1
|
Lee MK, Lee YJ, Lee CB. Ecosystem multifunctionality in temperate forests of South Korea is primarily controlled by structural diversity and potential moisture availability with synergy effects between ecosystem functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125449. [PMID: 40254009 DOI: 10.1016/j.jenvman.2025.125449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/10/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Assessing and improving ecosystem multifunctionality (EMF) is essential to achieving the goals of enhancing human well-being and sustainable development. This study aims to quantify EMF and to identify its influencing factors, including biotic (tree species diversity, functional dominance, and stand structural diversity) and abiotic factors (topography, climate, and soil), and stand age. We used South Korea's 7th National Forest Inventory data to analyze 630 natural forest plots consisting of coniferous, broadleaved, and mixed stands. We categorized 12 ecosystem function-related variables to quantify EMF. Multimodel averaging and piecewise structural equation modeling were implemented to identify the main variables that affect EMF and to quantify their interrelationships and strengths. Additionally, we quantified the strength of interactions between ecosystem functions. Our findings indicate that high plant richness and old forests led to high stand structural diversity, which has a direct positive effect on EMF. Additionally, reducing water stress increased the availability of plant resources, which also has a positive effect on EMF. The mechanism controlling EMF differed according to forest stand type. In particular, we did not observe dominant plant functional traits controlling EMF in mixed stands due to the mixture of functional traits of coniferous and broadleaved trees. Finally, the interactions among ecosystem functions demonstrated a stronger synergy effect, with most functions contributing to an increase in EMF, though the degree of impact varied depending on the forest stand type. Our analysis indicates that we must comprehensively consider biodiversity and stand age as well as stand structural diversity to promote EMF. Moreover, forest management strategies should account for the interaction between plant functional traits and ecosystem functions along with environmental gradients is essential.
Collapse
Affiliation(s)
- Min-Ki Lee
- Department of Forest Resources, Kookmin University, 77 Jeongneungro, Seongbukgu, Seoul, 02707, Republic of Korea; Forest Carbon Graduate School, Kookmin University, 77 Jeongneungro, Seongbukgu, Seoul, 02707, Republic of Korea
| | - Yong-Ju Lee
- Forest Carbon Graduate School, Kookmin University, 77 Jeongneungro, Seongbukgu, Seoul, 02707, Republic of Korea; Department of Climate Technology Convergence (Biodiversity and Ecosystem Functioning Major), Kookmin University, 77 Jeongneungro, Seongbukgu, Seoul, 02707, Republic of Korea
| | - Chang-Bae Lee
- Department of Forest Resources, Kookmin University, 77 Jeongneungro, Seongbukgu, Seoul, 02707, Republic of Korea; Forest Carbon Graduate School, Kookmin University, 77 Jeongneungro, Seongbukgu, Seoul, 02707, Republic of Korea; Department of Climate Technology Convergence (Biodiversity and Ecosystem Functioning Major), Kookmin University, 77 Jeongneungro, Seongbukgu, Seoul, 02707, Republic of Korea.
