Universidade Estadual de Mato Grosso do Sul (UEMS), Rod. Dourados Itahum km 12, Dourados 79804-970, MS, Brazil;
| | - Nathalya Alice de Lima
- Faculdade de Ciências Exatas e Tecnologia–FACET, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Federal da Grande Dourados (UFGD), Rod. Dourados Itahum km 12, Dourados 79804-970, MS, Brazil; (L.F.V.); (N.A.d.L.)
| | - Izabelle Alexandra Rodrigues Lacerda
- Programa de Pós-Graduação em Ciências Ambientais (PPGCA), Departamento de Meio Ambiente e Desenvolvimento (DMAD), Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02-Jardim Marco Zero, Macapá 68903-419, AP, Brazil;
| | - Bruno do Amaral Crispim
- Universidade Estadual do Tocantins (UNITINS), Campus Augustinópolis, Rua Planalto, 601, Centro–CEP, Augustinópolis 77960-000, TO, Brazil;
| | - Alexeia Barufatti
- Programa de Pós-Graduação em Biodiversidade e Meio Ambiente (PPGBMA), Faculdade de Ciências Biológicas e Ambientais (FCBA), Universidade Federal da Grande Dourados (UFGD), Rod. Dourados Itahum km 12, Dourados 79804-970, MS, Brazil;
| | - Lúcio André Viana Dias
- Programa de Pós-Graduação em Biodiversidade Tropical (PPGBIO), Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02-Jardim Marco Zero, Macapá 68903-419, AP, Brazil; (D.C.D.d.S.); (L.A.V.D.)
| | - Alexandro Cezar Florentino
- Programa de Pós-Graduação em Ciências Ambientais (PPGCA), Departamento de Meio Ambiente e Desenvolvimento (DMAD), Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02-Jardim Marco Zero, Macapá 68903-419, AP, Brazil;
| |
Collapse
|
6
|
Yan Z, Feng C, Xu Y, Wang J, Huang N, Jin X, Wu F, Bai Y. Water temperature governs organophosphate ester dynamics in the aquatic food chain of Poyang Lake. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100401. [PMID: 38487363 PMCID: PMC10937237 DOI: 10.1016/j.ese.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/17/2024]
Abstract
Organophosphate esters (OPEs) are increasingly recognized as pervasive environmental contaminants, primarily from their extensive application in flame retardants and plasticizers. Despite their widespread presence, the intricacies of OPE bioaccumulation within aquatic ecosystems remain poorly understood, particularly the environmental determinants influencing their distribution and the bioaccumulation dynamics across aquatic food chains. Here we show that water temperature plays a crucial role in modulating the dispersion of OPE in the aquatic environment of Poyang Lake. We quantified OPE concentrations across various matrices, uncovering levels ranging from 0.198 to 912.622 ng L-1 in water, 0.013-493.36 ng per g dry weight (dw) in sediment, 0.026-41.92 ng per g wet weight (ww) in plankton, 0.13-2100.72 ng per g dw in benthic invertebrates, and 0.31-3956.49 ng per g dw in wild fish, highlighting a pronounced bioaccumulation gradient. Notably, the intestines emerged as the principal site for OPE absorption, displaying the highest concentrations among the seven tissues examined. Among the various OPEs, tris(chloroethyl) phosphate was distinguished by its significant bioaccumulation potential within the aquatic food web, suggesting a need for heightened scrutiny. The propensity for OPE accumulation was markedly higher in benthic invertebrates than wild fish, indicating a differential vulnerability within aquatic biota. This study lays a foundational basis for the risk assessment of OPEs as emerging contaminants and underscores the imperative to prioritize the examination of bioaccumulation effects, particularly in benthic invertebrates, to inform future environmental safeguarding strategies.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jindong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nannan Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
7
|
Luo Y, Jin X, Zhao J, Xie H, Guo X, Huang D, Giesy JP, Xu J. Ecological implications and drivers of emerging contaminants in Dongting Lake of Yangtze River Basin, China: A multi-substance risk analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134519. [PMID: 38733790 DOI: 10.1016/j.jhazmat.2024.134519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Emerging contaminants (ECs) are increasingly recognized as a global threat to biodiversity and ecosystem health. However, the cumulative risks posed by ECs to aquatic organisms and ecosystems, as well as the influence of anthropogenic activities and natural factors on these risks, remain poorly understood. This study assessed the mixed risks of ECs in Dongting Lake, a Ramsar Convention-classified Typically Changing Wetland, to elucidate the major EC classes, key risk drivers, and magnitude of anthropogenic and natural impacts. Results revealed that ECs pose non-negligible acute (30% probability) and chronic (70% probability) mixed risks to aquatic organisms in the freshwater lake ecosystem, with imidacloprid identified as the primary pollutant stressor. Redundancy analysis (RDA) and structural equation modeling (SEM) indicated that cropland and precipitation were major drivers of EC contamination levels and ecological risk. Cropland was positively associated with EC concentrations, while precipitation exhibited a dilution effect. These findings provide critical insights into the ecological risk status and key risk drivers in a typical freshwater lake ecosystem, offering data-driven support for the control and management of ECs in China.
Collapse
Affiliation(s)
- Ying Luo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Jianglu Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huiyu Xie
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xinying Guo
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Daizhong Huang
- Dongting Lake Eco-Environment Monitoring Centre of Hunan Province, 414000 Yueyang, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA
| | - Jian Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
8
|
da Silva Junior ALS, Santana GM, Nascimento MM, Cunha RL, Mesquita PRR, de Jesus RM. Illicit drugs in Brazil: environmental consequences and consumption patterns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47530-47551. [PMID: 39031313 DOI: 10.1007/s11356-024-34183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
This article reviews the literature on the consumption, street drug analysis, distribution, and main environmental impacts of illicit drugs in Brazil and analyzes the III National Survey on Drug Use by the Brazilian Population. The literature review is based on articles published in national and international journals between 2018 and 2023. This review consists of two analyses, the first of which addresses publications from the last 6 years on the monitoring of illicit drugs in Brazil and a second analysis based on the III National Survey on Drug Use that addresses the different possibilities of contact with drugs. The results revealed that the Southeast region of Brazil has the highest number of studies on the subject, especially in the state of São Paulo, while the North and Northeast regions have the lowest number of studies. The Midwest regions only have studies in the federal capital city, Brasília, while no studies were found in states bordering countries that produce illicit drugs, such as Paraguay and Bolivia. Analytical methods that use the concept of miniaturization, green chemistry, and the adoption of acceptance methods are frequent in most articles. Chemometric and statistical tools are widely used for the analysis, development, and conclusion of identification and quantification methods. Among the articles studied, there was a predominance in the analysis of cocaine metabolites and cannabis metabolites in the aquatic environment, where their concentrations ranged from 0.01 to 2000 ng L-1. Studies also reported bioaccumulation in marine biota with concentrations of up to 4.58 µg kg-1 for mussels and sediments, posing a risk to algae, crustaceans, and fish. Furthermore, the data show that the consumption of illicit drugs is increasing in Brazil, especially among young people.
