1
|
Tao H, Chen G, Wu L, Lou H. Synergistic impact of air pollution and artificial light at night on memory disorders: a nationwide cohort analysis. BMC Public Health 2025; 25:1591. [PMID: 40307872 PMCID: PMC12042610 DOI: 10.1186/s12889-025-22863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Air pollutants and outdoor artificial light at night (ALAN) are known health risks, with established effects on respiratory and cardiovascular health. However, their impact on cognitive function, particularly neurodegenerative diseases like Alzheimer's, remains poorly understood. METHODS Using data from the China Health and Retirement Longitudinal Study (CHARLS) and the China Family Panel Studies (CFPS), including 44,689 participants, memory impairment (Memrye) was defined by self-reported memory-related diseases. Cox regression models were applied to assess the relationship between pollutants, ALAN exposure, and Memrye. Interaction analyses evaluated the combined effects using relative excess risk due to interaction (RERI), attributable proportion (AP), and synergy index (S). Biomarker analyses and stepwise causal mediation examined the underlying mechanisms. RESULTS Air pollutants and ALAN were significantly associated with Memrye (p < 0.05), with hazard ratios (HR) ranging from 1.010 to 1.343. Synergistic effects were observed, such as for PM2.5 and ALAN, with RERI, AP, and S values of 0.65 (0.33, 0.97), 0.30 (0.26, 0.34), and 1.43 (1.21, 1.65), respectively. Biomarker analyses showed significant correlations between pollutants, glucose, cholesterol, and uric acid, while ALAN was negatively associated with glucose and uric acid. Mediation analyses indicated that PM2.5, NO2, and ALAN indirectly affected Memrye through biomarkers, accounting for 1.07-8.28% of the total effects. CONCLUSION Air pollution and ALAN exposure are linked to memory impairment, with combined effects potentially amplifying risk. Biomarkers play a key role in mediating these effects, suggesting a need for targeted public health measures to mitigate these environmental health risks.
Collapse
Affiliation(s)
- Hongmiao Tao
- School of Medicine, Jinhua University of Vocational Technology, No.888 Haitang West Road, Jinhua, 321017, China.
| | - Guozhong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Lin Wu
- School of Medicine, Jinhua University of Vocational Technology, No.888 Haitang West Road, Jinhua, 321017, China
| | - Hongqiang Lou
- School of Medicine, Jinhua University of Vocational Technology, No.888 Haitang West Road, Jinhua, 321017, China.
| |
Collapse
|
2
|
Zhu J, Wang S, Li P, Li F, Li B, Ma L, Rong S, Liao J. The impact of particulate matter exposure on global and domain-specific cognitive function: evidence from the Chinese Square Dancer Study. BMC Public Health 2025; 25:1289. [PMID: 40188325 PMCID: PMC11971882 DOI: 10.1186/s12889-025-22126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/27/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND There is growing evidence that exposure to particulate matter (PM) is associated with impaired cognitive function. However, limited studies have specifically examined the relationship between PM exposure and domain-specific cognitive function. METHODS This study involved 2,668 female participants from the Lifestyle and Healthy Aging of Chinese Square Dancer Study. Global cognitive function was assessed using a composite Z-score derived from four tests: the Auditory Verbal Learning Test (AVLT), Verbal Fluency Test (VFT), Digit Symbol Substitution Test (DSST), and Trail Making Test-B (TMT-B). These tests evaluated specific cognitive subdomains: memory (AVLT), language (VFT), attention (DSST), and executive function (TMT-B). PM concentrations were estimated using a Random Forest (RF) model, which calculated the average concentrations over 1-year and 3-year periods at a high grid resolution of 1 × 1 km. Mixed linear regression was employed to explore the association between PM exposure and cognitive function. RESULTS After adjusting for basic socio-demographic factors, a 10 mg/m3 increase in 3-year exposure to PM10 was significantly associated with a decrease in the DSST score by -0.05 (95% confidence interval [CI]: -0.11, 0) and an increase in the TMT-B score by 0.05 (95% CI: 0.01, 0.1). When further adjusting for gaseous pollutants (SO₂, NO₂, and O₃), even stronger associations were observed between 3-year exposure to either PM2.5 or PM10 and performance in both global cognition and specific cognitive subdomains. Specifically, in the DSST subdomain, a 10 µg/m³ increase in 1-year PM10 exposure was associated with a decrease in the score by -0.10 (95% CI: -0.15, -0.04). Age-stratified analyses further indicated that older participants were consistently more vulnerable to PM exposure. Notably, 3-year exposure to both PM2.5 and PM10 was linked to declines in DSST scores across both middle-aged and older age groups. CONCLUSION Ambient PM exposure was significantly associated with performance in global cognitive function and specific cognitive domains among Chinese females. Female populations over 65 years old were more susceptible to the adverse effects of PM2.5 and PM10. Among the four subdomains, the DSST showed the strongest association with PM exposure, even at earlier ages, suggesting that impaired attention may serve as an early warning sign of cognitive decline. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jingyi Zhu
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shuaibo Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Peizheng Li
- Department of Epidemiology and Health Statistics, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Fengping Li
- Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Benchao Li
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lu Ma
- Department of Epidemiology and Health Statistics, School of Health Sciences, Wuhan University, Wuhan, 430071, China
- Global Health Institute, Wuhan University, Wuhan, 430071, China
| | - Shuang Rong
- Department of Clinical Nutrition, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jingling Liao
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
3
|
Kalenik S, Zaczek A, Rodacka A. Air Pollution-Induced Neurotoxicity: The Relationship Between Air Pollution, Epigenetic Changes, and Neurological Disorders. Int J Mol Sci 2025; 26:3402. [PMID: 40244238 PMCID: PMC11989335 DOI: 10.3390/ijms26073402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Air pollution is a major global health threat, responsible for over 8 million deaths in 2021, including 700,000 fatalities among children under the age of five. It is currently the second leading risk factor for mortality worldwide. Key pollutants, such as particulate matter (PM2.5, PM10), ozone, sulfur dioxide, nitrogen oxides, and carbon monoxide, have significant adverse effects on human health, contributing to respiratory and cardiovascular diseases, as well as neurodevelopmental and neurodegenerative disorders. Among these, particulate matter poses the most significant threat due to its highly complex mixture of organic and inorganic compounds with diverse sizes, compositions, and origins. Additionally, it can penetrate deeply into tissues and cross the blood-brain barrier, causing neurotoxicity which contributes to the development of neurodegenerative diseases. Although the link between air pollution and neurological disorders is well documented, the precise mechanisms and their sequence remain unclear. Beyond causing oxidative stress, inflammation, and excitotoxicity, studies suggest that air pollution induces epigenetic changes. These epigenetic alterations may affect the expression of genes involved in stress responses, neuroprotection, and synaptic plasticity. Understanding the relationship between neurological disorders and epigenetic changes induced by specific air pollutants could aid in the early detection and monitoring of central nervous system diseases.
Collapse
Affiliation(s)
- Sebastian Kalenik
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237 Lodz, Poland
| | - Agnieszka Zaczek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
| | - Aleksandra Rodacka
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
| |
Collapse
|
4
|
Yuan S, Zhao Y, Gao W, Zhao S, Liu R, Ahmad B, Li H, Shi Y, Wang L, Han C. Interaction effects of exposure to air pollution and social activities on cognitive function in middle-aged and older Chinese adults based on a nationwide cohort study. BMC Public Health 2024; 24:3564. [PMID: 39716146 DOI: 10.1186/s12889-024-21107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Although there have been many studies on the relationship between ambient air pollution and cognitive functioning in developed countries, there are no studies focusing on the interaction between ambient air pollution and social activities. This study aims to examine interactive effects of ambient air pollution and social activities on cognitive function in Chinese middle-aged and older. METHODS This study used nationally representative longitudinal survey data of China Health and Retirement Longitudinal Study (CHARLS) 2013, 2015 and 2018. The study explored the additive interaction effects of air pollutants and social activities on cognitive function in middle-aged and older adults by constructing mixed linear regression analyses containing interaction terms, as well as constructing additive interaction analyses with dummy variables containing four unordered categories that were partitioned according to median. In addition, the study further explored the interaction between air pollution and different types of social activities through an interaction term between air pollution and different types of social activities. RESULTS In the model fully adjusted for covariates such as age, sex, region, we found significant coefficients on the interaction term between PM2.5, O3 and social activities on cognitive function (PM2.5, β = -0.018, 95%CI: -0.029, -0.006; O3, β = 0.017, 95%CI: 0.007, 0.027). In the interaction analysis by constructing dummy variables, we found a significant antagonistic effect between PM2.5 and social activities (SI = 0.730, 95%CI: 0.674, 0.785), a possible antagonistic effect between NO2 and social activities (SI = 0.697, 95%CI: 0.648, 0.747), and a possible synergistic effect between O3 and social activities (SI = 1.769, 95%CI: 0.648, 0.747). In addition, the study found significant interactions between simple interaction, leisure and recreational, and intellectual participation social activities and air pollution. CONCLUSION Our study demonstrated an antagonistic effect of PM2.5 and social activities on cognitive function in middle-aged and older Chinese adults.