| |
Collapse
|
2
|
Gao Y, Liu J, Wang D, An Y, Ma H, Tong S. Synergy and trade-off between plant functional traits enhance grassland multifunctionality under grazing exclusion in a semi-arid region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123877. [PMID: 39733684 DOI: 10.1016/j.jenvman.2024.123877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/22/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Grazing exclusion is effective in restoring vegetation and ecological services in degraded grasslands within semi-arid regions. Variations in plant functional traits associated with the duration of grazing exclusion can indicate both ecological adaptability of plants and restoration processes of ecosystems. However, research on ecosystem multifunctionality (EMF) under grazing exclusion and restoration mechanisms mediated by plant functional traits is relatively limited. In this study, we calculated EMF based on plant species diversity, above-ground biomass (AGB), below-ground biomass (BGB), storages of soil organic carbon (TSOC), soil nitrogen (TSN), and soil phosphorus (TSP) in grasslands under varying durations of grazing exclusion in the semi-arid Songnen Plain, China, and investigated the trait-based pathways involved in forming EMF. The findings revealed irregular fluctuations in plant species diversity, while AGB, TSOC, TSN, and TSP exhibited a linear increase with grazing exclusion duration. Additionally, BGB initially increased but experienced a slight decline over the 17 years of grazing exclusion (GE17). Notably, EMF peaked at 0.778 in GE17 site. In particular, the proportions of AGB and TSOC in the EMF were higher in grazing exclusion sites than that in grazing site. Leaf area (LA) and leaf weight (LW) were lowest in grazing site and highest in GE17 site. Redundancy analysis indicated that the plant functional traits, including LA, leaf nitrogen content (LNC), and LW, collectively explained a substantial proportion of the variance (70.85%) in ecosystem function indicators. Structural equation modelling analysis revealed a direct impact of grazing exclusion on EMF (P < 0.05). However, EMF was remarkably and directly affected by the AGB (P < 0.01) that regulated by the trade-off between LW and LNC. In addition, the synergy between LW and LA had an impact on TSP (P < 0.01), and further enhance EMF (P < 0.05). These findings prominently emphasize the advantageous outcomes of proper grazing exclusion concerning the functional aspects of degraded grasslands. Moreover, they persuasively validate the crucial significance of plant functional traits in relation to the enhancement of EMF. Consequently, this study is capable of providing valuable information for revealing multiple driven mechanisms of grassland EMF in the semi-arid regions.
Collapse
Affiliation(s)
- Yang Gao
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Jian Liu
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Duojia Wang
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Yu An
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Hongyuan Ma
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shouzheng Tong
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
3
|
Li D, Chen D, Hou C, Chen H, Zhou Q, Wu J. Soil microfauna mediate multifunctionality under multilevel warming in a primary forest. J Anim Ecol 2025; 94:58-68. [PMID: 39551974 DOI: 10.1111/1365-2656.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/05/2024] [Indexed: 11/19/2024]
Abstract
Soil microfauna play a crucial role in maintaining multiple functions associated with soil phosphorous, nitrogen and carbon cycling. Although both soil microfauna diversity and multifunctionality are strongly affected by climate warming, it remains unclear how their relationships respond to different levels of warming. We conducted a 3-year multilevel warming experiment with five warming treatments in a subtropical primary forest. Using infrared heating systems, the soil surface temperature in plots was maintained at 0.8, 1.5, 3.0 and 4.2°C above ambient temperature (control). Our findings indicated that low-level warming (+0.8-1.5°C) increased soil multifunctionality, as well as nematode and protist diversity, compared with the control. In contrast, high-level warming (+4.2°C) significantly reduced these variables. We also identified significant positive correlations between soil multifunctionality and nematode and protist diversity in the 0-10 cm soil layer. Notably, we found that soil multifunctionality and protist diversity did not change significantly under 3.0°C warming treatment. Our results imply that a temperature increase of around 3°C may represent a critical threshold in subtropical forests, which is of great importance for identifying response measures to global warming from the perspective of microfauna in the surface soil. Our findings provide new evidence on how soil microfauna regulate multifunctionality under varying degrees of warming in primary forests.
Collapse
Affiliation(s)
- Debao Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Deyun Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Chunyu Hou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Hong Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Qingqiu Zhou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Jianping Wu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Gong J, Yang G, Zhang S, Zhang W, Dong X, Zhang S, Wang R, Yan C, Wang T. Human activities weaken the positive effects of soil abiotic factors and biodiversity on ecosystem multifunctionality more than drought: A case study in China's West Liao River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177564. [PMID: 39566633 DOI: 10.1016/j.scitotenv.2024.177564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Watershed-scale ecosystem biodiversity has been adversely affected by human disturbances and climate change for many years, leading to degradation of ecological functions (i.e., decreased ecosystem multifunctionality, EMF). However, the driving factors and their mechanisms are unclear. Here, we analyzed the effects of human activities, climate, biodiversity, and soil abiotic factors on EMF in China's West Liao River Basin along a natural drought intensity gradient. The beneficial effects of biodiversity on EMF were influenced by the drought intensity; biodiversity increased plant density in humid zones, plant diversity in semi-arid zones, and soil microbial diversity in arid zones, thereby improving watershed EMF and indicating that drought determines the direction and strength of the effects of biodiversity on EMF. The relative abundances of soil microbial keystone taxa such as Actinomycetes and Gemmatimonadetes were the most important predictors of EMF. These results indicate that any loss of plant community diversity or plant density, soil microbial diversity, and the abundance of keystone microbial taxa could reduce EMF. Human activities and drought directly decreased EMF, but also indirectly reduced EMF by reducing soil pH and soil water content (SWC), plant diversity. As human activity increases, EMF's sensitivity to drought increases, and this implies that in regions with high levels of human activity, the effects of climate warming on EMF may be greater than expected. Overall, human activities (including direct, indirect, and total effects) are primary drivers of changes of biodiversity and soil abiotic factors in watershed ecosystems, and regulate the watershed's EMF. The results provide new insights to improve predictions of the direction, magnitude, and regulation mechanisms of EMF and its responses to global climate change.