Collapse
Affiliation(s)
- André Luiz Sampaio da Silva Junior
- Programa de Pós-Graduação Em Desenvolvimento E Meio Ambiente, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Gregório Mateus Santana
- Programa de Pós-Graduação Em Desenvolvimento E Meio Ambiente, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Madson Moreira Nascimento
- Centro Universitário SENAI CIMATEC, Av. Orlando Gomes, 1845-Piatã, Salvador, BA, 41650-010, Brazil
- Centro Tecnológico Agropecuário Do Estado da Bahia (CETAB), Secretaria da Agricultura, Pecuária, Irrigação, Pesca e Aquicultura-SEAGRI, Av. Milton Santos, 967, Salvador, BA, 40170-110, Brazil
| | - Ricardo Leal Cunha
- Laboratório de Toxicologia Forense, Instituto de Análises E Pesquisas Forenses (IAPF), Polícia Científica, São Cristóvão, SE, 49100-000, Brazil
| | - Paulo Roberto Ribeiro Mesquita
- Departamento de Ciências Exatas E Tecnológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rod. Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Raildo Mota de Jesus
- Programa de Pós-Graduação Em Desenvolvimento E Meio Ambiente, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil.
- Departamento de Ciências Exatas E Tecnológicas, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil.
- Centro Tecnológico Agropecuário Do Estado da Bahia (CETAB), Secretaria da Agricultura, Pecuária, Irrigação, Pesca e Aquicultura-SEAGRI, Av. Milton Santos, 967, Salvador, BA, 40170-110, Brazil.
| |
Collapse
|
9
|
Qiao Y, Feng C, Jin X, Yan Z, Feng W, Wang Y, Bai Y. Concentration levels and ecological risk assessment of typical organophosphate esters in representative surface waters of a megacity. ENVIRONMENTAL RESEARCH 2024; 251:118614. [PMID: 38462084 DOI: 10.1016/j.envres.2024.118614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Organophosphate esters (OPEs) have been widely used as flame retardants and plasticizers in consumer and industrial products. They have been found to have numerous exposure hazards. Recently, several OPEs have been detected in surface waters around the world, which may pose potential ecological risks to freshwater organisms. In this study, the concentration, spatial variation, and ecological risk of 15 OPEs in the Beiyun and Yongding rivers were unprecedentedly investigated by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and risk quotient (RQ) method. The result showed that triethyl phosphate (TEP), tri (2-chloroisopropyl) phosphate (TCPP) were the most abundant OPEs with average concentrations of 55.53 ng/L and 42.29 ng/L, respectively. The concentrations of OPEs in the Beiyun River are higher than in the Yongding River, and their levels were higher in densely populated and industrial areas. The risk assessment showed that there was insignificant from OPEs to freshwater organisms in these rivers (RQs <0.1). The risk was higher downstream than upstream, which was related to human-intensive industrial activities downstream in the Yongding River. The ecological risk of OPEs in surface waters worldwide was estimated by joint probability curves (JPCs), and the result showed that there was a moderate risk for tri (2-chloroethyl) phosphate (TCEP), a low risk for trimethyl phosphate (TMP), and insignificant for other OPEs. In addition, the QSAR-ICE-SSD model was used to calculate the hazardous concentration for 5% (HC5). This result validated the feasibility and accuracy of this model in predicting acute data of OPEs and reducing biological experiments on the toxicity of OPEs. These results revealed the ecological risk of OPEs and provided the scientific basis for environmental managers.
Collapse
Affiliation(s)
- Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ying Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
10
|
Oliveira Pereira EA, Warriner TR, Simmons DBD, Jobst KJ, Simpson AJ, Simpson MJ. Metabolomic-Based Comparison of Daphnia magna and Japanese Medaka Responses After Exposure to Acetaminophen, Diclofenac, and Ibuprofen. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1339-1351. [PMID: 38661510 DOI: 10.1002/etc.5876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Pharmaceuticals are found in aquatic environments due to their widespread use and environmental persistence. To date, a range of impairments to aquatic organisms has been reported with exposure to pharmaceuticals; however, further comparisons of their impacts across different species on the molecular level are needed. In the present study, the crustacean Daphnia magna and the freshwater fish Japanese medaka, common model organisms in aquatic toxicity, were exposed for 48 h to the common analgesics acetaminophen (ACT), diclofenac (DCF), and ibuprofen (IBU) at sublethal concentrations. A targeted metabolomic-based approach, using liquid chromatography-tandem mass spectrometry to quantify polar metabolites from individual daphnids and fish was used. Multivariate analyses and metabolite changes identified differences in the metabolite profile for D. magna and medaka, with more metabolic perturbations for D. magna. Pathway analyses uncovered disruptions to pathways associated with protein synthesis and amino acid metabolism with D. magna exposure to all three analgesics. In contrast, medaka exposure resulted in disrupted pathways with DCF only and not ACT and IBU. Overall, the observed perturbations in the biochemistry of both organisms were different and consistent with assessments using other endpoints reporting that D. magna is more sensitive to pollutants than medaka in short-term studies. Our findings demonstrate that molecular-level responses to analgesic exposure can reflect observations of other endpoints, such as immobilization and mortality. Thus, environmental metabolomics can be a valuable tool for selecting sentinel species for the biomonitoring of freshwater ecosystems while also uncovering mechanistic information. Environ Toxicol Chem 2024;43:1339-1351. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Erico A Oliveira Pereira
- Environmental Nuclear Magnetic Resonance Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - André J Simpson
- Environmental Nuclear Magnetic Resonance Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Environmental Nuclear Magnetic Resonance Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
de Souza SS, Bruce KHR, da Costa JC, Pereira D, da Silva GS, Val AL. Effects of climate change and mixtures of pesticides on the Amazonian fish Colossoma macropomum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171379. [PMID: 38431165 DOI: 10.1016/j.scitotenv.2024.171379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Several studies highlighted the complexity of mixing pesticides present in Amazonian aquatic environments today. There is evidence that indicates that ongoing climate change can alter the pattern of pesticide use, increasing the concentration and frequency of pesticide applications. It is known that the combination of thermal and chemical stress can induce interactive effects in aquatic biota, which accentuates cell and molecular damage. However, considering that the effects of climate change go beyond the increase in temperature the objective of this study was to evaluate the effect of climate change scenarios proposed by 6 th IPCC report and a mixture of pesticides on the tambaqui (Colossoma macropomum). The hypothesis of this study is that the negative effects will be accentuated by the combination of an extreme climate changes scenario and a mixture of pesticides. To test the hypothesis, juvenile tambaqui were exposed to a combination of four pesticides (chlorpyrifos, malathion, carbendazim and atrazine) in two scenarios, one that simulates current environmental conditions and another that predicted the environmental scenario for the year 2100. Fish were subjected to the experimental conditions for 96 h. At the end of the experiment, samples of blood, gills, liver, brain, and muscle were obtained for hematological, genotoxic, biochemical, and histopathological analyses. The results demonstrate that environmentally realistic concentrations of pesticides, when mixed, can alter the biochemical responses of tambaqui. The extreme scenario promotes hematological adjustments, but impairs branchial antioxidant enzymes. There is an interaction between the mixture of pesticides and the extreme scenario, accentuating liver tissue damage, which demonstrates that even increased activity of antioxidant and biotransformation enzymes were not sufficient to prevent liver damage.