Collapse
Affiliation(s)
- Shijia Yuan
- School of Public Health, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yang Zhao
- School of Health Management, Binzhou Medical University, Yantai, 264003, Shandong, China
- Health Services & Systems Research, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Wenhui Gao
- School of Public Health, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Surong Zhao
- School of Public Health, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Ronghang Liu
- School of Public Health, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Bilal Ahmad
- Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Hongyu Li
- Binzhou Polytechnic, Binzhou, 256603, Shandong, China
| | - Yukun Shi
- Binzhou Polytechnic, Binzhou, 256603, Shandong, China
| | - Luyang Wang
- Zhangdian Center for Disease Control and Prevention, Zibo, 255000, Shandong, China
| | - Chunlei Han
- School of Public Health, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
5
|
Hunter RF, Cleland C, Trott M, O'Neill S, Küçükali H, Mullineaux S, Kee F, McKinley JM, Neville C, O'Hara L, Marr C, McAlinden M, Ellis G, McKnight A, Schipperijn J, McHugh Power J, Duong T, McGuinness B. Integrating accelerometry, GPS, GIS and molecular data to investigate mechanistic pathways of the urban environmental exposome and cognitive outcomes in older adults: a longitudinal study protocol. BMJ Open 2024; 14:e085318. [PMID: 39658284 DOI: 10.1136/bmjopen-2024-085318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Maintaining cognitive health in later life is a global priority. Encouraging individuals to make health behaviour changes, such as regular physical activity, and providing supportive urban environments can help maintain cognitive health, thereby preventing or delaying the progress of dementia and cognitive decline. However, the mechanistic pathways by which the urban environmental exposome influences cognitive health outcomes are poorly understood. The aim of this study is to use granular measures of the urban environment exposome (encompassing the built, natural and social environment) and physical activity to explore how these interact with a person's biology to ultimately influence cognitive health outcomes. METHODS AND ANALYSIS This ongoing study uses a cohort design, recruiting participants from the Northern Ireland Cohort for the Longitudinal study of Ageing and the Harmonised Cognitive Assessment Protocol study. Participants (n=400 at each wave) will be aged ≥65 years and have the capacity to provide written informed consent. Measures include device-measured physical activity (Actigraph wGT3XP-BT), environmental location data (Global Positioning System, Qstarz BT-Q1000XT), linked to a battery of neuropsychological tests, including the Mini Mental State Examination and the Centre for Epidemiological Studies Depression Scale. Blood-derived biochemical, genetic and epigenetic data will be included in multimodal analyses. These data will be integrated with urban environment Geographic Information System data and analysed using causal inference and mediation methods to investigate plausible mechanistic pathways. ETHICS AND DISSEMINATION This study has been approved by the Queen's University Belfast, Faculty of Medicine, Health and Life Sciences Research Ethics Committee (MHLS 21_72). Alongside peer-reviewed publications in high-ranking international journals, dissemination activities include conference presentations, project videos, working papers, policy briefing papers, newsletters, summaries and case study stories.
Collapse
Affiliation(s)
- Ruth F Hunter
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Claire Cleland
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Mike Trott
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Sean O'Neill
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Hüseyin Küçükali
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Shay Mullineaux
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Frank Kee
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Jennifer M McKinley
- School of Natural and Built Environment, Queen's University Belfast, Belfast, UK
| | | | - Leeanne O'Hara
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Calum Marr
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | | | - Geraint Ellis
- School of Natural and Built Environment, Queen's University Belfast, Belfast, UK
| | - Amy McKnight
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Jasper Schipperijn
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | | | - Trung Duong
- Institute of Electronics, Communication and Information Technology, Queen's University Belfast, Belfast, UK
| | | |
Collapse
|
6
|
Saveleva L, Cervena T, Mengoni C, Sima M, Krejcik Z, Vrbova K, Sikorova J, Mussalo L, de Crom TOE, Šímová Z, Ivanova M, Shahbaz MA, Penttilä E, Löppönen H, Koivisto AM, Ikram MA, Jalava PI, Malm T, Chew S, Vojtisek-Lom M, Topinka J, Giugno R, Rössner P, Kanninen KM. Transcriptomic and epigenomic profiling reveals altered responses to diesel emissions in Alzheimer's disease both in vitro and in population-based data. Alzheimers Dement 2024; 20:8825-8843. [PMID: 39579047 DOI: 10.1002/alz.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/15/2024] [Accepted: 09/21/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION Studies have correlated living close to major roads with Alzheimer's disease (AD) risk. However, the mechanisms responsible for this link remain unclear. METHODS We exposed olfactory mucosa (OM) cells of healthy individuals and AD patients to diesel emissions (DE). Cytotoxicity of exposure was assessed, mRNA, miRNA expression, and DNA methylation analyses were performed. The discovered altered pathways were validated using data from the human population-based Rotterdam Study. RESULTS DE exposure resulted in an almost four-fold higher response in AD OM cells, indicating increased susceptibility to DE effects. Methylation analysis detected different DNA methylation patterns, revealing new exposure targets. Findings were validated by analyzing data from the Rotterdam Study cohort and demonstrated a key role of nuclear factor erythroid 2-related factor 2 signaling in responses to air pollutants. DISCUSSION This study identifies air pollution exposure biomarkers and pinpoints key pathways activated by exposure. The data suggest that AD individuals may face heightened risks due to impaired cellular defenses. HIGHLIGHTS Healthy and AD olfactory cells respond differently to DE exposure. AD cells are highly susceptible to DE exposure. The NRF2 oxidative stress response is highly activated upon air pollution exposure. DE-exposed AD cells activate the unfolded protein response pathway. Key findings are also confirmed in a population-based study.