Collapse
Affiliation(s)
- Jirui Gong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Guisen Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Siqi Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Weiyuan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Xuede Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Shangpeng Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Ruijing Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Chenyi Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Tong Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
5
|
Cui Y, Xu D, Luo W, Zhai Y, Dai Y, Ji C, Li X, Chen J. Effects of volcanic environment on Setaria viridis rhizospheric soil microbial keystone taxa and ecosystem multifunctionality. ENVIRONMENTAL RESEARCH 2024; 263:120262. [PMID: 39481779 DOI: 10.1016/j.envres.2024.120262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Keystone taxa are significant within ecosystem multifunctionality, as certain species fulfil essential functions such as recycling soil nutrients, promoting plant growth, influencing biogeochemical processes, and contributing to human health maintenance. However, there are still gaps regarding the relationship between microbial communities in volcanic rhizospheric soil and ecosystem multifunctionality. As a result, in this research, we employed Illumina MiSeq high-throughput sequencing to analyse the microbial community composition of rhizospheric soil from volcanic S. viridis. Compared with non-volcanic areas, volcanic soils have higher fungal alpha diversity and the absolute abundance of bacteria (16S gene copies) showed significant variation between the two successions (P < 0.0001). The network analysis further demonstrated that the microbial diversity in non-volcanic regions surpassed that of the volcanic area. The volcanic fungi network has more nodes and edges, is more complex than non-volcanic areas (Nodes: 425 vs. 770; Edges: 21844 vs. 74532), and more rhizosphere growth-promoting bacteria are enriched. Regression analysis and correlation networks showed that fungal communities were more closely associated with ecosystem multifunctionality than bacteria. This study lays the groundwork for examining the microbial keystone taxa in the rhizosphere of volcanic plants and offers valuable insights into the multifaceted functions of plant rhizospheric soil ecosystems.
Collapse
Affiliation(s)
- Ye Cui
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Daolong Xu
- Inner Mongolia Academy of Science and Technology, Hohhot, 010010, Inner Mongolia, China
| | - Wumei Luo
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Yuxin Zhai
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Yiming Dai
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Chunxiang Ji
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China.
| | - Jin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Liu L, Zheng J, Guan J, Li C, Ma L, Liu Y, Han W. Strong positive direct impact of soil moisture on the growth of central asian grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176663. [PMID: 39362565 DOI: 10.1016/j.scitotenv.2024.176663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
As the issue of global climate change becomes increasingly prominent, the grassland ecosystems in Central Asia are facing severe challenges posed by the impacts of climate change. However, the dominant factors, impact pathways, and cumulative and time-lagged effects of climate factors on various grassland indices remain to be explored. This study selected data from 1988 to 2019, including Fractional Vegetation Cover (FVC), Leaf Area Index (LAI), Net Primary Productivity (NPP), and Vegetation Optical Depth (VOD), to characterize grassland coverage, greenness, biomass accumulation, and water content features. Utilizing multiple linear regression, path analysis, and correlation analysis, this study investigated the dominant effects, direct impacts, indirect influences, and cumulative and time-lagged effects of climate factors on various grassland indices from spatial and climatic zone perspectives. The research findings indicate that over time, the grassland FVC and NPP exhibited increasing trends, while the LAI and VOD showed decreasing trends. Grassland indices are primarily influenced by precipitation and soil moisture (SM). The direct impact of SM on grassland indices was higher than precipitation. Vapour pressure deficit (VPD) has a direct negative impact on grassland indices. Grassland indices are subject to positive indirect effects from precipitation via SM and negative indirect effects from VPD via SM. Precipitation and SM mainly exhibited no cumulative and time-lagged effects on the impact of grassland VOD. VPD primarily demonstrated cumulative and time-lagged effects on grassland indices. The research findings offer valuable insights for conserving grassland ecosystems in Central Asia, as well as for shaping socioeconomic strategies and formulating climate policies.