Collapse
Affiliation(s)
- Samara Silva de Souza
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil.
| | - Kerem Hapuque Rodrigues Bruce
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| | - Jaqueline Custódio da Costa
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| | - Desyree Pereira
- Department of Morphology, Institute of Biological Science (ICB), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Grazyelle Sebrenski da Silva
- Department of Morphology, Institute of Biological Science (ICB), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| |
Collapse
|
12
|
Li J, Lu Y, Chen H, Zheng D, Yang Q, Campos LC. Synthetic musks in the natural environment: Sources, occurrence, concentration, and fate-A review of recent developments (2010-2023). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171344. [PMID: 38432391 DOI: 10.1016/j.scitotenv.2024.171344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Synthetic musks (SMs) have served as cost-effective substitutes for natural musk compounds in personal care and daily chemical products for decades. Their widespread use has led to their detection in various environmental matrices, raising concerns about potential risks. Despite numerous studies on SM levels in different natural environments, a systematic review of their contemporary presence is lacking. This review aims to address this gap by summarising recent research developments on SMs in diverse natural environments, including river water, lake water, seawater, estuarine water, groundwater, snow, meltwater, sediments, aquatic suspended matter, soils, sands, outdoor air, and atmospheric particulate matter. Covering the period from 2010 to 2023, the review focuses on four SM categories: nitro, polycyclic, macrocyclic, and alicyclic. It systematically examines their sources, occurrences, concentrations, spatial and temporal variations, and fate. The literature reveals widespread detection of SMs in the natural environment (freshwater and sediments in particular), with polycyclic musks being the most studied group. Both direct (e.g., wastewater discharges) and indirect (e.g., human recreational activities) sources contribute to SM presence. Levels of SMs vary greatly among studies with higher levels observed in certain regions, such as sediments in Southeast Asia. Spatial and temporal variations are also evident. The fate of SMs in the environment depends on their physicochemical properties and environmental processes, including bioaccumulation, biodegradation, photodegradation, adsorption, phase exchange, hydro-dilution effects. Biodegradation and photodegradation can decrease SM levels, but may produce more persistent and eco-toxic products. Modelling approaches have been employed to analyse SM fate, especially for indirect processes like photodegradation or long-distance atmospheric transport. Future studies should further investigate the complex fate if SMs and their environmental influence. This review enhances understanding of SM status in the natural environment and supports efforts to control environmental contamination.
Collapse
Affiliation(s)
- Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yu Lu
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; Department of Structural Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0085, USA
| | - Huanfa Chen
- Centre for Advanced Spatial Analysis, University College London, London WC1E 6BT, UK
| | - Duan Zheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qinlin Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Luiza C Campos
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
13
|
Sandoval MA, Calzadilla W, Vidal J, Brillas E, Salazar-González R. Contaminants of emerging concern: Occurrence, analytical techniques, and removal with electrochemical advanced oxidation processes with special emphasis in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123397. [PMID: 38272166 DOI: 10.1016/j.envpol.2024.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Instituto Tecnológico Superior de Guanajuato, Tecnológico Nacional de México, Carretera Estatal Guanajuato-Puentecillas Km. 10.5, 36262, Guanajuato, Mexico
| | - Wendy Calzadilla
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water, (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Jorge Vidal
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ricardo Salazar-González
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
14
|
Peer Muhamed Noorani KR, Flora G, Surendarnath S, Mary Stephy G, Amesho KTT, Chinglenthoiba C, Thajuddin N. Recent advances in remediation strategies for mitigating the impacts of emerging pollutants in water and ensuring environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119674. [PMID: 38061098 DOI: 10.1016/j.jenvman.2023.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 01/14/2024]
Abstract
The proliferation of emerging pollutants (EPs), encompassing a range of substances such as phthalates, phenolics, pharmaceuticals, pesticides, personal care products, surfactants, and disinfection agents, has become a significant global concern due to their potential risks to the environment and human well-being. Over the past two decades, numerous research studies have investigated the presence of EPs in wastewater and aquatic ecosystems, with the United States Environmental Protection Agency (USEPA) categorizing these newly introduced chemical compounds as emerging contaminants due to their poorly understood impact. EPs have been linked to adverse health effects in humans, including genotoxic and cytotoxic effects, as well as conditions such as obesity, diabetes, cardiovascular disease, and reproductive abnormalities, often associated with their estrogenic action. Microalgae have shown promise in the detoxification of both inorganic and organic contaminants, and several large-scale microalgal systems for wastewater treatment have been developed. However, the progress of algal bioremediation can be influenced by accidental contaminations and operational challenges encountered in pilot-scale research. Microalgae employ various processes, such as bioadsorption, biouptake, and biodegradation, to effectively remediate EPs. During microalgal biodegradation, complex chemical compounds are transformed into simpler substances through catalytic metabolic degradation. Integrating algal bioremediation with existing treatment methodologies offers a viable approach for efficiently eliminating EPs from wastewater. This review focuses on the use of algal-based biological remediation processes for wastewater treatment, the environmental impacts of EPs, and the challenges associated with implementing algal bioremediation systems to effectively remove emerging pollutants.
