1
|
Clements JC, Harrison S, Roussel M, Hunt J, Power BL, Sonier R. Fishing during extreme heatwaves alters ecological interactions and increases indirect fishing mortality in a ubiquitous nearshore system. Commun Biol 2025; 8:735. [PMID: 40355644 PMCID: PMC12069597 DOI: 10.1038/s42003-025-08158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
Heatwaves may have multifaceted ecological impacts; however, field studies assessing the ecological ramifications of nearshore fishing during heatwaves are rare. We leverage a field experiment simulating clam fishing to document such effects on a ubiquitous ecological system at the land-sea interface. During monthly field trials from May-September 2024, we experimentally fished clams at low tide and tracked reburrowing and mortality rates of marked, sub-legal sized clams returned to the sediment. Half of the clams were protected from crab predation and estimates of predator and scavenger activity were recorded. Clams typically reburrowed quickly and mortality was low. During the heatwave, however, clams appeared unhealthy, failed to reburrow, and suffered near-complete mortality. Predator activity in experimental plots was >4× higher during the heatwave compared to other months. Clam mortality during the heatwave was likely a combined result of physiological death and increased predation. When put into the context of air temperature during fishing, there was a clear ecological shift at 30 °C, whereby clam reburrowing plummeted, and predator/scavenger activity and clam mortality dramatically increased. These results provide in situ documentation of human-climate interactions influencing indirect fishing mortality and altering ecological dynamics, ultimately generating pertinent information for ecosystem-based fisheries management.
Collapse
Affiliation(s)
- Jeff C Clements
- Fisheries and Oceans Canada, Moncton, NB, Canada.
- Department of Biological Sciences, University of New Brunswick, Saint John, NB, Canada.
| | - Sarah Harrison
- Fisheries and Oceans Canada, Moncton, NB, Canada
- Department of Biological Sciences, University of New Brunswick, Saint John, NB, Canada
| | | | - Jillian Hunt
- Fisheries and Oceans Canada, Moncton, NB, Canada
| | - Brooke-Lyn Power
- Fisheries and Oceans Canada, Moncton, NB, Canada
- Department of Biological Sciences, University of New Brunswick, Saint John, NB, Canada
| | - Rémi Sonier
- Fisheries and Oceans Canada, Moncton, NB, Canada
| |
Collapse
|
2
|
Chen J, Cheng H, Yan Y, Zhu J, Zhang M, Xie S, Xu J, Wang H. Primary producers in freshwater ecosystem respond differently to multiple environmental stressors: A mesocosm study. ENVIRONMENTAL RESEARCH 2025; 272:121145. [PMID: 39988044 DOI: 10.1016/j.envres.2025.121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Primary producers play key roles in maintaining a clear-water phase and promoting biodiversity in shallow aquatic ecosystems. Environmental stressors from anthropogenic activities, such as eutrophication and pesticide pollution, individually and in combination, can drive these ecosystems into a turbid state, potentially leading to a regime shift. In this 111-day study, we used 40 mesocosms (200 L) to simulate shallow lakes dominated by two typical macrophytes: the bottom-dwelling densely Vallisneria denseserrulata and the floating Spirodela polyrrhiza, along with associated food web components. We tested the interactive effects of nutrient loading, glyphosate-based herbicides, and imidacloprid insecticides on the growth of aquatic plants, phytoplankton, and periphyton. Our results indicate that meso-eutrophication, glyphosate and imidacloprid directly or indirectly affected aquatic primary producers, with the type of interaction (synergistic, antagonistic and additive) related to the form of the primary producer. Meso-eutrophication alone increased the biomass of all organisms except submerged plants, glyphosate alone decreased the biomass of all organisms except phytoplankton, with particularly strong effects on aquatic plants, and imidacloprid alone affected only aquatic animals. While combinations of multiple stressors generally increased algal biomass and decreased macrophyte biomass, submerged macrophytes consistently helped control algal blooms. These results demonstrate the risk of algal blooms in shallow lakes within agricultural landscapes and emphasize the crucial role of macrophytes in preventing algal blooms and maintaining healthy lake ecosystems.