Collapse
Affiliation(s)
- Liang Liu
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Jianghua Zheng
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China.
| | - Jingyun Guan
- College of Tourism, Xinjiang University of Finance & Economics, Urumqi 830012, China
| | - Congren Li
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Lisha Ma
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Yujia Liu
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Wanqiang Han
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
7
|
Hu JP, He YY, Li JH, Lü ZL, Zhang YW, Li YH, Li JL, Zhang MX, Cao YH, Zhang JL. Planting halophytes increases the rhizosphere ecosystem multifunctionality via reducing soil salinity. ENVIRONMENTAL RESEARCH 2024; 261:119707. [PMID: 39084507 DOI: 10.1016/j.envres.2024.119707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Soil salinization poses a significant global challenge, exerting adverse effects on both agriculture and ecosystems. Planting halophytes has the potential ability to improve saline-alkali land and enhance ecosystem multifunctionality (EMF). However, it remains unclear which halophytes are effective in improving saline-alkali land and what impact they have on the rhizosphere microbial communities and EMF. In this study, we evaluated the Na+ absorption capability of five halophytes (Grubovia dasyphylla, Halogeton glomeratus, Suaeda salsa, Bassia scoparia, and Reaumuria songarica) and assessed their rhizosphere microbial communities and EMF. The results showed that S. salsa possessed the highest shoot (3.13 mmol g-1) and root (0.92 mmol g-1) Na+ content, and its soil Na+ absorption, along with B. scoparia, was significantly higher than that of other plants. The soil pH, salinity, and Na+ content of the halophyte rhizospheres decreased by 6.21%, 23.49%, and 64.29%, respectively, when compared to the bulk soil. Extracellular enzymes in the halophyte rhizosphere soil, including α-glucosidase, β-glucosidase, β-1,4-N-acetyl-glucosaminidase, neutral phosphatase, and alkaline phosphatase, increased by 70.1%, 78.4%, 38.5%, 79.1%, and 64.9%, respectively. Furthermore, the halophyte rhizosphere exhibited higher network complexity of bacteria and fungi and EMF than bulk soil. The relative abundance of the dominant phyla Proteobacteria, Firmicutes, and Ascomycota in the halophyte rhizosphere soil increased by 9.4%, 8.3%, and 22.25%, respectively, and showed higher microbial network complexity compared to the bulk soil. Additionally, keystone taxa, including Muricauda, Nocardioides, and Pontibacter, were identified with notable effects on EMF. This study confirmed that euhalophytes are the best choice for saline-alkali land restoration. These findings provided a theoretical basis for the sustainable use of saline-alkali cultivated land.
Collapse
Affiliation(s)
- Jin-Peng Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan-Yuan He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jian-Hong Li
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, 553004, PR China
| | - Zhao-Long Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yue-Wei Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan-Hong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Lü Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ming-Xu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yan-Hua Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
8
|
Qu Q, Wang S, Hu X, Mu L. The impact of anthropogenic pressures on microbial diversity and river multifunctionality relationships on a global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175293. [PMID: 39111414 DOI: 10.1016/j.scitotenv.2024.175293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
Conserving biodiversity is crucial for maintaining essential ecosystem functions, as indicated by the positive relationships between biodiversity and ecosystem functioning. However, the impacts of declining biodiversity on ecosystem functions in response to mounting human pressures remain uncertain. This uncertainty arises from the complexity of trade-offs among human activities, climate change, river properties, and biodiversity, which have not been comprehensively addressed collectively. Here, we provide evidence that river biodiversity was significantly and positively associated with multifunctionality and contributed to key ecosystem functions such as microbially driven water purification, leaf litter decomposition and pathogen control. However, human pressure led to abrupt changes in microbial diversity and river multifunctionality relationships at a human pressure value of 0.5. In approximately 30 % (N = 58) of countries globally, the ratio of area above this threshold exceeded the global average (∼11 %), especially in Europe. Results show that human pressure affected ecosystem functions through direct effects and interactive effects. We provide more direct evidence that the nonadditive effects triggered by prevailing human pressure impact the multifunctionality of rivers globally. Under high levels of human stress, the beneficial effects of biodiversity on nutrient cycling, carbon storage, gross primary productivity, leaf litter decomposition, and pathogen control tend to diminish. Our findings highlight that considering interactions between human pressure and local abiotic and biotic factors is key for understanding the fate of river ecosystems under climate change and increasing human pressure.