Collapse
Affiliation(s)
- Kalilur Rahman Peer Muhamed Noorani
- National Repository for Microalgae and Cyanobacteria - Freshwater (NRMC-F), (Sponsored by DBT, Govt. of India), Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - G Flora
- PG and Research Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - S Surendarnath
- Department of Mechanical Engineering, DVR & Dr. HS MIC College of Technology (A), Vijayawada, 521 180, Andhra Pradesh, India
| | - G Mary Stephy
- PG and Research Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia; Destinies Biomass Energy and Farming Pty Ltd, P.O.Box 7387, Swakomund, Namibia
| | | | - Nooruddin Thajuddin
- National Repository for Microalgae and Cyanobacteria - Freshwater (NRMC-F), (Sponsored by DBT, Govt. of India), Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, India; School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
15
|
Martínez-Megías C, Arenas-Sánchez A, Manjarrés-López D, Pérez S, Soriano Y, Picó Y, Rico A. Pharmaceutical and pesticide mixtures in a Mediterranean coastal wetland: comparison of sampling methods, ecological risks, and removal by a constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14593-14609. [PMID: 38277107 PMCID: PMC10884053 DOI: 10.1007/s11356-024-31968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024]
Abstract
Pharmaceuticals and pesticides can be considered hazardous compounds for Mediterranean coastal wetland ecosystems. Although many of these compounds co-occur in environmental samples, only a few studies have been dedicated to assessing the ecotoxicological risks of complex contaminant mixtures. We evaluated the occurrence of 133 pharmaceuticals and pesticides in 12 sites in a protected Mediterranean wetland, the Albufera Natural Park (ANP), based on conventional grab sampling and polar organic chemical integrative samplers (POCIS). We assessed acute and chronic ecological risks posed by these contaminant mixtures using the multi-substance Potentially Affected Fraction (msPAF) approach and investigated the capacity of a constructed wetland to reduce chemical exposure and risks. This study shows that pharmaceuticals and pesticides are widespread contaminants in the ANP, with samples containing up to 75 different compounds. POCIS samplers were found to be useful for the determination of less predictable exposure profiles of pesticides occurring at the end of the rice cultivation cycle, while POCIS and grab samples provide an accurate method to determine (semi-)continuous pharmaceutical exposure. Acute risks were identified in one sample, while chronic risks were determined in most of the collected samples, with 5-25% of aquatic species being potentially affected. The compounds that contributed to the chronic risks were azoxystrobin, ibuprofen, furosemide, caffeine, and some insecticides (diazinon, imidacloprid, and acetamiprid). The evaluated constructed wetland reduced contaminant loads by 45-73% and reduced the faction of species affected from 25 to 6%. Our study highlights the need of addressing contaminant mixture effects in Mediterranean wetlands and supports the use of constructed wetlands to reduce contaminant loads and risks in areas with high anthropogenic pressure.
Collapse
Affiliation(s)
- Claudia Martínez-Megías
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Madrid, Spain
- IMDEA Water Institute, Parque Científico Tecnológico de La Universidad de Alcalá, Punto Com, 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Alba Arenas-Sánchez
- IMDEA Water Institute, Parque Científico Tecnológico de La Universidad de Alcalá, Punto Com, 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Diana Manjarrés-López
- ONHEALTH, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Sandra Pérez
- ONHEALTH, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Yolanda Soriano
- Food and Environmental Research Group of the University of Valencia (SAMA-UV), Research Desertification Centre (CIDE) (CSIC-UV-GV), CV-315 Road, Km 10.7, 46113, Moncada, Valencia, Spain
| | - Yolanda Picó
- Food and Environmental Research Group of the University of Valencia (SAMA-UV), Research Desertification Centre (CIDE) (CSIC-UV-GV), CV-315 Road, Km 10.7, 46113, Moncada, Valencia, Spain
| | - Andreu Rico
- IMDEA Water Institute, Parque Científico Tecnológico de La Universidad de Alcalá, Punto Com, 2, 28805, Alcalá de Henares, Madrid, Spain.
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
16
|
Ding TT, Liu SS, Wang ZJ, Huang P, Tao MT, Gu ZW. A novel mixture sampling strategy combining latin hypercube sampling with optimized one factor at a time method: A case study on mixtures of antibiotics and pesticides. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132568. [PMID: 37734309 DOI: 10.1016/j.jhazmat.2023.132568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Global sensitivity analysis in conjunction with quantitative high-throughput screening presents a novel technique for identifying the key components that induce the toxicities of mixtures. However, the mixtures currently designed with this method suffer from unequal frequency sampling, repeated mixtures, and only odd factor levels being considered. Accordingly, we use latin hypercube sampling to generate the starting points of the trajectories to achieve equal frequency sampling and non-repeated mixtures, as well as apply different one factor at a time methods for factors with odd and even levels to achieve suitability for factors with both odd and even levels. This method is called LHS-OAT. LHS-OAT was successfully applied to design 110 equal-frequency and non-repeated mixtures consisting of six antibiotics and four pesticides. It was found that four factors, roxithromycin (A5), tetracycline (A6), dichlorvos (P1), and demeton-S (P3), induce the toxicities of mixtures, and A5 and P1 in the Shaying River Basin have risk quotients ≥ 1. Additionally, we developed the toxicity deviation ratio to correct the risk quotients of interacting mixtures for effective risk assessments. This study provides a rational and effective method for mixture design that accurately identifies the important factors that induce the toxicities of mixtures.
Collapse
Affiliation(s)
- Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ze-Jun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
17
|
Qiu C, Li Y, Wu Y, Wright A, Naylor L, Lai Z, Jia Y, Liu H. Research on water quality improvement of plain irrigation area based on multi-scenario simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123427-123438. [PMID: 37982950 DOI: 10.1007/s11356-023-31010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
Water diversion projects have proven to be effective interventions to improve water quality in irrigation ditches. This study focused on quantifying the water quality improvement by utilizing a hydrodynamic water quality model in Funing County, Yancheng City. The model performed a spatial analysis of pollution concentrations across the study area. Various optimization scenarios were designed based on the diversion project and hydrological structure connectivity. The model was used to simulate changes in nutrient concentrations under different scenarios. The findings of this study were as follows: (1) Rural areas had lower nutrient concentrations and superior hydrological connectivity than urban areas. (2) The effect of water quality improvement correlated positively with increased flow rates introduced by the diversion project. Specifically, when the flow rate increased by 50%, the average reductions were 20% for NH4+, 5.2% for TN, and 5.1% for TP. Furthermore, introduced clean water led to more pronounced improvements in the overall regional water quality. (3) Although increasing the number of ditches improved water pollution concentration, the impact was not significant. (4) Model simulation results showed that 18 to 45% water diversion intensity effectively improved water quality, and the optimal water diversion intensity was 27 to 30%. The optimal water diversion intensities offered valuable insights for managing this region. The study's methods contributed to the promotion of sustainable development in regional water resources and the integrated management of the water environment.