Collapse
Affiliation(s)
- Liudmila Saveleva
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tereza Cervena
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Claudia Mengoni
- Department of Computer Science, University of Verona, Verona, Italy
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenek Krejcik
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Sikorova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tosca O E de Crom
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Zuzana Šímová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mariia Ivanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anne M Koivisto
- Department Driving Assessment, Neuro Centre, Kuopio University Hospital, Kuopio, Finland
- Department of Geriatrics, Helsinki University Hospital, Helsinki, Finland
- Department of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sweelin Chew
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michal Vojtisek-Lom
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Mechatronics and Computer Engineering, the Technical University of Liberec, Liberec, Czech Republic
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Pavel Rössner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Andrews RM, Adar SD, Szpiro AA, Kaufman JD, Christopher CN, Beck TL, Dhana K, Wilson RS, Rajan KB, Evans D, Weuve J. Association of Tailpipe-Related and Nontailpipe-Related Air Pollution Exposure with Cognitive Decline in the Chicago Health and Aging Project. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:127002. [PMID: 39641998 PMCID: PMC11623384 DOI: 10.1289/ehp14585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND Evidence suggests that long-term exposure to air pollution may increase the risk of dementia and related cognitive outcomes. A major source of air pollution is automotive traffic, which is modifiable by technological and regulatory interventions. OBJECTIVES We examined associations of four traffic-related air pollutants with rates of cognitive decline in a cohort of older adults. METHODS We analyzed data from the Chicago Health and Aging Project (CHAP), a longitudinal (1993-2012) community-based cohort study of older adults that included repeated assessments of participants' cognitive performance. Leveraging previously developed air pollution models, we predicted participant-level exposures to the tailpipe pollutants oxides of nitrogen (NO X ) and nitrogen dioxide (NO 2 ), plus the nontailpipe pollutants copper and zinc found in coarse particulate matter [PM with aerodynamic diameter 2.5 μ m to 10 μ m (PM 2.5 - 10 , Cu ) and PM 2.5 - 10 , Zn , respectively], over the 3 y prior to each participant's baseline assessment. Using generalized estimating equations, we estimated covariate-adjusted associations of each pollutant with rates of cognitive decline. We probed the robustness of our results via several sensitivity analyses, including alterations to the length of the exposure assessment window and exploring the influence of pre- and post-baseline selection bias. RESULTS Using data from 6,061 participants, estimated associations of these pollutant exposures with cognitive decline were largely inconsistent with large adverse effects. For example, a standard deviation (5.8 ppb ) increment in NO X corresponded to a slightly slower rate of cognitive decline [e.g., mean difference in change in global score, 0.010 standard unit/5 y, 95% confidence interval (CI): -0 .016 , 0.036]. The results of most of our sensitivity analyses were in generally similar to those of our main analyses, but our prebaseline selection bias results suggest that our analytic results may have been influenced by differential survivorship into our study sample. DISCUSSION In this large prospective cohort study, we did not observe compelling evidence that long-term TRAP exposure is associated with cognitive decline. https://doi.org/10.1289/EHP14585.
Collapse
Affiliation(s)
- Ryan M. Andrews
- Department of Epidemiology, Boston University, Boston, Massachusetts, USA
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam A. Szpiro
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Cami N. Christopher
- Department of Population Health Sciences, Harvard University, Boston, Massachusetts, USA
| | - Todd L. Beck
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
| | - Klodian Dhana
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Kumar B. Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
| | - Denis Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
| | - Jennifer Weuve
- Department of Epidemiology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Acharyya S, Kumar SH, Chouksey A, Soni N, Nazeer N, Mishra PK. The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases. Neurotoxicology 2024; 105:158-183. [PMID: 39374796 DOI: 10.1016/j.neuro.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.
Collapse
Affiliation(s)
- Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
9
|
Ding Q, Kou C, Feng Y, Sun Z, Geng X, Sun X, Jia T, Wang Q, Huang Q, Han W, Bai W. Effects of air pollutants exposure on frailty risk: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124793. [PMID: 39181300 DOI: 10.1016/j.envpol.2024.124793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Air pollutants have been investigated to be associated with many health issues. Recently, increasing epidemiological studies have suggested the association between air pollution exposure and risk of frailty with inconsistent findings. This systematic review and meta-analysis was to summarize and evaluate effects of exposure to various air pollutants on risk of frailty. PubMed, Embase, Scopus and Web of Science were systematically searched for relevant studies published before May 11, 2024. Studies that explored the potential relationship between exposure to air pollutants (PM2.5, PM10, O3, NOx, solid fuel, secondhand tobacco, and air quality) and risk of frailty were included. The quality of cross-sectional and cohort studies was evaluated using an eight-item assessment instrument for epidemiological studies and Newcastle-Ottawa Scale, respectively. A total of 9,929 papers were retrieved, of which 20 met the inclusion criteria. Meta-analysis indicated that PM2.5 exposure was significantly associated with frailty assessed by the frailty index [OR (95% CI): 1.24 (1,11-1.38) per 10 μg/m3 increment]. Moreover, solid fuel exposures were significantly associated with an increased risk of frailty assessed by the frailty phenotype [OR (95% CI): 1.91 (1.09-3.34)] or the frailty index [OR (95% CI): 1.25 (1.11-1.41)]. Exposure to PM2.5 and solid fuel increases the risk of frailty. Environmental protection policies and public health measures should be developed to reduce PM2.5 concentrations. Effective measures, such as improving stoves and using clean fuels, should be taken to reduce indoor air pollution levels.
Collapse
Affiliation(s)
- Qianlu Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Changgui Kou
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Yuan Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Zhouyang Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Xiaohan Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Xiaopeng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Tingyi Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Qianyi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Qianlong Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Wei Han
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Wei Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
10
|
Xu H, Zhou X, Xu S, Fang Z, Li C, Lv Y, Cheng K, Ren Y. Exposure to air pollution and cognitive function based on the minimum mental state examination: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 39427245 DOI: 10.1080/09603123.2024.2418010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Evidence regarding the cognitive effects of air pollution is inconsistent. This study aimed to quantitatively analyze the relationship between air pollutants and cognitive abilities using the Mini-Mental State Examination (MMSE). We systematically searched for studies published until July 1, 2023, and assessed heterogeneity with Cochran's Q test and I² statistics, while publication bias was evaluated using Funnel plots and Egger's test. Out of 380 studies, 17 were included in the meta-analysis. Results demonstrated significant relationship among long-term exposure to PM2.5, O3, and cognitive decline. The pooled RR of cognitive impairment per 10μg/m3 increase were 1.17 for PM2.5 and 1.07 for PM10. Furthermore, there was a significant association between cognitive decline and long-term exposure to PM2.5 (β = -0.30; I2 = 95.30%) and PM10 (β = -0.15; I2 = 87.50%). Our research suggests that long-term exposure to air pollution, especially PM2.5, is a risk factor for cognitive impairment.
Collapse
Affiliation(s)
- Hong Xu
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Xiaocong Zhou
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shanshan Xu
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Zisi Fang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chaokang Li
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Ye Lv
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Keyi Cheng
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| | - Yanjun Ren
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Mehta MM, Johnson AE, Ratnakaran B, Seritan I, Seritan AL. Climate Change and Aging: Implications for Psychiatric Care. Curr Psychiatry Rep 2024; 26:499-513. [PMID: 39210192 PMCID: PMC11384634 DOI: 10.1007/s11920-024-01525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW We reviewed recent evidence regarding the impact of climate change (specifically, high ambient temperatures, heatwaves, weather-related disasters, and air pollution) on older adults' mental health. We also summarized evidence regarding other medical problems that can occur in aging adults in connection with climate change, resulting in psychiatric manifestations or influencing psychopharmacological management. RECENT FINDINGS Older adults can experience anxiety, depressive, and/or posttraumatic stress symptoms, as well as sleep disturbances in the aftermath of climate disasters. Cognitive deficits may occur with exposure to air pollutants, heatwaves, or post-disaster. Individuals with major neurocognitive disorders and/or preexisting psychiatric illness have a higher risk of psychiatric hospitalizations after exposure to high temperatures and air pollution. There is a growing body of research regarding psychiatric clinical presentations associated with climate change in older adults. However, there is a paucity of evidence on management strategies. Future research should investigate culturally appropriate, cost-effective psychosocial and pharmacological interventions.
Collapse
Affiliation(s)
- Michelle M Mehta
- White Earth Tribal Behavioral Health, P.O. Box 300, White Earth, MN, 56591, USA
| | - Anne E Johnson
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. #9070, Dallas, TX, 75930, USA
| | - Badr Ratnakaran
- Department of Psychiatry and Behavioral Medicine, Carilion Clinic-Virginia Tech Carilion School of Medicine, 2017 S. Jefferson St., Roanoke, VA, 24014, USA
| | - Ioana Seritan
- American Birding Association, Colorado Springs, CO, 80934, USA
| | - Andreea L Seritan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 675 18th St., San Francisco, CA, 94107, USA.