Collapse
Affiliation(s)
- Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China.
| |
Collapse
|
9
|
Plaza-Álvarez PA, Lucas-Borja ME, Carmona-Yáñez MD, Cortés DC, Rodríguez Hidalgo MÁ, Zema DA. Impacts of prescribed fire and mechanical shredding of aboveground vegetation for fire prevention on ecosystem properties, structure, functions and overall multi-functionality of a semi-arid pine forest. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122527. [PMID: 39332296 DOI: 10.1016/j.jenvman.2024.122527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
Ecosystem multi-functionality is a key concept when measured to protect forests from natural and anthropogenic disturbances, such as fire prevention techniques, must be adopted. Despite this importance, scarce studies have analysed the impacts of prescribed burning and aboveground vegetation management on ecosystem functions and overall multi-functionality. To fill this gap, this study has evaluated the changes in some ecosystem properties and structure (associated with soil characteristics and plant diversity, respectively), in important forest functions, and the overall ecosystem multi-functionality in a Mediterranean pine forest of Castilla La Mancha (Central Eastern Spain) under three site conditions: (i) undisturbed ecosystem; (ii) forest subjected to mechanical shredding of aboveground vegetation (hereafter "AVMS"); and (iii) forest treated as above and then with prescribed fire ("AVMS + PF"). The results of the study have shown that neither the PF nor AVMS have significantly modified the structure, properties and functions as well as the overall multi-functionality of the forest ecosystem. These slight impacts of the treatments are due to the low fire severity of the prescribed burning and the long time elapsed from the vegetation management. Among the studied ecosystem functions, organic matter decomposition (driven by the enzymatic activities and soil basal respiration), water cycle (influenced by soil water content and water infiltration), carbon stock (linked to soil organic matter) and biomass production decreased, when species richness and plant diversity increased. The study is useful to indicate the feasibility of forest management actions for fire prevention in delicate forest ecosystems of the Mediterranean environments.
Collapse
Affiliation(s)
- Pedro Antonio Plaza-Álvarez
- Escuela Técnica Superior Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, E-02071, Albacete, Spain
| | - Manuel Esteban Lucas-Borja
- Escuela Técnica Superior Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, E-02071, Albacete, Spain.
| | - María Dolores Carmona-Yáñez
- Escuela Técnica Superior Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, E-02071, Albacete, Spain
| | | | | | - Demetrio Antonio Zema
- Department AGRARIA, "Mediterranea" University of Reggio Calabria, Località Feo di Vito, I-89122, Reggio Calabria, Italy
| |
Collapse
|
10
|
Luo W, Sun C, Yang S, Chen W, Sun Y, Li Z, Liu J, Tao W, Tao J. Contrasting range changes and drivers of four forest foundation species under future climate change in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173784. [PMID: 38851330 DOI: 10.1016/j.scitotenv.2024.173784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Forest foundation species, vital for shaping community structure and dynamics through non-trophic level interactions, are key to forest succession and sustainability. Despite their ecological importance, the habitat ranges of these species in China and their responses to future climate change remain unclear. Our study employed the optimal MaxEnt model to assess the range shifts and their essential drivers of four typical forest foundation species from three climatic zones in China under climate scenarios, including Acer tegmentosum, Acer pseudo-sieboldianum (temperate zone), Quercus glandulifera (subtropical zone), and Ficus hispida (tropical zone). The optimal MaxEnt model exhibited high evaluation indices (AUC values > 0.90) for the four foundation species, indicating excellent predictive performance. Currently, we observed that A. tegmentosum and A. pseudo-sieboldianum are predominantly inhabited temperate forest areas in northeastern China, Q. glandulifera is primarily concentrated in subtropical forests in southeastern China, and F. hispida is mainly distributed across the tropical forests in southern China. Climate factors, particularly temperature, emerged as the primary environmental factors influencing the potential range of forest foundation species. Moreover, precipitation strongly influenced the potential range of A. tegmentosum and A. pseudo-sieboldianum, while elevation exhibited a greater impact on the range of Q. glandulifera and F. hispida. Under future climate scenarios, suitable areas for A. tegmentosum and A. pseudo-sieboldianum tend to expand southward, F. hispida tends to expand northward, while Q. glandulifera exhibited a tendency to contract towards the center. This study advances our understanding of the spatial and temporal dynamics of forest foundation species in China under climate change, providing critical insights for conservation efforts and sustainable forest management practices.