Collapse
Affiliation(s)
- Chunqi Qiu
- School of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Jiangsu, 210023, China
| | - Yufeng Li
- School of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Jiangsu, 210023, China.
| | - Yanhui Wu
- School of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Jiangsu, 210023, China
| | - Alan Wright
- Indian River Research and Education Center, Soil and Water Sciences Department, University of Florida-IFAS, 2199 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Larissa Naylor
- School of Geographical & Earth Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Zhengqing Lai
- School of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Jiangsu, 210023, China
| | - Yue Jia
- School of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Jiangsu, 210023, China
| | - Hongyu Liu
- School of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Jiangsu, 210023, China
| |
Collapse
|
18
|
Gomes DF, da Silva Pinto TJ, Raymundo LB, da Fontoura Sperandei V, Daam M, Moreira RA, Rocha O. Ecological risk assessment for metals in sediment and waters from the Brazilian Amazon region. CHEMOSPHERE 2023; 345:140413. [PMID: 37844699 DOI: 10.1016/j.chemosphere.2023.140413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Pollution by metals is a matter of concern around the world. In recent decades, the high population growth in urban centers has significantly magnified the entry of these pollutants into aquatic ecosystems. The Amazon region, intense migratory flow, gold mining, and industrialization have been considered the main driving forces for increasing metal pollution. Thus, the main aim of this study is to conduct, for the first time, an Ecological Risk Assessment (ERA) based on metal concentrations measured in the sediment and water of several aquatic environments from the Amazon basin, based on the risk quotient values (RQ = measured environmental concentration - MEC/predicted no effect concentration - PNEC). In addition, the metal contamination factor (CF) was estimated. Although metal concentrations in water were generally low, these values were far above the limits established by current national legislation in many areas, showing higher concentrations for the metals Co, Pb, Cr, Cu, and Ni. Concentrations of Mn, Cu, Ba, Pb, Co, Ni, Cr, Zn, Cd, and As were especially high in the sediment for several evaluated environments. The ERA for the water compartment revealed that 56% of the studied areas presented high risk (RQ > 1) for aquatic biota. In the sediment, 66% of the sites presented a high risk and 40% medium risk (RQ = 0.1-1). The CF indicated that 49% of the sampling points had high contamination and only 24%, had low contamination. These results reveal that monitoring studies in the Amazon region, provides important information so that public policies for the preservation of water resources can be strengthened in the Amazon.
Collapse
Affiliation(s)
- Diego Ferreira Gomes
- DEBE - Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís Km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil.
| | - Thandy Júnio da Silva Pinto
- Institute of Chemistry, University of Campinas - UNICAMP, Rua Josué de Castro, S/n - Cidade Universitária, 13083-970, Campinas, São Paulo, Brazil
| | - Larissa Broggio Raymundo
- DEBE - Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís Km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Vinicius da Fontoura Sperandei
- DEBE - Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís Km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Michiel Daam
- CENSE - Center for Environmental and Sustainability Research & CHANGE - Global Change and Sustainability Institute, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Raquel Aparecida Moreira
- Institute of Biological Sciences, Federal University of Rio Grande - FURG, Avenida Itália, Km 8, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Odete Rocha
- DEBE - Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís Km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
19
|
Moulatlet GM, Yacelga N, Rico A, Mora A, Hauser-Davis RA, Cabrera M, Capparelli MV. A systematic review on metal contamination due to mining activities in the Amazon basin and associated environmental hazards. CHEMOSPHERE 2023; 339:139700. [PMID: 37532203 DOI: 10.1016/j.chemosphere.2023.139700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Metal contamination associated with mining activities has been considered one of the main environmental pollution problems in the Amazon region. Understanding the levels of metal contamination from mining activities requires a good understanding of background metal concentrations, which may vary notably according to the geology/lithology characteristics of the region, soil type, and predominant biogeochemical processes. This review assessed 50 papers and reports published between 1989 and 2020 describing environmental concentrations of different metals and metalloids (As, Hg, Mn, Fe, Cd, Cu, Cr, Pb, Ni, and Zn) in water and sediments of mining and non-mining areas in five geographic regions of the Amazon basin. Metal enrichment caused by mining activities was calculated and exposure concentrations were compared with sediment and water quality standards set for the protection of aquatic life. Significant enrichments of Cd, Cu, Cr, Fe, Hg, Mn, Ni and Zn were observed in mining areas in both sediment and water. Regarding background levels in the different geographic regions, the highest prevalence of metal enrichment (i.e., concentrations 10 to 100-fold higher than mean background values) in sediment samples was found for Fe (100% of samples), Ni (90%), and Mn (69%). For water, high prevalence of metal enrichment occurred for Zn, Mn, and Fe (100% of samples), and for Hg (86%). Hg, Fe, Pb, Cu, Cd, Ni and Zn exceeded water and/or sediment quality standards in a significant number of samples in the proximity of mining areas. This study indicates that mining activities significantly contribute to water and sediment contamination across the Amazon basin, posing hazards for freshwater ecosystems and potentially having human health implications.
Collapse
Affiliation(s)
- Gabriel M Moulatlet
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - Naomi Yacelga
- Facultad de Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla de Zaragoza, 72453, Mexico
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Marcela Cabrera
- Facultad de Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km 9.5, 24157, Ciudad del Carmen, Campeche, Mexico.
| |
Collapse
|
20
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
21
|
Rizzi C, Villa S, Waichman AV, de Souza Nunes GS, de Oliveira R, Vighi M, Rico A. Occurrence, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in the Amazon river. CHEMOSPHERE 2023:139285. [PMID: 37353170 DOI: 10.1016/j.chemosphere.2023.139285] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
The Amazon is the largest river by discharge volume and one of the most biodiverse biomes in the world. Lately, there has been a rapid increase of the urban population in the region, which has been translated into a growing emission of organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) into surface water bodies. This study provides the most comprehensive evaluation of the PAH contamination levels in surface waters of the Amazon basin. We investigated the occurrence and potential sources of 16 priority PAHs and characterised their risks for freshwater ecosystems. For this, we took 40 water samples from different sites along the Brazilian part of the Amazon River, including three major tributaries, and smaller rivers crossing the main urban areas. The results of this study show that PAHs are widespread contaminants in rivers of the Brazilian Amazon. The sum of the total concentration of the 16 priority PAHs reached values of 134 ng L-1 in the Amazon River, and 163 ng L-1 near densely populated areas. On the other hand, the total PAH concentration was generally lower in the monitored tributaries. In most samples, the contamination pattern was dominated by high molecular weight PAHs, suggesting a major contribution of pyrogenic sources, although petrogenic contamination was also present in some locations near urban areas. We assessed ecological risks posed by PAH mixtures using a hazard index. The results indicated that PAH contamination is not likely to pose direct toxic effects for Amazonian freshwater organisms, however continued monitoring is recommended near densely populated areas.