Collapse
Affiliation(s)
- Jianlin Chen
- School of Ecology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Haowu Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yifeng Yan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Jiangqiu Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430072, PR China
| | - Songguang Xie
- School of Ecology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, PR China
| | - Jun Xu
- School of Ecology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Huan Wang
- School of Ecology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
3
|
Zhang P, Zhang H, Wang S, Woodward G, O'Gorman EJ, Jackson MC, Hansson LA, Hilt S, Frenken T, Wang H, Zhou L, Wang T, Zhang M, Xu J. Multiple Stressors Simplify Freshwater Food Webs. GLOBAL CHANGE BIOLOGY 2025; 31:e70114. [PMID: 40040532 DOI: 10.1111/gcb.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Globally, freshwater ecosystems are threatened by multiple stressors, yet our knowledge of how they interact to affect food web structure remains scant. To address this knowledge gap, we conducted a large-scale mesocosm experiment to quantify the single and combined effects of three common anthropogenic stressors: warming, increased nutrient loading, and insecticide pollution, on the network structure of shallow lake food webs. We identified both antagonistic and synergistic interactive effects depending on whether the stressors affected negative or positive feedback loops, respectively. Overall, multiple stressors simplified the food web, elongated energy transfer pathways, and shifted biomass distribution from benthic to more pelagic pathways. This increased the risk of a regime shift from a clear-water state dominated by submerged macrophytes to a turbid state dominated by phytoplankton. Our novel results highlight how multiple anthropogenic stressors can interactively disrupt food webs, with implications for understanding and managing aquatic ecosystems in a changing world.
Collapse
Affiliation(s)
- Peiyu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Xiangxi River Ecosystem Research Station in the Three Gorges Reservoir Region, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Xiangxi River Ecosystem Research Station in the Three Gorges Reservoir Region, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shaopeng Wang
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Guy Woodward
- Department of Life Sciences, The Georgina Mace Centre for the Living Planet, Imperial College London, Ascot, UK
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester, UK
| | | | | | - Sabine Hilt
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Thijs Frenken
- Cluster Nature & Society, HAS green academy, 's-Hertogenbosch, the Netherlands
| | - Huan Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Xiangxi River Ecosystem Research Station in the Three Gorges Reservoir Region, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Libin Zhou
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Tao Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Xiangxi River Ecosystem Research Station in the Three Gorges Reservoir Region, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jun Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Xiangxi River Ecosystem Research Station in the Three Gorges Reservoir Region, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
4
|
Yang Y, Li Q, Yan S, Zhang P, Zhang H, Kong X, Wang H, Hansson LA, Xie S, Xu J, Wang H. Eutrophication promotes resource use efficiency and toxin production of Microcystis in a future climate warming scenario. ENVIRONMENTAL RESEARCH 2024; 263:120219. [PMID: 39448008 DOI: 10.1016/j.envres.2024.120219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Addressing the risks of cyanobacterial blooms and toxin production under ongoing and accelerating eutrophication and climate warming is crucial for both water ecosystem services and human health. Therefore, we here explored the interactive effects of eutrophication and warming on freshwater ecosystems, focusing on Microcystis and its cyanotoxin production. We employed a large-scale mesocosm system simulating future climate warming scenarios in concert with varying degrees of nutrient enrichment. We explored the full range of identified cyanobacterial toxins and cyanotoxin-producing genes under different experimental conditions and assessed the effects of both eutrophication and warming on both phytoplankton community structure (algal densities, community stability) and function (resource use efficiency, RUE). We show here that eutrophication increases the RUE of Microcystis and promotes an increase in toxin-producing genes, leading to a substantial increase in the dominance of Microcystis. This increase correlates with enhanced cyanotoxin production, a trend exacerbated under the influence of future climate warming, suggesting interactions between eutrophication and climate warming on Microcystis ecology and cyanotoxin dynamics. Hence, heatwaves and eutrophication lead the phytoplankton community to be dominated by a minority of algal species with higher toxic capacity. In a broader context, our study underscores the urgent need for holistic management strategies, addressing both nutrient control and climate mitigation, to effectively manage the escalating ecological risks associated with cyanobacterial dominance and toxin production.
Collapse
Affiliation(s)
- Yalan Yang
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China; College of Ocean and Earth Sciences, Xiamen University, China.
| | - Qi Li
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, China.