Collapse
Affiliation(s)
- Weixue Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Chengxiang Sun
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Shuo Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenke Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhong Sun
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Zongfeng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Jinchun Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Wenjing Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Jianping Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| |
Collapse
|
11
|
Huang W, Zhu Y, Yu H, He Y, Zhao X, Wang H, Shi S. Biodiversity drives ecosystem multifunctionality in sandy grasslands? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171765. [PMID: 38499099 DOI: 10.1016/j.scitotenv.2024.171765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Plant communities and soil microbiomes play a crucial role in regulating ecosystem multifunctionality (EMF). However, whether and how aboveground plant diversity, belowground soil microbial diversity and interactions with environmental factors affect EMF in sandy grasslands under climate change conditions is unclear. Here, we selected 15 typical grassland communities from the Horqin sandy grassland along temperature and precipitation gradients, using the mean annual temperature (AMT), mean annual precipitation (AP), soil temperature (ST), soil water content (SW) and pH as abiotic factors, and plant diversity (PD) and soil microbial diversity (SD) as biodiversity indicators. The effects of biodiversity and abiotic factors on individual ecosystem functions and EMF were studied. We found that PD and its components, plant species richness (SR), species diversity (PR) and genetic diversity (GD), had significant effects on aboveground biomass (AGB) and major factors involved in ecosystem nitrogen cycling (plant leaf nitrogen content (PLN) and soil total nitrogen content (STN)) (P < 0.05). Soil fungal diversity (FR) has a greater impact on ecosystem function than soil bacteria (BR) and archaea (ABR) in sandy grasslands and mainly promotes the accumulation of soil microbial carbon and nitrogen (MBC, MBN) (P < 0.05), STC and STN (P < 0.01). PD and two types of SD (FR and ABR) significantly regulated EMF (P < 0.01). Among the abiotic factors, soil pH and SW regulated EMF (P < 0.05), and SW and ST directly drove EMF (P < 0.05). PD drove EMF significantly and indirectly (positively) through soil pH and ST (P < 0.001), while SD drove EMF weakly and indirectly (negatively) through AP and PD (P > 0.05). PD was a stronger driving force on EMF than SD. These results improve our understanding of the drivers of multifunctionality in sandy grassland ecosystems.
Collapse
Affiliation(s)
- Wenda Huang
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.
| | - Yuanzhong Zhu
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailun Yu
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China
| | - Yuanzheng He
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Huaihai Wang
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangbin Shi
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Cai M, Zhang C, Ndungu CN, Liu G, Liu W, Zhang Q. Linking ecosystem multifunctionality to microbial community features in rivers along a latitudinal gradient. mSystems 2024; 9:e0014724. [PMID: 38445871 PMCID: PMC11019869 DOI: 10.1128/msystems.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Microorganisms regulate numerous ecosystem functions and show considerable differences along a latitudinal gradient. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of ecosystem multifunctionality (EMF) and how microbial communities affect EMF along a latitudinal gradient remain unclear. Here, we collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. We also determined microbial diversity (taxonomic and functional) and microbial network complexity using metagenomic sequencing. The results showed that EMF significantly decreased with increasing latitude in riparian rhizosphere and bulk soils but not in channel sediments. Microbial taxonomic and functional richness (observed species) in channel sediments were significantly higher in the low-latitude group than in the high-latitude group. However, microbial co-occurrence networks were more complex in the high-latitude group compared with the low-latitude group. Abiotic factors, primarily geographic and climatic factors, contributed more to EMF than microbial diversity and network complexity parameters in which only betweenness centralization had a significant relationship with EMF. Together, this study provides insight into the latitudinal pattern of EMF in rivers and highlights the importance of large-scale factors in explaining such latitudinal patterns.IMPORTANCEEcosystem multifunctionality (EMF) is the capacity of an ecosystem to provide multiple functions simultaneously. Microorganisms, as dominant drivers of belowground processes, have a profound effect on ecosystem functions. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of EMF and how microbial communities affect EMF along a latitudinal gradient remain unclear. We collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers along a latitudinal gradient across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. This study fills a critical knowledge gap regarding the latitudinal patterns and drivers of EMF in river ecosystems and gives new insights into how microbial diversity and network complexity affect EMF from a metagenomic perspective.