Collapse
Affiliation(s)
- Cristiana Rizzi
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, Milan, 20126, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, Milan, 20126, Italy
| | - Andrea V Waichman
- Federal University of the Amazon, Institute of Biological Sciences, Av. Rodrigo Otávio Jordao Ramos 3000, Manaus, 69077-000, Brazil
| | - Gabriel Silva de Souza Nunes
- Federal University of Pernambuco, Department of Zoology, Av. Prof Moraes Rego 1235, Cidade Universitária, Recife, 50670-901, Brazil
| | - Rhaul de Oliveira
- University of Campinas, School of Technology, Rua Paschoal Marmo 1888 - Jd. Nova Itália, Limeira, 13484-332, Brazil
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, 28805, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José, Beltrán 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
22
|
Chen M, Hong Y, Jin X, Guo C, Zhao X, Liu N, Lu H, Liu Y, Xu J. Ranking the risks of eighty pharmaceuticals in surface water of a megacity: A multilevel optimization strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163184. [PMID: 37001676 DOI: 10.1016/j.scitotenv.2023.163184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
Pharmaceuticals in freshwater posed ecological risks to aquatic ecosystem, however, most risk assessments of pharmaceuticals were conducted at screening level, which were limited by the availability of the toxicity data. In this study, risks of 80 pharmaceuticals including 35 antibiotics, 13 antiviral drugs, 13 illicit drugs, and 19 antidepressants in surface water of Beijing were assessed with a proposed multilevel environmental risk optimization strategy. Target pharmaceuticals were detected in surface water samples with the detection frequency from 1.7 % to 100 % and the total concentrations from 31.1 ng/L to 2708 ng/L. Antiviral drugs were the dominant pharmaceuticals. Preliminary screening-level risk assessment indicated that 20 pharmaceuticals posed low to high risks with risk quotient from 0.14 (chloroquine diphosphate) to 27.8 (clarithromycin). Thirteen pharmaceuticals were recognized with low to high risks by an optimized risk assessment method. Of them, the refined probabilistic risk assessment of joint probability curves coupling with a quantitative structure activity relationship-interspecies correlation estimation (QSAR-ICE) model was applied. Clarithromycin, erythromycin and ofloxacin were identified to pose low risks with maximum risk products (RP) of 1.23 %, 0.41 % and 0.35 %, respectively, while 10 pharmaceuticals posed de minimis risks. Structural equation modeling disclosed that human land use and climate conditions influenced the risks of pharmaceuticals by indirectly influencing the concentrations of pharmaceuticals. The results indicated that the multilevel strategy coupling with QSAR-ICE model was appropriate and effective for screening priority pollutants, and the strategy can be used to prioritize pharmaceuticals and other emerging contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; China National Environmental Monitoring Centre, Beijing 100012, China
| | - Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haijian Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
23
|
Ding TT, Liu SS, Wang ZJ, Huang P, Gu ZW, Tao MT. A novel equal frequency sampling of factor levels (EFSFL) method is applied to identify the dominant factor inducing the combined toxicities of 13 factors. ENVIRONMENT INTERNATIONAL 2023; 175:107940. [PMID: 37119652 DOI: 10.1016/j.envint.2023.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 05/22/2023]
Abstract
The research framework combining global sensitivity analysis (GSA) with quantitative high-throughput screening (qHTS), called GSA-qHTS, provides a potentially feasible way to screen for important factors that induce toxicities of complex mixtures. Despite its value, the mixture samples designed using the GSA-qHTS technique still have a shortage of unequal factor levels, which leads to an asymmetry in the importance of elementary effects (EEs). In this study, we developed a novel method for mixture design that enables equal frequency sampling of factor levels (called EFSFL) by optimizing both the trajectory number and the design and expansion of the starting points for the trajectory. The EFSFL has been successfully employed to design 168 mixtures of 13 factors (12 chemicals and time) that each have three levels. By means of high-throughput microplate toxicity analysis, the toxicity change rules of the mixtures are revealed. Based on EE analysis, the important factors affecting the toxicities of the mixtures are screened. It was found that erythromycin is the dominant factor and time is an important non-chemical factor in mixture toxicities. The mixtures can be classified into types A, B, and C mixtures according to their toxicities at 12 h, and all the types B and C mixtures contain erythromycin at the maximum concentration. The toxicities of the type B mixtures increase firstly over time (0.25 ∼ 9 h) and then decrease (12 h), while those of the type C mixtures consistently increase over time. Some type A mixtures produce stimulation that increases with time. With the present new approach to mixture design, the frequency of factor levels in mixture samples is equal. Consequently, the accuracy of screening important factors is improved based on the EE method, providing a new method for the study of mixture toxicity.