- UCSF Weill Institute for the Neurosciences, San Francisco, USA.
| |
Collapse
|
12
|
Zhong J, Li W, Yang S, Shen Y, Li X. Causal association between air pollution and allergic rhinitis, asthma: a Mendelian randomization study. Front Public Health 2024; 12:1386341. [PMID: 39076418 PMCID: PMC11284075 DOI: 10.3389/fpubh.2024.1386341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Backgrounds Observational studies suggest that air pollutants, including particulate matter and nitrogen compounds, could elevate asthma and allergic rhinitis health risks. Nevertheless, the exact nature of the causal relationship between air pollution and asthma and allergic rhinitis remains unknown. This study utilizes the Mendelian randomization (MR) technique to explore the potential causal links between air pollution components (PM2.5, PM2.5-10, PM10, NO₂, and nitrogen dioxide) and the incidence of allergic rhinitis and asthma. Methods A MR study utilized summary statistics from GWAS that are publicly accessible. The inverse variance weighting (IVW) approach served as the foundational analysis technique. To ensure robustness, supplementary methodologies such as the weighted median, MR-Egger regression, simple mode, and weighted model were also applied. Heterogeneity was evaluated using Cochran's Q test, and the presence of pleiotropy was determined through MR-Egger regression. The MR-PRESSO test was employed for outlier detection, and the analysis's sensitivity was scrutinized via a leave-one-out strategy. Results The IVW technique showed a strong correlation between PM10 and asthma (OR = 0.625, 95% CI = 0.396-0.988, p = 0.044). No significant associations were found between asthma and other air pollutants such as PM2.5, PM2.5-10, NO₂, or nitrogen dioxide. Similarly, allergic rhinitis showed no causal relationships with any studied air pollution metrics. Pleiotropy was absent in the findings. Sensitivity analyses, employing the leave-one-out method, confirmed the stability of these results, unaffected by individual single nucleotide polymorphisms (SNPs). Conclusion This Mendelian randomization study establishes a causal link between PM10 exposure and asthma, suggesting that interventions to reduce air pollution may decelerate the adverse progression of asthma.
Collapse
Affiliation(s)
- Juan Zhong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiye Li
- Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| | - Shasha Yang
- Otolaryngology Department, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yifeng Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinrong Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Zhang L, Zhu Y, Wang H, Zu P, Luo W, Chen Y, Zhou C, Tao F, Zhu P. Associations between particulate matter exposure during pregnancy and executive function of toddlers in a prospective cohort study. ENVIRONMENTAL RESEARCH 2024; 258:119463. [PMID: 38909950 DOI: 10.1016/j.envres.2024.119463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Exposure to particulate matter (PM) has been found to be associated with impaired cognitive function. However, limited evidence is available on the relationship between PM exposure in the prenatal period and toddler executive function (EF), and the potential influence of breastfeeding. METHODS The study included 1106 mother-toddler pairs recruited between 2015 and 2019. We assessed mothers' PM1, PM2.5, and PM10 prenatal exposure with a satellite-based dataset at a 1 × 1 km spatial resolution and assigned to participants based on residential addresses. Toddler EF was measured using the Behavior Rating Inventory of Executive Function for Preschoolers (BRIEF-P) questionnaire, higher BRIEF-P scores indicated poorer EF in toddlers. We determined the associations of PM exposure during pregnancy with BRIEF-P scores using multiple linear regression models. RESULTS In the first trimester, a 10 μg/m3 increase of PM was associated with 1.49 (95% confidence interval [CI]: 0.14-2.83; PM1), 0.68 (95% CI: 0.10-1.26; PM2.5), and 0.63 (95% CI: 0.07-1.20; PM10) elevated toddler global executive composite index scores, respectively. In the stratified analysis, a 10 μg/m3 increase in first trimester PM1 exposure was related to 0.54 (95% CI: 0.19-0.89) higher inhibition scores in toddlers who received complementary breastfeeding for less than six months and -0.15 (95% CI: 0.81-0.51) higher inhibition scores in toddlers who received complementary breastfeeding for six months or more (P for interaction: 0.046). Additionally, a 10 μg/m3 increment in first trimester PM1 exposure was related to 0.36 (95% CI: 0.13-0.59) higher emotional control scores in toddlers who received breastfeeding for less than 12 months and -0.54 (95% CI: 1.25-0.18) higher inhibition scores in toddlers who received breastfeeding for no less than 12 months (P for interaction: 0.043). CONCLUSIONS PM exposure during the first trimester, especially PM1, has been linked to lower toddler EF performance in toddlers; feeding with breast milk may be a potential protective measure.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Yuanyuan Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Haixia Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Ping Zu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Wei Luo
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Yunlong Chen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Chenxi Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
14
|
Ko J, Sohn J, Noh Y, Koh SB, Lee SK, Kim SY, Cho J, Kim C. Effects of Ambient Air Pollution on Brain Cortical Thickness and Subcortical Volume: A Longitudinal Neuroimaging Study. Neuroepidemiology 2024; 59:120-130. [PMID: 38815551 DOI: 10.1159/000539467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Several cross-sectional studies have shown that long-term exposures to air pollutants are associated with smaller brain cortical volume or thickness. Here, we investigated longitudinal associations of long-term air pollution exposures with cortical thickness and subcortical volume. METHODS In this longitudinal study, we included a prospective cohort of 361 adults residing in four cities in the Republic of Korea. Long-term concentrations of particulate matter with aerodynamic diameters of ≤10 μm (PM10) and ≤2.5 μm (PM2.5) and nitrogen dioxide (NO2) at residential addresses were estimated. Neuroimaging markers (cortical thickness and subcortical volume) were obtained from brain magnetic resonance images at baseline (August 2014 to March 2017) and at the 3-year follow-up (until September 2020). Linear mixed-effects models were used, adjusting for covariates. RESULTS A 10-μg/m3 increase in PM10 was associated with reduced whole-brain mean (β = -0.45, standard error [SE] = 0.10; p < 0.001), frontal (β = -0.53, SE = 0.11; p < 0.001) and temporal thicknesses (β = -0.37, SE = 0.12; p = 0.002). A 10-ppb increase in NO2 was associated with a decline in the whole-brain mean cortical thickness (β = -0.23, SE = 0.05; p < 0.001), frontal (β = -0.25, SE = 0.05; p < 0.001), parietal (β = -0.12, SE = 0.05; p = 0.025), and temporal thicknesses (β = -0.19, SE = 0.06; p = 0.001). Subcortical structures associated with air pollutants included the thalamus. CONCLUSIONS Long-term exposures to PM10 and NO2 may lead to cortical thinning in adults.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jungwoo Sohn
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Young Noh
- Department of Neurology, Gil Medical Centre, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Sang-Baek Koh
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Wonju-si, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Centre, Goyang-si, Republic of Korea
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea
| |
Collapse
|
15
|
Gui Z, Ji W, Wang Y, Li J, Cheng Y, Li L, Dong G, Yang B, Zhou Y. Severer air pollution, poorer cognitive function: Findings from 176,345 elders in Northwestern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116008. [PMID: 38266358 DOI: 10.1016/j.ecoenv.2024.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Limited evidence exists regarding the link between air pollution exposure and cognitive function in developing countries, particularly in areas with abundant natural sources of particulate matter. OBJECTIVES To investigate this association in a large representative sample of the elderly in northwestern China. METHODS We performed a cross-sectional study among 176,345 participants aged 60-100 years in northwestern China in 2020. A satellite-based spatiotemporal model was applied to assess three-year annual averages of particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5), ≤ 10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) at residential address. Poor cognitive function was assessed using the Mini-Mental State Examination (MMSE). Generalized linear mixed models were used to assess associations. RESULTS Compared with participants with the lowest quartiles of PM2.5, PM10, and O3 levels, those with the second, third, and highest quartiles of air pollutants consistently showed increased odds of poor cognitive function and decreased MMSE scores. The odds ratios of poor cognitive function associated with a 10 μg/m3 increment in PM2.5, PM10, and O3 were 1.26 (95 % confidence interval [CI]: 1.17, 1.36), 1.06 (95 %CI: 1.04, 1.08), and 2.76 (95 %CI: 2.11, 3.62), respectively. Subgroup analyses suggested stronger associations between air pollution exposures and poor cognitive function among participants who were younger, were non-Uyghur and were physically active. CONCLUSION Long-term exposures to PM2.5, PM10 and O3 were associated with poor cognitive function in elders. Our results suggest that reducing air pollution may alleviate the burden of poor cognitive function in the elderly.