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Xianghong Kong
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | | | - Songguang Xie
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Jun Xu
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Huan Wang
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China.
| |
Collapse
|
5
|
Lin J, Wang H, Chen J, Li Y. Inter-algal associations and nutrients linked by Scenedesmus and Desmodesmus structure eukaryotic algal communities. Mol Ecol 2024; 33:e17528. [PMID: 39283304 DOI: 10.1111/mec.17528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024]
Abstract
Eutrophication reduces the variability of the community composition of plankton. However, the mechanisms underlying the diversity and restructuring of eukaryotic algal communities remain unknown. This study analysed the diversity and compositional patterns of algal communities in shallow eutrophic lakes. It investigated how these communities were modified by key genera through mediating inter-algal associations under the influence of abiotic factors. Inter-algal associations explained more variance in algal communities than environmental variables, and variation in composition and diversity was primarily derived from Scenedesmus, Desmodesmus and Cryptomonas, rather than nutrients. Scenedesmus and Desmodesmus were positively correlated with the genera of Chlorophyta and formed the hub of the algal association network. When the relative abundance of Scenedesmus and Desmodesmus increased from 0.41% to 13.74%, communities enriched in biomarkers of Bacillariophyta, Chrysophyceae and Cryptophyta transitioned to communities enriched in biomarkers of Chlorophyta. Moreover, negative associations between the Chlorophyta hub genera and other non-Chlorophyta genera increased. High concentrations of total phosphorus altered the composition of algal communities by increasing the abundance of Scenedesmus and Desmodesmus, which in turn had cascading effects through inter-algal associations. Additionally, algal communities with higher abundances of Scenedesmus and Desmodesmus were more susceptible to the effects of total phosphorus. Our study suggested that inter-algal associations, centred on Scenedesmus and Desmodesmus, had a greater influence on algal diversity and community structure than other factors. Nutrient levels were not a direct driver of algal diversity and community structure adjustments, but acted indirectly by enhancing the influence of Scenedesmus and Desmodesmus.
Collapse
Affiliation(s)
- Juan Lin
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Hongxia Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianfeng Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yun Li
- State Key Laboratory of Lake Science and Environment, Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
6
|
Xu Z, Wang Y, Xie L, Shi D, He J, Chen Y, Feng C, Giesy JP, Leung KMY, Wu F. Resilient water quality management: Insights from Japan's environmental quality standards for conserving aquatic life framework. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100472. [PMID: 39247804 PMCID: PMC11378256 DOI: 10.1016/j.ese.2024.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Currently, chemicals and waste are recognized as key drivers of habitat degradation and biodiversity loss in aquatic ecosystems. To ensure vibrant habitats for aquatic species and maintain a sustainable aquatic food supply system, Japan promulgated its Environmental Quality Standards for the Conservation of Aquatic Life (EQS-CAL), based on its own aquatic life water quality criteria (ALWQC) derivation method and application mechanism. Here we overview Japan's EQS-CAL framework and highlight their best practices by examining the framework systems and related policies. Key experiences from Japan's EQS-CAL system include: (1) Classifying six types of aquatic organisms according to their adaptability to habitat status; (2) Using a risk-based chemical screening system for three groups of chemical pollutants; (3) Recommending a five-step method for determining ALWQC values based on the most sensitive life stage of the most sensitive species; (4) Applying site-specific implementation mechanisms through a series of Plan-Do-Check-Act loops. This paper offers scientific references for other jurisdictions, aiding in the development of more resilient ALWQC systems that can maintain healthy environments for aquatic life and potentially mitigate ongoing threats to human societies and global aquatic biodiversity.