Collapse
Affiliation(s)
- Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ze-Jun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
24
|
Rico A, Redondo-Hasselerharm PE, Vighi M, Waichman AV, Nunes GSDS, de Oliveira R, Singdahl-Larsen C, Hurley R, Nizzetto L, Schell T. Large-scale monitoring and risk assessment of microplastics in the Amazon River. WATER RESEARCH 2023; 232:119707. [PMID: 36773351 DOI: 10.1016/j.watres.2023.119707] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are one of the most widespread contaminants worldwide, yet their risks for freshwater ecosystems have seldom been investigated. In this study, we performed a large monitoring campaign to assess the presence and risks of MPs in Amazonian freshwater ecosystems. We investigated MP pollution in 40 samples collected along 1500 km in the Brazilian Amazon, including the Amazon River, three major tributaries, and several streams next to the most important urban areas. MPs in the 55-5000 µm size range were characterized (size, shape, color) by microscopy and identified (polymer composition) by infrared spectroscopy. Ecotoxicological risks were assessed using chronic Species Sensitivity Distributions for effects triggered by food dilution and tissue translocation using data alignment methods that correct for polydispersity of environmental MPs and bioaccessibility. This study shows that MPs are ubiquitous contaminants in Amazonian freshwater ecosystems, with measured concentrations (55-5000 µm) ranging between 5 and 152 MPs/m3 in the Amazon River and its main tributaries, and between 23 and 74,550 MPs/m3 in urban streams. The calculated Hazardous Concentration for the 5% of species (HC5) derived from the SSDs for the entire MP range (1-5000 µm) were 1.6 × 107 MPs/m3 (95% CI: 1.2 × 106 - 4.0 × 108) for food dilution, and 1.8 × 107 MPs/m3 (95% CI: 1.5 × 106 - 4.3 × 108) for translocation. Rescaled exposure concentrations (1-5000 µm) in the Amazon River and tributaries ranged between 6.0 × 103 and 1.8 × 105 MPs/m3, and were significantly lower than the calculated HC5 values. Rescaled concentrations in urban streams ranged between 1.7 × 105 and 5.7 × 108 MPs/m3, and exceeded both calculated HC5 values in 20% of the locations. This study shows that ecological impacts by MP contamination are not likely to happen in the Amazon River and its major tributaries. However, risks for freshwater organisms may be expected in near densely populated areas, such as the cities of Manaus or Belem, which have limited wastewater treatment facilities.
Collapse
Affiliation(s)
- Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain; IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, Alcalá de Henares, Madrid 28805, Spain.
| | - Paula E Redondo-Hasselerharm
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, Alcalá de Henares, Madrid 28805, Spain
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, Alcalá de Henares, Madrid 28805, Spain
| | - Andrea V Waichman
- Federal University of the Amazon, Institute of Biological Sciences, Av. Rodrigo Otávio Jordao Ramos 3000, Manaus 69077-000, Brazil
| | - Gabriel Silva de Souza Nunes
- Federal University of Pernambuco, Department of Zoology, Av. Prof Moraes Rego 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Rhaul de Oliveira
- University of Campinas, School of Technology, Rua Paschoal Marmo 1888 - Jd. Nova Itália, Limeira 13484-332, Brazil
| | | | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Gaustadelléen 21, Oslo 0349, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Gaustadelléen 21, Oslo 0349, Norway; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 62500, Czech Republic
| | - Theresa Schell
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, Alcalá de Henares, Madrid 28805, Spain
| |
Collapse
|
25
|
khalidi-idrissi A, Madinzi A, Anouzla A, Pala A, Mouhir L, Kadmi Y, Souabi S. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-22. [PMID: 37360558 PMCID: PMC10019435 DOI: 10.1007/s13762-023-04867-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
Pharmaceuticals and personal care products present potential risks to human health and the environment. In particular, wastewater treatment plants often detect emerging pollutants that disrupt biological treatment. The activated sludge process is a traditional biological method with a lower capital cost and limited operating requirements than more advanced treatment methods. In addition, the membrane bioreactor combines a membrane module and a bioreactor, widely used as an advanced method for treating pharmaceutical wastewater with good pollution performance. Indeed, the fouling of the membrane remains a major problem in this process. In addition, anaerobic membrane bioreactors can treat complex pharmaceutical waste while recovering energy and producing nutrient-rich wastewater for irrigation. Wastewater characterizations have shown that wastewater's high organic matter content facilitates the selection of low-cost, low-nutrient, low-surface-area, and effective anaerobic methods for drug degradation and reduces pollution. However, to improve the biological treatment, researchers have turned to hybrid processes in which all physical, chemical, and biological treatment methods are integrated to remove various emerging contaminants effectively. Hybrid systems can generate bioenergy, which helps reduce the operating costs of the pharmaceutical waste treatment system. To find the most effective treatment technique for our research, this work lists the different biological treatment techniques cited in the literature, such as activated sludge, membrane bioreactor, anaerobic treatment, and hybrid treatment, combining physicochemical and biological techniques.
Collapse
Affiliation(s)
- A. khalidi-idrissi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Madinzi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Pala
- Environmental Research and Development Center (CEVMER), Dokuz Eylul University, Izmir, Turkey
| | - L. Mouhir
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - Y. Kadmi
- CNRS, UMR 8516 - LASIR, University Lille, 59000 Lille, France
| | - S. Souabi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| |
Collapse
|
26
|
Chen M, Jin X, Liu Y, Guo L, Ma Y, Guo C, Wang F, Xu J. Human activities induce potential aquatic threats of micropollutants in Danjiangkou Reservoir, the largest artificial freshwater lake in Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157843. [PMID: 35934027 DOI: 10.1016/j.scitotenv.2022.157843] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Freshwater biodiversity and ecosystem services may decline because of toxicant input, and other environmental variables often co-occur with contaminants to jeopardize the freshwater ecosystem. In this study, Danjiangkou Reservoir (DJKR) in central China was selected as the target research area to investigate the impact of multiple categories of micropollutants coupled with other stressors on the reservoir ecosystem. A total of 140 samples were collected from 28 sites in DJKR, and 124 micropollutants, including pesticides, organophosphate esters (OPEs), psychoactive substances, antiviral drugs, and pharmaceutical and personal care products, were quantified. A total of 108 micropollutants were detected in the water samples, with sum concentrations ranging from 82.35 ng·L-1 to 1436.57 ng·L-1, and 71 of them had a detection frequency above 50 %, indicating the prevailing micropollutant contamination in the reservoir. The most severe pollution and risks were observed in the tributaries of DJKR. Pesticides (neonicotinoid and triazine) and OPEs were the major contributors to the ecological risk in the reservoir. Insecticides, herbicides, and OPEs accounted for the majority of the risks to fish, algae, and invertebrates, respectively. The determined priority pollutants should be paid increased attention. Environmental variables and human activities, such as human land use, induced the potential aquatic threats of micropollutants in DJKR. Results demonstrated that micropollutant pollution was one of the dominant pressures faced by aquatic organisms and human beings, and human activities played important roles as well.