Collapse
Affiliation(s)
- Zhaohuan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weidong Ji
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yushan Wang
- Center of Health Management, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jiaxin Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yinlin Cheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lin Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Boyi Yang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Yi Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Ye Z, Li X, Lang H, Fang Y. Long-Term PM2.5 Exposure, Lung Function, and Cognitive Function Among Middle-Aged and Older Adults in China. J Gerontol A Biol Sci Med Sci 2023; 78:2333-2341. [PMID: 37493944 DOI: 10.1093/gerona/glad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Long-term exposure to PM2.5 is related to poor lung function and cognitive impairment, but less is known about the pathway involved in this association. We aimed to explore whether the effect of PM2.5 on cognitive function was mediated by lung function. METHODS A total of 7 915 adults older than 45 years old were derived from the China Health and Retirement Longitudinal Study (CHARLS) collected in 2011 and 2015. PM2.5 exposure was estimated using a geographically weighted regression model. Lung function was measured by peak expiratory flow (PEF). Cognitive function was evaluated through a structured questionnaire with 4 dimensions: episodic memory, attention, orientation, and visuoconstruction. Under the counterfactual framework, causal mediation analysis was applied to examine direct and indirect associations. RESULTS An interquartile range (IQR) increase in PM2.5 change was significantly related to an 8.480 (95% confidence interval [CI]: 3.116, 13.845) decrease in PEF change and a 0.301 (95% CI: 0.100, 0.575) decrease in global cognitive score change. The direct and indirect effects of PM2.5 exposure on global cognitive performance were -0.279 (95% CI: -0.551, -0.060) and -0.023 (95% CI: -0.041, -0.010), respectively. The proportion of the indirect effect was 7.48% (p = .010). The same significant association appeared in only 2 dimensions, episodic memory and attention, which were both mediated by PEF. CONCLUSIONS Lung function played a partially mediating role in the association between long-term PM2.5 exposure and cognition. More clean air actions should be undertaken to improve lung function and cognitive function in older adults.
Collapse
Affiliation(s)
- Zirong Ye
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Xueru Li
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Haoxiang Lang
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Xiao H, Huang S, Yang W, Zhang W, Xiao H, Cai S. Causal association between air pollution and frailty: a Mendelian randomization study. Front Public Health 2023; 11:1288293. [PMID: 38026367 PMCID: PMC10662305 DOI: 10.3389/fpubh.2023.1288293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Backgrounds Frailty is a significant problem for older persons since it is linked to a number of unfavorable consequences. According to observational researches, air pollution may raise the risk of frailty. We investigated the causal association between frailty and air pollution (including PM2.5, PM2.5-10, PM10, nitrogen dioxide, and nitrogen oxides) using Mendelian randomization approach. Methods We conducted MR analysis using extensive publically accessible GWAS (genome-wide association studies) summary data. The inverse variance weighted (IVW) method was employed as the primary analysis method. The weighted median model, MR-Egger, simple model, and weighted model approaches were chosen for quality control. The Cochran's Q test was utilized to evaluate heterogeneity. Pleiotropy is found using the MR-Egger regression test. The MR-PRESSO method was used to recognize outliers. The leave-one-out strategy was used to conduct the sensitivity analysis. Results MR results suggested that PM2.5 was statistically significantly associated with frailty [odds ratio (OR) = 1.33; 95%confidence interval (CI) = 1.12-1.58, p = 0.001] in IVW method. We observed no statistical association between PM2.5-10(OR = 1.00, 95% CI = 0.79-1.28, p = 0.979), PM10(OR = 0.91, 95% CI = 0.75-1.11, p = 0.364), nitrogen dioxide (OR = 0.98, 95% CI = 0.85-1.12, p = 0.730), nitrogen oxides (OR = 1.15, 95% CI = 0.98-1.36, p = 0.086) and frailty. There was no pleiotropy in the results. The sensitivity analysis based on the leave-one-out method showed that the individual single nucleotide polymorphisms (SNPs) did not affect the robustness of the results. Conclusion The current MR investigation shows a causal association between PM2.5 and frailty. Frailty's detrimental progression may be slowed down with the help of air pollution prevention and control.
Collapse
Affiliation(s)
- Haixia Xiao
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shan Huang
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wei Yang
- Department of Internal Medicine, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wenni Zhang
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| | - Huanshun Xiao
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuangming Cai
- Department of MICU, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
18
|
Bennett EE, Song Z, Lynch KM, Liu C, Stapp EK, Xu X, Park ES, Ying Q, Smith RL, Stewart JD, Whitsel EA, Mosley TH, Wong DF, Liao D, Yanosky JD, Szpiro AA, Kaufman JD, Gottesman RF, Power MC. The association of long-term exposure to criteria air pollutants, fine particulate matter components, and airborne trace metals with late-life brain amyloid burden in the Atherosclerosis Risk in Communities (ARIC) study. ENVIRONMENT INTERNATIONAL 2023; 180:108200. [PMID: 37774459 PMCID: PMC10620775 DOI: 10.1016/j.envint.2023.108200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Studies suggest associations between long-term ambient air pollution exposure and outcomes related to Alzheimer's disease (AD). Whether a link exists between pollutants and brain amyloid accumulation, a biomarker of AD, is unclear. We assessed whether long-term air pollutant exposures are associated with late-life brain amyloid deposition in Atherosclerosis Risk in Communities (ARIC) study participants. METHODS We used a chemical transport model with data fusion to estimate ambient concentrations of PM2.5 and its components, NO2, NOx, O3 (24-hour and 8-hour), CO, and airborne trace metals. We linked concentrations to geocoded participant addresses and calculated 10-year mean exposures (2002 to 2011). Brain amyloid deposition was measured using florbetapir amyloid positron emission tomography (PET) scans in 346 participants without dementia in 2012-2014, and we defined amyloid positivity as a global cortical standardized uptake value ratio ≥ the sample median of 1.2. We used logistic regression models to quantify the association between amyloid positivity and each air pollutant, adjusting for putative confounders. In sensitivity analyses, we considered whether use of alternate air pollution estimation approaches impacted findings for PM2.5, NO2, NOx, and 24-hour O3. RESULTS At PET imaging, eligible participants (N = 318) had a mean age of 78 years, 56% were female, 43% were Black, and 27% had mild cognitive impairment. We did not find evidence of associations between long-term exposure to any pollutant and brain amyloid positivity in adjusted models. Findings were materially unchanged in sensitivity analyses using alternate air pollution estimation approaches for PM2.5, NO2, NOx, and 24-hour O3. CONCLUSIONS Air pollution may impact cognition and dementia independent of amyloid accumulation, though whether air pollution influences AD pathogenesis later in the disease course or at higher exposure levels deserves further consideration.
Collapse
Affiliation(s)
- Erin E Bennett
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA.