Collapse
Affiliation(s)
- Miaomiao Cai
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Caifang Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Njambi Ndungu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| |
Collapse
|
13
|
Zhang S, Chen Y, Zhou X, Zhu B. Spatial patterns and drivers of ecosystem multifunctionality in China: Arid vs. humid regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170868. [PMID: 38367730 DOI: 10.1016/j.scitotenv.2024.170868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Ecosystem multifunctionality (EMF) refers to an ecosystem's capacity to simultaneously uphold multiple ecological functions or services. In terrestrial ecosystems, the potential patterns and processes of EMF remain largely unexplored, limiting our comprehension of how ecosystems react to various driving factors. We collected environmental, soil and plant nutrient data, investigate the spatial distribution characteristics of EMF in China's terrestrial ecosystems, differentiating between arid and humid regions and examining the underlying drivers. Our findings reveal substantial spatial heterogeneity in the distribution of EMF across China's terrestrial ecosystems, with pronounced variations between arid and humid regions. In arid regions, the EMF index predominantly falls within the range of -1 to 1, including approximately 66.8 % of the total area, while in humid regions, the EMF index primarily falls within the range of 0 to 2, covering around 55.2 % of the total area. Climate, soil, and vegetation factors account for 61.4 % and 51.9 % of the total EMF variation in arid and humid regions, respectively. Notably, climate emerges as the dominant factor governing EMF variation in arid regions, whereas soil physicochemical properties take precedence in humid regions. Specifically, mean annual temperature (MAT) emerges as the primary factor influencing EMF variation in arid regions, while the normalized difference vegetation index (NDVI) and soil biodiversity index (SBI) play pivotal roles in regulating EMF variation in humid regions. Indeed, climate can exert both direct and indirect influences on EMF. In summary, our study not only compared the disparities in the spatial distribution of EMF in arid and humid regions but also unveiled the distinct controlling factors that govern EMF changes in these different regions. Our research has contributed novel insights for evaluating the drivers responsible for mediating EMF in diverse ecosystems, shedding light on the adaptability and response mechanisms of ecosystems under varying environmental conditions.
Collapse
Affiliation(s)
- Shihang Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusen Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Bo Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, China.
| |
Collapse
|
14
|
Hao H, Yue Y, Chen Q, Yang Y, Kuai B, Wang Q, Xiao T, Chen H, Zhang J. Effects of an efficient straw decomposition system mediated by Stropharia rugosoannulata on soil properties and microbial communities in forestland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170226. [PMID: 38280599 DOI: 10.1016/j.scitotenv.2024.170226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Cultivation of Stropharia rugosoannulata with straw in forestland is effective for straw biodegradation and can prevent the waste of straw resources and environmental pollution and generate economic benefits. However, there is a lack of systematic evaluation of spent mushroom substrate (SMS) input into forestland, such as soil properties and microbial succession. In this experiment, 0 (CK), 10 (SA), 20 (SB), 30 (SC), 40 (SD), and 50 (SE) kg/m2 straw were used to cultivate S. rugosoannulata, and two soil layers (0-10 cm, 10-20 cm) of the cultivated forestland were analyzed. The results indicated that SMS significantly promoted nutrient accumulation in forestland. The bacterial alpha diversity in the SC treatment group was greater than that in the control and gradually decreased to the control level with interannual changes, while the trend of fungal alpha diversity was opposite to that of bacterial alpha diversity. Furthermore, the SC treatment group positively affected soil nitrogen metabolism-related microorganisms for two consecutive years and significantly promoted tree growth. Habitat niche breadth and null model analysis revealed that bacterial communities were more sensitive than fungal communities after SMS input. Linear mixed model (LMM) analysis revealed that SMS supplementation significantly positively affected bacteria (Gammaproteobacteria and Bacteroidota) and significantly negatively affected fungi (Coniochaetales). The constructed fungal-bacterial co-occurrence networks exhibited modularity, and the five types of bacteria were significantly correlated with soil organic matter (SOM), soil organic carbon (SOC), available potassium (AK), available phosphorus (AAP) and available nitrogen (AN) levels. The structural equation model (SEM) showed that bacterial diversity responded more to changes in soil nutrients than did fungal diversity. Overall, 30 kg/m2 of straw decomposition and 2 years of continuous cultivation were beneficial to soil health. This study provides new insights into the rational decomposition of straw and maintenance of forestland ecological balance by S. rugosoannulata.