Collapse
Affiliation(s)
- Miao Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li Guo
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, China
| | - Yu Ma
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fan Wang
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, China
| | - Jian Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
27
|
Chaves MDJS, Kulzer J, Pujol de Lima PDR, Barbosa SC, Primel EG. Updated knowledge, partitioning and ecological risk of pharmaceuticals and personal care products in global aquatic environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1982-2008. [PMID: 36124562 DOI: 10.1039/d2em00132b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the occurrence of pharmaceuticals and personal care products (PPCPs) in aquatic environments has generated increasing public concern. In this review, data on the presence of PPCPs in environmental compartments from the past few years (2014-2022) are summarized by carrying out a critical survey of the partitioning among water, sediment, and aquatic organisms. From the available articles on PPCP occurrence in the environment, in Web of Science and Scopus databases, 185 articles were evaluated. Diclofenac, carbamazepine, caffeine, ibuprofen, ciprofloxacin, and sulfamethoxazole were reported to occur in 85% of the studies in at least one of the mentioned matrices. Risk assessment showed a moderate to high environmental risk for these compounds worldwide. Moreover, bioconcentration factors showed that sulfamethoxazole and trimethoprim can bioaccumulate in aquatic organisms, while ciprofloxacin and triclosan present bioaccumulation potential. Regarding spatial distribution, the Asian and European continents presented most studies on the occurrence and effects of PPCPs on the environment, while Africa and Asia are the most contaminated continents. In addition, the impact of COVID-19 on environmental contamination by PPCPs is discussed.
Collapse
Affiliation(s)
- Marisa de Jesus Silva Chaves
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Jonatas Kulzer
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Paula da Rosa Pujol de Lima
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Sergiane Caldas Barbosa
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Ednei Gilberto Primel
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| |
Collapse
|
28
|
Rico A, de Oliveira R, Silva de Souza Nunes G, Rizzi C, Villa S, De Caroli Vizioli B, Montagner CC, Waichman AV. Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. CHEMOSPHERE 2022; 291:132821. [PMID: 34758362 DOI: 10.1016/j.chemosphere.2021.132821] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The use of pesticides in households and peri-urban areas of the Amazon has increased notably during the last years. Yet, the presence of these contaminants in Amazonian freshwater ecosystems remains unexplored. Here, we assessed the exposure to 18 pesticides and 5 transformation products in the Amazon River and in the urban streams of Manaus, Santarém, Macapá, and Belém (Brazil). Pesticide concentrations were analyzed by liquid and gas chromatography methods. Ecological risks were assessed following a two-tiered approach. First, hazard quotients and an overall hazard index were calculated using toxicity data for standard test species of primary producers, invertebrates, and fish. Second, the pesticides showing moderate-to-high ecological risks in the first tier were evaluated using Species Sensitivity Distributions (SSDs). Our study shows that pesticides are widespread in urban and peri-urban areas of the Brazilian Amazon. The frequency of detection was higher in urban streams than in the Amazon River, with some samples taken in Manaus, Santarém, and Belém containing up to 8 compounds. Most pesticides were measured at relatively low concentrations (ng L-1), except for malathion, carbendazim and the bulk concentration of chlorpyrifos, which were monitored at concentrations above 100 ng L-1. Based on the first-tier assessment, we found moderate-to-high risks for freshwater invertebrates for malathion, chlorpyrifos, and chlorpyrifos-methyl, and moderate risks for malathion to fish. The risk assessment performed with SSDs indicated high risks of malathion and chlorpyrifos-methyl in urban areas, with up to 15% and 5% of invertebrate species potentially affected, respectively. The bulk concentrations of chlorpyrifos resulted in high risks in some urban areas (14-22% of species affected) and in areas of the main river (32-44%) impacted by agriculture. We conclude that pesticide residues may contribute to a biodiversity impact in the Amazon and should be further monitored in urban and peri-urban areas, particularly after heavy rainfall events.
Collapse
Affiliation(s)
- Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - Rhaul de Oliveira
- University of Campinas, School of Technology, Rua Paschoal Marmo 1888 - Jd., Nova Itália, Limeira, 13484-332, Brazil
| | - Gabriel Silva de Souza Nunes
- Federal University of Pernambuco, Department of Zoology, Av. Prof Moraes Rego 1235, Cidade Universitária, Recife, 50670-901, Brazil
| | - Cristiana Rizzi
- University of Milano-Bicocca, Department of Earth and Environmental Sciences (DISAT), Piazza della Scienza 1, Milan, 20126, Italy
| | - Sara Villa
- University of Milano-Bicocca, Department of Earth and Environmental Sciences (DISAT), Piazza della Scienza 1, Milan, 20126, Italy
| | | | - Cassiana C Montagner
- Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil
| | - Andrea Viviana Waichman
- Federal University of the Amazon, Institute of Biological Sciences, Av. Rodrigo Ramos 3000, Manaus, 69077-000, Brazil
| |
Collapse
|
29
|
Li X, Zhao Y, Chen B, Zhu Z, Kang Q, Husain T, Zhang B. Inhalation and ingestion of Synthetic musks in pregnant women: In silico spontaneous abortion risk evaluation and control. ENVIRONMENT INTERNATIONAL 2022; 158:106911. [PMID: 34619532 DOI: 10.1016/j.envint.2021.106911] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Synthetic musks (SMs) are odor additives commonly used in the personal care products. Their wide existence in the environment and the recently reported adverse impact on the production and activity of progesterone and estrogen have raised pregnancy red flags and even lead to a pregnancy loss. Apart from the suggestion of limiting SM contact and exposure, effective abortion risk control measures for SMs remain to be blank. Facing the above challenges, this study tried to establish a new theoretical circumvention strategy to reduce the abortion risk of SMs to pregnant women by designing the supplementary diet plan and environmentally friendly SMs derivatives using molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) models. According to the supplementary diet plan, the diet combination of vitamin E, vitamin B2, niacin, vitamin A, and vitamin B6 were confirmed to not only provide essential nutrients for human health, but also reduce the abortion risk in pregnant women in daily life. The multi-activity (binding ability of SMs with progesterone-estrogen) 3D-QSAR model was constructed to screen SMs derivatives. The LibDock score, a parameter reflecting the binding ability between SMs' Derivative-24 with progesterone-estrogen, decreased as much as 137.67% compared with its precursor galaxolide (HHCB). The 3D-QSAR models assisted screening indicated that Derivative-24 had lower environmental impacts (i.e., bioconcentration and mobility) and improved functional properties (odor stability, musky scent, and odor intensity). The integration of the optimum candidate, Derivative-24, with optimum three supplementary diet plans exhibited a much lower abortion risk than HHCB, demonstrating the effectiveness of the proposed theoretical circumvention strategy as a comprehensive abortion risk control measure. It also shed light on the design of new pharmaceutical and personal care products using advanced computing tools.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qiao Kang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Tahir Husain
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|