Collapse
Affiliation(s)
- Zihan Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Li Xie
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya, 4668555, Japan
| | - Di Shi
- Research & Development Affairs Office, Tsinghua University, Beijing, 100084, China
| | - Jia He
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanqing Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48895, USA
- Department of Environmental Sciences, Baylor University, Waco, TX, 76798-7266, USA
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
7
|
Xie J, Wang T, Zhang P, Zhang H, Wang H, Wang K, Zhang M, Xu J. Effects of multiple stressors on freshwater food webs: Evidence from a mesocosm experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123819. [PMID: 38508368 DOI: 10.1016/j.envpol.2024.123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Natural and anthropogenic pressures exert influence on ecosystem structure and function by affecting the physiology and behavior of organisms, as well as the trophic interactions within assemblages. Therefore, understanding how multiple stressors affect aquatic ecosystems can improve our ability to manage and protect these ecosystems and contribute to understanding fundamental ecological principles. Here, we conducted a mesocosm experiment to ascertain the individual and combined effects of multiple stressors on trophic interactions within species in freshwater ecosystems. Furthermore, we investigated how species respond to such changes by adapting their food resources. To mimic a realistic food web, we selected fish and shrimp as top predators, gastropods, zooplankton and zoobenthos as intermediate consumers, with producers (macrophytes, periphyton and phytoplankton) and detritus as basal resources. Twelve different treatments included a control, nutrient loading only, herbicide exposure only, and a combination of nutrient loading and herbicide exposure, each replicated under ambient temperature, constant warming and multiple heat waves to simulate environmental stressors. Our results demonstrated that antagonistic interactions between environmental stressors were widespread in trophic interactions, with a more pronounced and less intense impact observed for the high trophic level species. The responses of freshwater communities to environmental stressors are complex, involving direct effects on individual species as well as indirect effects through species interactions. Moreover, our results confirmed that the combinations of stressors, but not individual stressors, led to a shift to herbivory in top predators, indicating that multiple stressors can be more detrimental to organisms than individual stressors alone. These findings elucidate how changes in the resource utilization of species induced by environmental stressors can potentially influence species interactions and the structural dynamics of food webs in freshwater ecosystems.
Collapse
Affiliation(s)
- Jiayi Xie
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Tao Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Peiyu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Huan Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Huan Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China.
| | - Kang Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Min Zhang
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.
| | - Jun Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
8
|
Yuan G, Chen Y, Wang Y, Zhang H, Wang H, Jiang M, Zhang X, Gong Y, Yuan S. Responses of Protozoan Communities to Multiple Environmental Stresses (Warming, Eutrophication, and Pesticide Pollution). Animals (Basel) 2024; 14:1293. [PMID: 38731297 PMCID: PMC11083714 DOI: 10.3390/ani14091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To explore the impacts of multiple environmental stressors on animal communities in aquatic ecosystems, we selected protozoa-a highly sensitive group of organisms-to assess the effect of environmental change. To conduct this simulation we conducted a three-factor, outdoor, mesocosm experiment from March to November 2021. Changes in the community structure and functional group composition of protozoan communities under the separate and combined effects of these three environmental stressors were investigated by warming and the addition of nitrogen, phosphorus, and pesticides. The results were as follows: (1) Both eutrophication and pesticides had a considerable promotional effect on the abundance and biomass of protozoa; the effect of warming was not considerable. When warming was combined with eutrophication and pesticides, there was a synergistic effect and antagonistic effect, respectively. (2) Eutrophication promoted α diversity of protozoa and affected their species richness and dominant species composition; the combination of warming and pesticides remarkably reduced the α diversity of protozoa. (3) Warming, eutrophication, and pesticides were important factors affecting the functional groups of protozoa. Interaction among different environmental factors could complicate changes in the aquatic ecological environment and its protozoan communities. Indeed, in the context of climate change, it might be more difficult to predict future trends in the protozoan community. Therefore, our results provide a scientific basis for the protection and restoration of shallow lake ecosystems; they also offer valuable insights in predicting changes in shallow lakes.
Collapse
Affiliation(s)
- Guoqing Yuan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China;
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Yue Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Yulu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Hanwen Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Hongxia Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Mixue Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Xiaonan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Yingchun Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Saibo Yuan
- Ecological Environment Monitoring and Scientific Research Center, Ecology and Environment Supervision and Administration Bureau of Yangtze Valley, Ministry of Ecology and Environment of the People’s Republic of China, Wuhan 430014, China
| |
Collapse
|
9
|
Yuan D, Li S, Xu YJ, Ma S, Zhang K, Le J, Wang Y, Ma B, Jiang P, Zhang L, Xu J. Response of dissolved carbon dioxide and methane concentration to warming in shallow lakes. WATER RESEARCH 2024; 251:121116. [PMID: 38219687 DOI: 10.1016/j.watres.2024.121116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Shallow lake ecosystems are highly sensitive to temperature fluctuation because of their high water surface-to-volume ratios. Shallow lakes have been increasingly identified as a hotspot of CO2 and CH4 emissions, but their response to temperature variation remains unclear. Here, we report from a 5-month outdoor mesocosm experiment where we investigated the impacts of a projected 3.5 °C future warming and monthly temperature changes on lake CO2 and CH4, as well as the key drivers affecting the lake carbon cycling. Our results show that CO2 and CH4 concentrations had a significantly positive correlation with monthly temperatures. CH4 concentration was primarily regulated by monthly temperature, while nutrients effects on CO2 concentration overrode climate warming and temporal temperature changes. These findings imply the varied roles that temperature and nutrient levels can play on CO2 and CH4 dynamics in shallow lake systems. The relationship between temperature and CO2 concentration was nonlinear, showing a threshold of approximately 9 °C, at which CO2 concentration could be strongly modified by nutrient level in the lake systems. Understanding this complex relationship between temperature with CO2 and CH4 concentrations in shallow lakes is crucial for effective lake management and efficient control of greenhouse gases (GHGs) emissions.