Collapse
Affiliation(s)
- Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yihong Yue
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qun Chen
- School of Biology Food and Environment, Hefei University, Hefei 23060, China
| | - Yan Yang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tingting Xiao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
15
|
White BE, Hovenden MJ, Barmuta LA. Multifunctional redundancy: Impossible or undetected? Ecol Evol 2023; 13:e10409. [PMID: 37593757 PMCID: PMC10427898 DOI: 10.1002/ece3.10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
The diversity-functioning relationship is a pillar of ecology. Two significant concepts have emerged from this relationship: redundancy, the asymptotic relationship between diversity and functioning, and multifunctionality, a monotonic relationship between diversity and multiple functions occurring simultaneously. However, multifunctional redundancy, an asymptotic relationship between diversity and multiple functions occurring simultaneously, is rarely detected in research. Here we assess whether this lack of detection is due to its true rarity, or due to systematic research error. We discuss how inconsistencies in the use of terms such as 'function' lead to mismatched research. We consider the different techniques used to calculate multifunctionality and point out a rarely considered issue: how determining a function's maximum rate affects multifunctionality metrics. Lastly, we critique how a lack of consideration of multitrophic, spatiotemporal, interactions and community assembly processes in designed experiments significantly reduces the likelihood of detecting multifunctional redundancy. Multifunctionality research up to this stage has made significant contributions to our understanding of the diversity-functioning relationship, and we believe that multifunctional redundancy is detectable with the use of appropriate methodologies.
Collapse
Affiliation(s)
- Bridget E. White
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Mark J. Hovenden
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Leon A. Barmuta
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
16
|
Wang Y, Sun J, Lee TM. Altitude dependence of alpine grassland ecosystem multifunctionality across the Tibetan Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117358. [PMID: 36724595 DOI: 10.1016/j.jenvman.2023.117358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
While altitude affects climatic characteristics, terrestrial plant habitats, and species composition, few studies considered the effects of altitude on ecosystem multifunctionality (EMF). Here, we teased apart the EMF at different altitude with a linear piecewise quantile regression and explore ecosystem functions and environmental factors with EMF along the altitudinal gradient across the Tibetan Plateau. Then, we estimated the response of ecosystem functions to environmental factors, and explain the impact of environmental factors on EMF through the structural equation model. Our data revealed an EMF changepoint at an altitude of about 3900 m where the EMF could be segregated into low- and high-altitude patterns. Our results indicate that water availability drives the EMF mainly through improving soil nutrients and microbe cycling functions in low-altitude regions; conversely, water-heat and phenological conditions regulate the EMF through the role of plant productivity and soil nutrients in high-altitude regions. As such, our EMF analysis suggests that to maintain the long-term stability of the grassland ecosystem, it becomes critical to fully consider the differences in the altitudinal patterns and mechanisms, particularly under the ongoing climate change.
Collapse
Affiliation(s)
- Yi Wang
- School of Life Sciences and State Key Lab of Biological Control, Sun Yat-sen University, Guangzhou, 510275, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tien Ming Lee
- School of Life Sciences and State Key Lab of Biological Control, Sun Yat-sen University, Guangzhou, 510275, China; School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|