| | - Ziwei Song
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Katie M Lynch
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Chelsea Liu
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Emma K Stapp
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Xiaohui Xu
- Department of Epidemiology & Biostatistics, Texas A&M Health Science Center School of Public Health, College Station, TX, USA
| | - Eun Sug Park
- Texas A&M Transportation Institute, College Station, TX, USA
| | - Qi Ying
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX, USA
| | - Richard L Smith
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas H Mosley
- The University of Mississippi Medical Center, Jackson, MS, USA
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Duanping Liao
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA; Department of Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Melinda C Power
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| |
Collapse
|
19
|
Duchesne J, Carrière I, Artero S, Brickman AM, Maller J, Meslin C, Chen J, Vienneau D, de Hoogh K, Jacquemin B, Berr C, Mortamais M. Ambient Air Pollution Exposure and Cerebral White Matter Hyperintensities in Older Adults: A Cross-Sectional Analysis in the Three-City Montpellier Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107013. [PMID: 37878794 PMCID: PMC10599635 DOI: 10.1289/ehp12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Growing epidemiological evidence suggests an adverse relationship between exposure to air pollutants and cognitive health, and this could be related to the effect of air pollution on vascular health. OBJECTIVE We aim to evaluate the association between air pollution exposure and a magnetic resonance imaging (MRI) marker of cerebral vascular burden, white matter hyperintensities (WMH). METHODS This cross-sectional analysis used data from the French Three-City Montpellier study. Randomly selected participants 65-80 years of age underwent an MRI examination to estimate their total and regional cerebral WMH volumes. Exposure to fine particulate matter (PM 2.5 ), nitrogen dioxide (NO 2 ), and black carbon (BC) at the participants' residential address during the 5 years before the MRI examination was estimated with land use regression models. Multinomial and binomial logistic regression assessed the associations between exposure to each of the three pollutants and categories of total and lobar WMH volumes. RESULTS Participants' (n = 582 ) median age at MRI was 70.7 years [interquartile range (IQR): 6.1], and 52% (n = 300 ) were women. Median exposure to air pollution over the 5 years before MRI acquisition was 24.3 (IQR: 1.7) μ g / m 3 for PM 2.5 , 48.9 (14.6) μ g / m 3 for NO 2 , and 2.66 (0.60) 10 - 5 / m for BC. We found no significant association between exposure to the three air pollutants and total WMH volume. We found that PM 2.5 exposure was significantly associated with higher risk of temporal lobe WMH burden [odds ratio (OR) for an IQR increase = 1.82 (95% confidence interval: 1.41, 2.36) for the second volume tercile, 2.04 (1.59, 2.61) for the third volume tercile, reference: first volume tercile]. Associations for other regional WMH volumes were inconsistent. CONCLUSION In this population-based study in older adults, PM 2.5 exposure was associated with increased risk of high WMH volume in the temporal lobe, strengthening the evidence on PM 2.5 adverse effect on the brain. Further studies looking at different markers of cerebrovascular damage are still needed to document the potential vascular effects of air pollution. https://doi.org/10.1289/EHP12231.
Collapse
Affiliation(s)
- Jeanne Duchesne
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Isabelle Carrière
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Sylvaine Artero
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Adam M. Brickman
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York, USA
| | - Jerome Maller
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia
- General Electric Healthcare, Richmond, Victoria, Australia
| | - Chantal Meslin
- Centre for Mental Health Research, Australian National University, Canberra, Australia
| | - Jie Chen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Bénédicte Jacquemin
- Irset Institut de Recherche en Santé, Environnement et Travail, UMR-S 1085, Inserm, University of Rennes, EHESP, Rennes, France
| | - Claudine Berr
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Marion Mortamais
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| |
Collapse
|
20
|
Gan W, Manning KJ, Cleary EG, Fortinsky RH, Brugge D. Exposure to ultrafine particles and cognitive decline among older people in the United States. ENVIRONMENTAL RESEARCH 2023; 227:115768. [PMID: 36965813 PMCID: PMC10246447 DOI: 10.1016/j.envres.2023.115768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Some studies suggest that ambient particulate air pollution is associated with cognitive decline. However, the findings are mixed, and there is no relevant research examining the influences of ultrafine particles (UFP), which may have more toxicity than larger particles. We therefore conducted this study to investigate whether residential UFP exposure is associated with cognitive decline using data from the Alzheimer's Disease Research Centers in the United States. METHODS This is a longitudinal study of participants who were aged 65 years and older and had normal cognitive status at baseline. Residential UFP exposure, expressed as particle number concentrations (PNC), was assessed in 2016-2017 using a nationwide land use regression model, and was assigned to each participant using their 3-digit residential ZIP codes. Cognitive functions including memory, attention, language, executive function, and global function were assessed annually using 15 neuropsychological tests from March 2015 to February 2022. Linear mixed-effects models were used to examine the associations after adjustment for covariates including baseline age, sex, APOE ε4 status, race, education, smoking status, history of diabetes, quartiles of neighborhood median household income, and interaction terms of follow-up time with each covariate. RESULTS This study included 5646 participants (mean age 76 years, 65% female). On average, each participant had 4 annual visits. When PNC was treated as a continuous variable, there were no statistically or clinically significant changes in annual decline of each cognitive function in relation to an interquartile range elevation in PNC (4026 particles/cm3). Similarly, when PNC was treated as a categorical variable including five exposure groups, there were no linear exposure-response trends in annual decline of each cognitive function across the five exposure groups. CONCLUSIONS This study found no meaningful associations between residential UFP exposure and cognitive decline in global and domain-specific functions. There is a need for further research that assigns UFP exposure at a finer geographic scale.
Collapse
Affiliation(s)
- Wenqi Gan
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Kevin J Manning
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | | | - Richard H Fortinsky
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA; UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Doug Brugge
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
21
|
Lee Y, Yoon S, Yoon SH, Kang SW, Jeon S, Kim M, Shin DA, Nam CM, Ye BS. Air pollution is associated with faster cognitive decline in Alzheimer's disease. Ann Clin Transl Neurol 2023; 10:964-973. [PMID: 37106569 PMCID: PMC10270255 DOI: 10.1002/acn3.51779] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE Although chronic exposure to air pollution is associated with an increased risk of dementia in normal elderlies, the effect of chronic exposure to air pollution on the rates of cognitive decline in Alzheimer's disease (AD) has not been elucidated. METHODS In this longitudinal study, a total of 269 patients with mild cognitive impairment or early dementia due to AD with the evidence of brain β-amyloid deposition were followed-up for a mean period of 4 years. Five-year normalized hourly cumulative exposure value of each air pollutant, such as carbon monoxide (CO), nitrogen dioxide (NO2 ), sulfur dioxide (SO2 ), and particulate matter (PM2.5 and PM10 ), was computed based on nationwide air pollution database. The effects of chronic exposure to air pollution on longitudinal cognitive decline rate were evaluated using linear mixed models. RESULTS Higher chronic exposure to SO2 was associated with a faster decline in memory score, whereas chronic exposure to CO, NO2 , and PM10 were not associated with the rate of cognitive decline. Higher chronic exposure to PM2.5 was associated with a faster decline in visuospatial score in apolipoprotein E ε4 carriers. These effects remained significant even after adjusting for potential confounders. INTERPRETATION Our findings suggest that chronic exposure to SO2 and PM2.5 is associated with faster clinical progression in AD.
Collapse
Affiliation(s)
- Young‐gun Lee
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
- Department of Neurology, Ilsan Paik HospitalInje University College of MedicineGoyangSouth Korea
| | - Seon‐Jin Yoon
- Department of NeurosurgeryYonsei University College of MedicineSeoulSouth Korea
| | - So Hoon Yoon
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
| | - Sung Woo Kang
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
| | - Seun Jeon
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
| | - Minseok Kim
- Department of Biostatistics and ComputingYonsei University College of MedicineSeoulSouth Korea
| | - Dong Ah Shin
- Department of NeurosurgeryYonsei University College of MedicineSeoulSouth Korea
| | - Chung Mo Nam
- Department of Biostatistics and ComputingYonsei University College of MedicineSeoulSouth Korea
- Department of Preventive MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Byoung Seok Ye
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
22
|
Wang X, Yang C, Lu L, Bai J, Wu H, Chen T, Liao W, Duan Z, Chen D, Liu Z, Ju K. Assessing the causal effect of long-term exposure to air pollution on cognitive decline in middle-aged and older adults - Empirical evidence from a nationwide longitudinal cohort. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114811. [PMID: 36963183 DOI: 10.1016/j.ecoenv.2023.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Air pollution remains a risk factor for the global burden of disease. Middle-aged and older people are more susceptible to air pollution because of their declining physical function and are more likely to develop diseases from long-term air pollution exposure. Studies of the effects of air pollution on cognitive function in middle-aged and older adults have been inconsistent. More representative and definitive evidence is needed. This study analysed data from the Chinese Family Panel Study, an ongoing nationwide prospective cohort study, collected in waves 2014, 2016 and 2018. Rigorously tested instrument was selected for analysis and participants' PM2.5 and instrument exposures were assessed using high-precision satellite data. The causal relationship between long-term exposure to air pollution and poor cognitive function in middle-aged and older adults was investigated using the Correlated Random Effects Control Function (CRE-CF) method within a quasi-experimental framework. This study included a total of 7042 participants aged 45 years or older. A comparison of CRE-CF with other models (OLS model, ordered probit model, and ordered probit-CRE model) demonstrated the necessity of using CRE-CF given the endogeneity of air pollution. The credibility and validity of the instrumental variable were verified. In the CRE-CF model, long-term exposure to PM2.5 was found to accelerate cognitive decline in middle-aged and older adults (coefficients of -0.159, -0.336 and -0.244 for the total cognitive, verbal and mathematical scores, respectively). Taken together, these results suggest that chronic exposure to ambient air pollution is associated with cognitive decline in middle-aged and older adults, which highlights the need for appropriate protective policies.