Collapse
Affiliation(s)
- Danni Yuan
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shiwang Ma
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Kairui Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jingquan Le
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yang Wang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Bingjie Ma
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ping Jiang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Liuqing Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
10
|
Niu X, Wang H, Wang T, Zhang P, Zhang H, Wang H, Kong X, Xie S, Xu J. The combination of multiple environmental stressors strongly alters microbial community assembly in aquatic ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119594. [PMID: 37995485 DOI: 10.1016/j.jenvman.2023.119594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/14/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Microorganisms play a critical role in maintaining the delicate balance of ecosystem services. However, the assembly processes that shape microbial communities are vulnerable to a range of environmental stressors, such as climate change, eutrophication, and the use of herbicides. Despite the importance of these stressors, little is known about their cumulative impacts on microbial community assembly in aquatic ecosystems. To address this knowledge gap, we established 48 mesocosm experiments that simulated shallow lake ecosystems and subjected them to warming (including continuous warming (W) and heat waves (H)), glyphosate-based herbicides (G), and nutrient loading (E). Our study revealed that in the control group, both deterministic and stochastic processes codominated the assembly of microbial communities in water, whereas in sediment, the processes were primarily stochastic. Interestingly, the effects of multiple stress factors on assembly in these two habitats were completely opposite. Specifically, stressors promoted the dominance of stochastic processes in water but increased the importance of deterministic processes in sediment. Furthermore, warming amplified the effects of herbicides but exerted an opposite and stronger influence on assembly compared to nutrients, emphasizing the complexity of these mechanisms and the significance of considering multiple stressors. The interaction of some factors significantly affected assembly (p < 0.05), with the effects of WEG being most pronounced in water. Both water and sediment exhibited homogeneous assembly of microbial communities (mean NTI >0), but the phylogenetic clustering of microbial communities in water was more closely related (NTI >2). Our research revealed the response model of microbial community assembly in aquatic ecosystems to multiple environmental stresses, such as agricultural pollution, climate change, and eutrophication, and indicated that microbial community changes in sediment may be an important predictor of lake ecosystem development. This provides scientific evidence that better environmental management can reduce impacts on aquatic ecosystems under the threat of future warming.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Huan Wang
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Xianghong Kong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Songguang Xie
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Jun Xu
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
11
|
Yang S, Yang H, Xu Z, Peng Q, Mao H, Yang Y, Li Z. Use of CMIP6 scenarios as a reference to understand the responses of macrophyte germination and seedling growth to future warming and allelopathy co-stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168463. [PMID: 37951270 DOI: 10.1016/j.scitotenv.2023.168463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
The application of appropriate references such as CMIP6 climate scenarios for benchmarking studies of climate change on ecosystems can promote consistency among different climate change research. However, the use of CMIP6 climate scenarios is not common among experiments on the effects of climate change on freshwater ecosystems. Also, little is known about the impact of ecological factor such as allelopathy of alien species on macrophyte germination and seedling growth under different climate scenarios. In our study, by simulating three annual mean temperature changes at global warming levels of 1.5 °C (low warming scenario), 2 °C (medium warming scenario) and 4 °C (high warming scenario) corresponding to CMIP6 multi-model mean change at the corresponding global warming level, we conducted a mesocosm experiment to investigate their possible effects of different climate scenarios and allelopathy co-stressors on macrophyte germination and seedling growth. Our study showed that three warming scenarios all can facilitate macrophyte propagule germination and seedling growth, but the effect paths vary with CMIP6 warming scenarios and there are more influence pathways under high warming scenarios than under low and medium warming scenarios. Higher aqueous extract concentrations of Eichhornia crassipes can significantly stimulate macrophyte propagule germination and seedling growth. And the medium and high warming scenarios may exacerbate the impacts of allelopathic substances on macrophyte germination and seedling growth, and their effects depend on the combination of the two stressors. These results indicated that medium- and high-temperature scenarios may have greater ecological effects on macrophytes than low-temperature scenarios. Thus, our results highlighted that future climate studies need proper benchmarks such as CMIP6 warming scenarios, because it can provide relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supportive coordination among researchers.