Collapse
Affiliation(s)
- Xu Wang
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyu Yang
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liyong Lu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Bai
- Department of neurology, Xijing Hospital, Xi'an 710032, China
| | - Hao Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Weibin Liao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongxin Duan
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dapeng Chen
- Department of Economics, Lehigh University, Bethlehem, PA 18015, United States
| | - Zhenmi Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Ke Ju
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
23
|
Ranson JM, Bucholc M, Lyall D, Newby D, Winchester L, Oxtoby NP, Veldsman M, Rittman T, Marzi S, Skene N, Al Khleifat A, Foote IF, Orgeta V, Kormilitzin A, Lourida I, Llewellyn DJ. Harnessing the potential of machine learning and artificial intelligence for dementia research. Brain Inform 2023; 10:6. [PMID: 36829050 PMCID: PMC9958222 DOI: 10.1186/s40708-022-00183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/26/2022] [Indexed: 02/26/2023] Open
Abstract
Progress in dementia research has been limited, with substantial gaps in our knowledge of targets for prevention, mechanisms for disease progression, and disease-modifying treatments. The growing availability of multimodal data sets opens possibilities for the application of machine learning and artificial intelligence (AI) to help answer key questions in the field. We provide an overview of the state of the science, highlighting current challenges and opportunities for utilisation of AI approaches to move the field forward in the areas of genetics, experimental medicine, drug discovery and trials optimisation, imaging, and prevention. Machine learning methods can enhance results of genetic studies, help determine biological effects and facilitate the identification of drug targets based on genetic and transcriptomic information. The use of unsupervised learning for understanding disease mechanisms for drug discovery is promising, while analysis of multimodal data sets to characterise and quantify disease severity and subtype are also beginning to contribute to optimisation of clinical trial recruitment. Data-driven experimental medicine is needed to analyse data across modalities and develop novel algorithms to translate insights from animal models to human disease biology. AI methods in neuroimaging outperform traditional approaches for diagnostic classification, and although challenges around validation and translation remain, there is optimism for their meaningful integration to clinical practice in the near future. AI-based models can also clarify our understanding of the causality and commonality of dementia risk factors, informing and improving risk prediction models along with the development of preventative interventions. The complexity and heterogeneity of dementia requires an alternative approach beyond traditional design and analytical approaches. Although not yet widely used in dementia research, machine learning and AI have the potential to unlock current challenges and advance precision dementia medicine.
Collapse
Affiliation(s)
- Janice M Ranson
- University of Exeter Medical School, College House, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK.
| | - Magda Bucholc
- Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, UK
| | - Donald Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Danielle Newby
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Neil P Oxtoby
- Department of Computer Science, UCL Centre for Medical Image Computing, University College London, London, UK
| | | | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Nathan Skene
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | | | - Vasiliki Orgeta
- Division of Psychiatry, University College London, London, UK
| | | | - Ilianna Lourida
- University of Exeter Medical School, College House, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - David J Llewellyn
- University of Exeter Medical School, College House, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
24
|
Thompson R, Smith RB, Karim YB, Shen C, Drummond K, Teng C, Toledano MB. Air pollution and human cognition: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160234. [PMID: 36427724 DOI: 10.1016/j.scitotenv.2022.160234] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND This systematic review summarises and evaluates the literature investigating associations between exposure to air pollution and general population cognition, which has important implications for health, social and economic inequalities, and human productivity. METHODS The engines MEDLINE, Embase Classic+Embase, APA PsycInfo, and SCOPUS were searched up to May 2022. Our inclusion criteria focus on the following pollutants: particulate matter, NOx, and ozone. The cognitive abilities of interest are: general/global cognition, executive function, attention, working memory, learning, memory, intelligence and IQ, reasoning, reaction times, and processing speed. The collective evidence was assessed using the NTP-OHAT framework and random-effects meta-analyses. RESULTS Eighty-six studies were identified, the results of which were generally supportive of associations between exposures and worsened cognition, but the literature was varied and sometimes contradictory. There was moderate certainty support for detrimental associations between PM2.5 and general cognition in adults 40+, and PM2.5, NOx, and PM10 and executive function (especially working memory) in children. There was moderate certainty evidence against associations between ozone and general cognition in adults age 40+, and NOx and reasoning/IQ in children. Some associations were also supported by meta-analysis (N = 14 studies, all in adults aged 40+). A 1 μg/m3 increase in NO2 was associated with reduced performance on general cognitive batteries (β = -0.02, p < 0.05) as was a 1 μg/m3 increase in PM2.5 exposure (β = -0.02, p < 0.05). A 1μgm3 increase in PM2.5 was significantly associated with lower verbal fluency by -0.05 words (p = 0.01) and a decrease in executive function task performance of -0.02 points (p < 0.001). DISCUSSION Evidence was found in support of some exposure-outcome associations, however more good quality research is required, particularly with older teenagers and young adults (14-40 years), using multi-exposure modelling, incorporating mechanistic investigation, and in South America, Africa, South Asia and Australasia.
Collapse
Affiliation(s)
- Rhiannon Thompson
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Rachel B Smith
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, UK
| | - Yasmin Bou Karim
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Chen Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Kayleigh Drummond
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Chloe Teng
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Mireille B Toledano
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Chemical and Radiation Threats and Hazards, School of Public Health, Imperial College London, UK.
| |
Collapse
|
25
|
Gong Y, Zhang X, Zhao X, Chang H, Zhang J, Gao Z, Mi Y, Chen Y, Zhang H, Huang C, Yu Z. Global ambient particulate matter pollution and neurodegenerative disorders: a systematic review of literature and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39418-39430. [PMID: 36763275 DOI: 10.1007/s11356-023-25731-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Previous studies on particulate matter (PM) exposure and neurodegenerative disorders showed inconsistent results, and few studies systematically examined the long-term effect of PM on neurodegenerative diseases, including all-cause dementia, Alzheimer's disease, Parkinson's disease, vascular dementia, amyotrophic lateral sclerosis, and cognitive function decline. We systematically searched for published studies in PubMed, Embase, Cochrane Library, and Web of Science up to October 31, 2022. To facilitate a comparison of effect sizes from different studies, we standardized units across studies to a 10 μg/m3 increase for PM. Heterogeneity was assessed by Cochran's Q test and I2 statistic. Publication bias was evaluated using funnel plots and Egger's tests. Subgroup analysis, meta-regression, and sensitivity analysis were performed. The protocol for this review was registered with PROSPERO (CRD42021277112). Of the 3403 originally identified studies, a meta-analysis was finally performed in 49 studies. The results showed that there was a significant positive association between long-term PM2.5 exposure and all-cause dementia, Alzheimer's disease as well as Parkinson's disease, with pooled OR of 1.30 (95%CI: 1.14, 1.47, I2 = 99.3%), 1.65 (95%CI: 1.37, 1.94, I2 = 98.2%), and 1.17 (95%CI: 1.00, 1.33, I2 = 91.8%). A positive association between PM10 and vascular dementia was observed (OR = 1.12, 95%CI: 1.04, 1.21, I2 = 0.0%). Association between PM exposure and decreased cognitive function score was found. Our results highlight the important role of PM pollution, particularly PM2.5, in the risk of age-related neurodegenerative diseases and cognitive function decline.