Collapse
Affiliation(s)
- Shiwen Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Yujing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, China.
| |
Collapse
|
12
|
Neijnens FK, Moreira H, de Jonge MMJ, Linssen BBHP, Huijbregts MAJ, Geerling GW, Schipper AM. Effects of nutrient enrichment on freshwater macrophyte and invertebrate abundance: A meta-analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17094. [PMID: 38273479 DOI: 10.1111/gcb.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 01/27/2024]
Abstract
External nutrient loading can cause large changes in freshwater ecosystems. Many local field and laboratory experiments have investigated ecological responses to nutrient addition. However, these findings are difficult to generalize, as the responses observed may depend on the local context and the resulting nutrient concentrations in the receiving water bodies. In this research, we combined and analysed data from 131 experimental studies containing 3054 treatment-control abundance ratios to assess the responses of freshwater taxa along a gradient of elevated nutrient concentrations. We carried out a systematic literature search in order to identify studies that report the abundance of invertebrate, macrophyte, and fish taxa in relation to the addition of nitrogen, phosphorus, or both. Next, we established mixed-effect meta-regression models to relate the biotic responses to the concentration gradients of both nutrients. We quantified the responses based on various abundance-based metrics. We found no responses to the mere addition of nutrients, apart from an overall increase of total invertebrate abundance. However, when we considered the gradients of N and P enrichment, we found responses to both nutrients for all abundance metrics. Abundance tended to increase at low levels of N enrichment, yet decreased at the high end of the concentration gradient (1-10 mg/L, depending on the P concentration). Responses to increasing P concentrations were mostly positive. For fish, we found too few data to perform a meaningful analysis. The results of our research highlight the need to consider the level of nutrient enrichment rather than the mere addition of nutrients in order to better understand broad-scale responses of freshwater biota to eutrophication, as a key step to identify effective conservation strategies for freshwater ecosystems.
Collapse
Affiliation(s)
- Floris K Neijnens
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
- Deltares, Delft, The Netherlands
| | - Hadassa Moreira
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Melinda M J de Jonge
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Bart B H P Linssen
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Mark A J Huijbregts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Gertjan W Geerling
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
- Deltares, Delft, The Netherlands
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
- PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
| |
Collapse
|
13
|
Pan S, Zhang W, Li Y, Gao Y, Yu F, Tang Z, Zhu Y. Unveiling novel perspectives on niche differentiation and plasticity in rhizosphere phosphorus forms of submerged macrophytes with different stoichiometric homeostasis. WATER RESEARCH 2023; 246:120679. [PMID: 37806123 DOI: 10.1016/j.watres.2023.120679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Stoichiometric homeostasis is the ability of organisms to maintain their element composition through various physiological mechanisms, regardless of changes in nutrient availability. Phosphorus (P) is a critical limiting element for eutrophication. Submerged macrophytes with different stoichiometric homeostasis regulated sediment P pollution by nutrient resorption, but whether and how P homeostasis and resorption in submerged macrophytes changed under variable plant community structure was unclear. Increasing evidence suggests that rhizosphere microbes drive niche overlap and differentiation for different P forms to constitute submerged macrophyte community structure. However, a greater understanding of how this occurs is required. This study examined the process underlying the metabolism of different rhizosphere P forms of submerged macrophytes under different cultivation patterns by analyzing physicochemical data, basic plant traits, microbial communities, and transcriptomics. The results indicate that alkaline phosphatase serves as a key factor in revealing the existence of a link between plant traits (path coefficient = 0.335, p < 0.05) and interactions with rhizosphere microbial communities (average path coefficient = 0.362, p < 0.05). Moreover, this study demonstrates that microbial communities further influence the niche plasticity of P by mediating plant root P metabolism genes (path coefficient = 0.354, p < 0.05) and rhizosphere microbial phosphorus storage (average path coefficient = 0.605, p < 0.01). This research not only contributes to a deeper comprehension of stoichiometric homeostasis and nutrient dynamics but also provides valuable insights into potential strategies for managing and restoring submerged macrophyte-dominated ecosystems in the face of changing nutrient conditions.
Collapse
Affiliation(s)
- Shenyang Pan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Feng Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zikang Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yajie Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
14
|
Yang Y, Wang H, Yan S, Wang T, Zhang P, Zhang H, Wang H, Hansson LA, Xu J. Chemodiversity of Cyanobacterial Toxins Driven by Future Scenarios of Climate Warming and Eutrophication. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11767-11778. [PMID: 37535835 DOI: 10.1021/acs.est.3c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Climate change and eutrophication are two environmental threats that can alter the structure of freshwater ecosystems and their service functions, but we know little about how ecosystem structure and function will evolve in future scenarios of climate warming. Therefore, we created different experimental climate scenarios, including present-day conditions, a 3.0 °C increase in mean temperature, and a "heatwaves" scenario (i.e., an increase in temperature variability) to assess the effects of climate change on phytoplankton communities under simultaneous stress from eutrophication and herbicides. We show that the effects of climate warming, particularly heatwaves, are associated with elevated cyanobacterial abundances and toxin production, driven by a change from mainly nontoxic to toxic Microcystis spp. The reason for higher cyanobacterial toxin concentrations is likely an increase in abundances because under the dual pressures of climate warming and eutrophication individual Microcystis toxin-producing ability decreased. Eutrophication and higher temperatures significantly increased the biomass of Microcystis, leading to an increase in the cyanobacterial toxin concentrations. In contrast, warming alone did not produce higher cyanobacterial abundances or cyanobacterial toxin concentrations likely due to the depletion of the available nutrient pool. Similarly, the herbicide glyphosate alone did not affect abundances of any phytoplankton taxa. In the case of nutrient enrichment, cyanobacterial toxin concentrations were much higher than under warming alone due to a strong boost in biomass of potential cyanobacterial toxin producers. From a broader perspective our study shows that in a future warmer climate, nutrient loading has to be reduced if toxic cyanobacterial dominance is to be controlled.
Collapse
Affiliation(s)
- Yalan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, P. R. China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Huan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, P. R. China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Lars-Anders Hansson
- Department of Biology/Aquatic Ecology, Ecology Building, Lund University, Lund SE-22100, Sweden
| | - Jun Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, P. R. China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| |
Collapse
|
15
|
López Moreira Mazacotte GA, Polst BH, Gross EM, Schmitt-Jansen M, Hölker F, Hilt S. Microcosm experiment combined with process-based modeling reveals differential response and adaptation of aquatic primary producers to warming and agricultural run-off. FRONTIERS IN PLANT SCIENCE 2023; 14:1120441. [PMID: 37404535 PMCID: PMC10316517 DOI: 10.3389/fpls.2023.1120441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/03/2023] [Indexed: 07/06/2023]
Abstract
Fertilizers, pesticides and global warming are threatening freshwater aquatic ecosystems. Most of these are shallow ponds or slow-flowing streams or ditches dominated by submerged macrophytes, periphyton or phytoplankton. Regime shifts between the dominance of these primary producers can occur along a gradient of nutrient loading, possibly triggered by specific disturbances influencing their competitive interactions. However, phytoplankton dominance is less desirable due to lower biodiversity and poorer ecosystem function and services. In this study, we combined a microcosm experiment with a process-based model to test three hypotheses: 1) agricultural run-off (ARO), consisting of nitrate and a mixture of organic pesticides and copper, differentially affects primary producers and enhances the risk of regime shifts, 2) warming increases the risk of an ARO-induced regime shift to phytoplankton dominance and 3) custom-tailored process-based models support mechanistic understanding of experimental results through scenario comparison. Experimentally exposing primary producers to a gradient of nitrate and pesticides at 22°C and 26°C supported the first two hypotheses. ARO had direct negative effects on macrophytes, while phytoplankton gained from warming and indirect effects of ARO like a reduction in the competitive pressure exerted by other groups. We used the process-based model to test eight different scenarios. The best qualitative fit between modeled and observed responses was reached only when taking community adaptation and organism acclimation into account. Our results highlight the importance of considering such processes when attempting to predict the effects of multiple stressors on natural ecosystems.