Collapse
Affiliation(s)
- Yuting Gong
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Chang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Chen
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.,NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| |
Collapse
|
26
|
Liu XQ, Huang J, Song C, Zhang TL, Liu YP, Yu L. Neurodevelopmental toxicity induced by PM2.5 Exposure and its possible role in Neurodegenerative and mental disorders. Hum Exp Toxicol 2023; 42:9603271231191436. [PMID: 37537902 DOI: 10.1177/09603271231191436] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Recent extensive evidence suggests that ambient fine particulate matter (PM2.5, with an aerodynamic diameter ≤2.5 μm) may be neurotoxic to the brain and cause central nervous system damage, contributing to neurodevelopmental disorders, such as autism spectrum disorders, neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and mental disorders, such as schizophrenia, depression, and bipolar disorder. PM2.5 can enter the brain via various pathways, including the blood-brain barrier, olfactory system, and gut-brain axis, leading to adverse effects on the CNS. Studies in humans and animals have revealed that PM2.5-mediated mechanisms, including neuroinflammation, oxidative stress, systemic inflammation, and gut flora dysbiosis, play a crucial role in CNS damage. Additionally, PM2.5 exposure can induce epigenetic alterations, such as hypomethylation of DNA, which may contribute to the pathogenesis of some CNS damage. Through literature analysis, we suggest that promising therapeutic targets for alleviating PM2.5-induced neurological damage include inhibiting microglia overactivation, regulating gut microbiota with antibiotics, and targeting signaling pathways, such as PKA/CREB/BDNF and WNT/β-catenin. Additionally, several studies have observed an association between PM2.5 exposure and epigenetic changes in neuropsychiatric disorders. This review summarizes and discusses the association between PM2.5 exposure and CNS damage, including the possible mechanisms by which PM2.5 causes neurotoxicity.
Collapse
Affiliation(s)
- Xin-Qi Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Jia Huang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Chao Song
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Tian-Liang Zhang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Yong-Ping Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Li Yu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| |
Collapse
|
27
|
Cho J, Jang H, Park H, Noh Y, Sohn J, Koh SB, Lee SK, Kim SY, Kim C. Alzheimer's disease-like cortical atrophy mediates the effect of air pollution on global cognitive function. ENVIRONMENT INTERNATIONAL 2023; 171:107703. [PMID: 36563596 DOI: 10.1016/j.envint.2022.107703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Little is known about the effect of air pollution on Alzheimer's disease (AD)-specific brain structural pathologies. There is also a lack of evidence on whether this effect leads to poorer cognitive function. We investigated whether, and the extent to which, AD-like cortical atrophy mediated the association between air pollution exposures and cognitive function in dementia-free adults. We used cross-sectional data from 640 participants who underwent brain magnetic resonance imaging and the Montreal Cognitive Assessment (MoCA). Mean cortical thickness (as the measure of global cortical atrophy) and machine learning-based AD-like cortical atrophy score were estimated from brain images. Concentrations of particulate matter with diameters ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) and nitrogen dioxide (NO2) were estimated based on each participant's residential address. Following the product method, a mediation effect was tested by conducting a series of three regression analyses (exposure to outcome; exposure to mediator; and exposure and mediator to outcome). A 10 μg/m3 increase in PM10 (β = -1.13; 95 % CI, -1.73 to -0.53) and a 10 ppb increase in NO2 (β = -1.09; 95 % CI, -1.40 to -0.78) were significantly associated with a lower MoCA score. PM10 (β = 0.27; 95 % CI, 0.06 to 0.48) and NO2 (β = 0.35; 95 % CI, 0.25 to 0.45) were significantly associated with an increased AD-like cortical atrophy score. Effects of PM10 and NO2 on MoCA scores were significantly mediated by mean cortical thickness (proportions mediated: 25 %-28 %) and AD-like cortical atrophy scores (13 %-16 %). The findings suggest that air pollution exposures may induce AD-like cortical atrophy, and that this effect may lead to poorer cognitive function in dementia-free adults.
Collapse
Affiliation(s)
- Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heeseon Jang
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunji Park
- Department of Public Health, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jungwoo Sohn
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang-Baek Koh
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea.
| |
Collapse
|
28
|
Lee JJ, Kim JH, Song DS, Lee K. Effect of Short- to Long-Term Exposure to Ambient Particulate Matter on Cognitive Function in a Cohort of Middle-Aged and Older Adults: KoGES. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9913. [PMID: 36011565 PMCID: PMC9408640 DOI: 10.3390/ijerph19169913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Exposure to ambient air pollution and its threat to human health is a global concern, especially in the elderly population. Therefore, more in-depth studies are required to understand the extent of the harmful effects of particulate matter (PM) based on duration and levels of exposure. An investigation was conducted to determine the association between short- (1-14 days), medium- (1, 3, and 6 months), and long-term (1, 2, and 3 years) exposure to air pollutants (PM2.5 and PM10) and cognitive function among Koreans (4175 participants, mean age 67.8 years, 55.2% women) aged over 50 years. Higher levels of PM2.5 exposure for short to long term and PM10 exposure for medium to long term were found to be associated with decreased cognitive function, as indicated by lower scores of the Mini-Mental State Examination adopted in Korean (K-MMSE). There were significant effect modifications by sex, age group, alcohol consumption, physical activity, and smoking status in the association between long-term PM2.5 and PM10 exposure and cognitive function. These findings, which underscore the importance of the efforts to reduce the exposure levels and durations of air pollutants, especially in the vulnerable elderly population, provide evidence for establishing more stringent policies for air pollution regulations.
Collapse
|
29
|
Ma YH, Chen HS, Liu C, Feng QS, Feng L, Zhang YR, Hu H, Dong Q, Tan L, Kan HD, Zhang C, Suckling J, Zeng Y, Chen RJ, Yu JT. Association of Long-term Exposure to Ambient Air Pollution With Cognitive Decline and Alzheimer's Disease-Related Amyloidosis. Biol Psychiatry 2022; 93:780-789. [PMID: 35953319 DOI: 10.1016/j.biopsych.2022.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Air pollution induces neurotoxic reactions and may exert adverse effects on cognitive health. We aimed to investigate whether air pollutants accelerate cognitive decline and affect neurobiological signatures of Alzheimer's disease (AD). METHODS We used a population-based cohort from the Chinese Longitudinal Healthy Longevity Survey with 31,573 participants and a 10-year follow-up (5878 cognitively unimpaired individuals in Chinese Longitudinal Healthy Longevity Survey followed for 5.95 ± 2.87 years), and biomarker-based data from the Chinese Alzheimer's Biomarker and Lifestyle study including 1131 participants who underwent cerebrospinal fluid measurements of AD-related amyloid-β (Aβ) and tau proteins. Cognitive impairment was determined by education-corrected performance on the China-Modified Mini-Mental State Examination. Annual exposures to fine particulate matter (PM2.5), ground-level ozone (O3), and nitrogen dioxide (NO2) were estimated at areas of residence. Exposures were aggregated as 2-year averages preceding enrollments using Cox proportional hazards or linear models. RESULTS Long-term exposure to PM2.5 (per 20 μg/m3) increased the risk of cognitive impairment (hazard ratio, 1.100; 95% CI: 1.026-1.180), and similar associations were observed from separate cross-sectional analyses. Exposures to O3 and NO2 yielded elevated risk but with nonsignificant estimates. Individuals exposed to high PM2.5 manifested increased amyloid burdens as reflected by cerebrospinal fluid-AD biomarkers. Moreover, PM2.5 exposure-associated decline in global cognition was partly explained by amyloid pathology as measured by cerebrospinal fluid-Aβ42/Aβ40, P-tau/Aβ42, and T-tau/Aβ42, with mediation proportions ranging from 16.95% to 21.64%. CONCLUSIONS Long-term exposure to PM2.5 contributed to the development of cognitive decline, which may be partly explained by brain amyloid accumulation indicative of increased AD risk.
Collapse
Affiliation(s)
- Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hua-Shuai Chen
- School of Business, Xiangtan University, Xiangtan, Hunan, China
| | - Cong Liu
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Qiu-Shi Feng
- Department of Sociology, National University of Singapore, Singapore
| | - Lei Feng
- Department of Psychological Medicine and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hai-Dong Kan
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Diseases, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Yi Zeng
- Center for the Study of Aging and Human Development, Medical School of Duke University, Center for Healthy Aging and Development Studies, National School of Development, Raissun Institute for Advanced Studies, Peking University, Beijing, China
| | - Ren-Jie Chen
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|