Collapse
Affiliation(s)
| | - Bastian H. Polst
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Elisabeth M. Gross
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) UMR 7360 CNRS, Université de Lorraine, Metz, France
- LTSER Zone Atelier Bassin de la Moselle, Metz, France
| | - Mechthild Schmitt-Jansen
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Franz Hölker
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Sabine Hilt
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
16
|
Lv C, Tian Y, Huang L, Shan H, Chou Q, Zhang W, Su H, Li K, Zhang X, Ni L, Cao T, Jeppesen E. Buffering capacity of submerged macrophytes against nutrient pulses increase with its coverage in shallow lakes. CHEMOSPHERE 2023; 332:138899. [PMID: 37169089 DOI: 10.1016/j.chemosphere.2023.138899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
Submerged macrophytes can improve water quality and buffer the effects of external nutrient loading, which helps to maintain a clear-water state in shallow lakes. We constructed 12 large enclosures with contrasting coverages (treatments) of submerged macrophytes (SMC) to elucidate their buffering capacity and resilience to nutrient pulses. We found that aquatic ecosystems with high SMC had higher buffering capacity and resilience, vice versa, i. e, the enclosures with high SMC quickly buffered the nutrient pulse and rebounded to clear-water state after a short stay in turbid-water state dominated by algae, while the treatments with low SMC could not fully buffer the pulse and rebound to clear-water state, and they slowly entered the transitional state after staying in turbid-water state. This means that the enclosures with high SMC had a better water quality than those with low SMC, i.e., the levels of nutrients and Chl-a were lower in the treatments with high plant coverage. In addition, plant coverage had a significantly positive buffering effect against nitrogen and phosphorus pulses, i.e., the nutrient concentrations in the treatments with high SMC took shorter time to return to the pre-pulse level. Overall, our results evidenced that the higher that the SMCs is, the better is the water quality and buffering capacity against nutrient pulses, i.e. the more stable is the clear-water state. However, low SMC may not be able to resist the impact of such strong nutrient pulse. Our results provide reference and guidance for water pollution control and water ecological restoration.
Collapse
Affiliation(s)
- Chaochao Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuqing Tian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liangliang Huang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
| | - Hang Shan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qingchuan Chou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Wei Zhang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Haojie Su
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaolin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Leyi Ni
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Te Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Erik Jeppesen
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Aarhus University, Department of Ecoscience, Aarhus, 8000, Denmark; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
17
|
Feng M, Cheng H, Zhang P, Wang K, Wang T, Zhang H, Wang H, Zhou L, Xu J, Zhang M. Stoichiometric stability of aquatic organisms increases with trophic level under warming and eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160106. [PMID: 36370785 DOI: 10.1016/j.scitotenv.2022.160106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The balance of stoichiometric traits of organisms is crucial for nutrient cycling and energy flow in ecosystems. However, the impacts of different drivers on stoichiometric (carbon, C; nitrogen, N; and phosphorus, P) variations of organisms have not been well addressed. In order to understand how stoichiometric traits vary across trophic levels under different environmental stressors, we performed a mesocosm experiment to explore the impacts of warming (including +3 °C consistent warming above ambient and heat waves ranging from 0 to 6 °C), eutrophication, herbicide and their interactions on stoichiometric traits of organisms at different trophic levels, which was quantified by stable nitrogen isotopes. Results showed that herbicide treatment had no significant impacts on all stochiometric traits, while warming and eutrophication significantly affected the stoichiometric traits of organisms at lower trophic levels. Eutrophication increased nutrient contents and decreased C: nutrient ratios in primary producers, while the response of N:P ratios depended on the taxonomic group. The contribution of temperature treatments to stoichiometric variation was less than that of eutrophication. Heat waves counteracted the impacts of eutrophication, which was different from the effects of continuous warming, indicating that eutrophication impacts on organism stoichiometric traits depended on climate scenarios. Compared to environmental drivers, taxonomic group was the dominant driver that determined the variations of stoichiometric traits. Furthermore, the stoichiometric stability of organisms was strongly positively correlated with their trophic levels. Our results demonstrate that warming and eutrophication might substantially alter the stoichiometric traits of lower trophic levels, thus impairing the nutrient transfer to higher trophic level, which might further change the structure of food webs and functions of the ecosystems.
Collapse
Affiliation(s)
- Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Kang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Libin Zhou
- Institute of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|