1
|
Thompson AD, Petry SE, Hauser ER, Boyle SH, Pathak GA, Upchurch J, Press A, Johnson MG, Sims KJ, Williams CD, Gifford EJ. Longitudinal Patterns of Multimorbidity in Gulf War Era Veterans With and Without Gulf War Illness. J Aging Health 2025; 37:281-291. [PMID: 38591766 PMCID: PMC11461696 DOI: 10.1177/08982643241245163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Objectives: To examine whether severe Gulf War illness (SGWI) case status was associated with longitudinal multimorbidity patterns. Methods: Participants were users of the Veteran Health Administration Health Care System drawn from the Gulf War Era Cohort and Biorepository (n = 840). Longitudinal measures of multimorbidity were constructed using (1) electronic health records (Charlson Comorbidity Index; Elixhauser; and Veterans Affairs Frailty Index) from 10/1/1999 to 6/30/2023 and (2) self-reported medical conditions (Deficit Accumulation Index) since the war until the survey date. Accelerated failure time models examined SGWI case status as a predictor of time until threshold level of multimorbidity was reached, adjusted for age and sociodemographic and military characteristics. Results: Models, adjusted for covariates, revealed that (1) relative to the SWGI- group, the SGWI+ group was associated with an accelerated time for reaching each threshold and (2) the relationship between SGWI and each threshold was not moderated by age. Discussion: Findings suggest that veterans with SGWI experienced accelerated aging.
Collapse
Affiliation(s)
- Andrew D. Thompson
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center
| | - Sarah E. Petry
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center
- Duke University Sanford School of Public Policy
- University of North Carolina Population Center, Chapel Hill, NC
| | - Elizabeth R. Hauser
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center
- Duke Molecular Physiology Institute and Department of Biostatistics and Bioinformatics
| | - Stephen H. Boyle
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center
| | - Gita A. Pathak
- Yale School of Medicine, Department of Psychiatry, Division of Human Genetics, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Julie Upchurch
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center
| | - Ashlyn Press
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center
| | - Melissa G. Johnson
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center
| | - Kellie J. Sims
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center
| | | | - Elizabeth J. Gifford
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center
- Duke University Sanford School of Public Policy
| |
Collapse
|
2
|
Fadadu RP, Bozack AK, Cardenas A. Chemical and climatic environmental exposures and epigenetic aging: A systematic review. ENVIRONMENTAL RESEARCH 2025; 274:121347. [PMID: 40058550 PMCID: PMC12048242 DOI: 10.1016/j.envres.2025.121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Epigenetic aging biomarkers are used for evaluating morbidity and mortality, monitoring therapies, and direct-to-consumer testing. However, the influence of environmental exposures on epigenetic age acceleration (EAA), also known as epigenetic age deviation, has not been systematically evaluated. In this systematic review, we synthesized findings from human epidemiologic studies on chemical and climatic environmental exposures, particularly air pollution, chemicals, metals, climate, and cigarette smoke, and EAA. A total of 102 studies analyzing epigenetic data from over 180,000 subjects were evaluated. Overall, studies in each exposure category frequently included adult participants, used a variety of epigenetic clocks, analyzed whole blood samples, and had a low risk of bias. Exposure to air pollution (15/19 of studies; 79%), cigarette smoke (53/66; 80%), and synthetic and occupational chemicals (5/8; 63%) were notably associated with increased EAA. Results for essential and non-essential metal exposure were more equivocal: 7/13 studies (54%) reported increased EAA. One study reported increased EAA with greater temperature exposure. In summary, we identified environmental exposures, such as air pollution and cigarette smoke, that were strongly associated with increased EAA. Further research is needed with larger and more diverse samples and high-quality exposure assessment.
Collapse
Affiliation(s)
- Raj P Fadadu
- Department of Epidemiology and Population Health, Stanford School of Medicine, 1701 Page Mill Rd., Stanford, CA, 94304, USA; Department of Dermatology, University of California San Diego School of Medicine, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Anne K Bozack
- Department of Epidemiology and Population Health, Stanford School of Medicine, 1701 Page Mill Rd., Stanford, CA, 94304, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, 1701 Page Mill Rd., Stanford, CA, 94304, USA.
| |
Collapse
|
3
|
Baranyi G, Harron K, Shen Y, de Hoogh K, Fitzsimons E. The relationship between early life course air pollution exposure and general health in adolescence in the United Kingdom. Sci Rep 2025; 15:10983. [PMID: 40369113 PMCID: PMC12078791 DOI: 10.1038/s41598-025-94107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/11/2025] [Indexed: 05/16/2025] Open
Abstract
Air pollution is associated with health in childhood. However, there is limited evidence on sensitive periods during the first 18 years of life. Data were drawn from the Millennium Cohort Study, a large and nationally representative cohort born in 2000/2002. Self-reported general health was assessed at age 17; number of hospital records were derived from linked health data (Hospital Episode Statistics) for consented participants. Residential history was linked to 25 × 25 m grid resolution annual PM2.5, PM10 and NO2 maps between 2000 and 2019; year-specific air pollution exposure in 200-m buffers around postcode centroids were computed. After adjusting for individual and time-variant area-level confounders, children exposed to higher air pollution in early (2-4 y) (n = 9137; PM2.5: OR = 1.06, 95% CI: 1.01-1.11; PM10: OR = 1.05, 95% CI: 1.01-1.09; NO2: OR = 1.01, 95% CI: 1.00-1.02) and middle childhood (5-7) (n = 9171; PM2.5: OR = 1.04, 95% CI: 1.00-1.07; PM10: OR = 1.03, 95% CI: 1.01-1.06) reported worse general health at age 17. Higher PM2.5 and NO2 exposure in adolescence increased the number of hospital episodes in young adulthood. Individuals from non-White and disadvantaged backgrounds were exposed to higher levels of air pollution. Air pollution in early and middle childhood might contribute to worse general health, with ethnic minority and disadvantaged children being more exposed.
Collapse
Affiliation(s)
- Gergő Baranyi
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, London, UK.
| | - Katie Harron
- Population, Policy and Practice Department, UCL GOS Institute of Child Health, University College London, London, UK
| | - Youchen Shen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Emla Fitzsimons
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, London, UK
| |
Collapse
|
4
|
Huang CC, Pan SC, Chen PC, Guo YL. Taiwan population-based epigenetic clocks and their application to long-term air pollution exposure. ENVIRONMENTAL RESEARCH 2025; 277:121542. [PMID: 40187398 DOI: 10.1016/j.envres.2025.121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Most epigenetic clocks have been developed in populations of European or Hispanic descent; therefore, population-specific models are needed for Asian cohorts to enhance predictive accuracy and generalizability. This study aims to develop epigenetic clocks in a Taiwanese cohort and examine the association between long-term air pollution exposure and epigenetic age acceleration (EAA). The Taiwan Biobank (TWB) has been recruiting community-based adults aged 30-70 years since 2012, enrolling 173,806 participants by the end of 2022. Among them, 2,469 participants were selected for serum DNA methylation (DNAm) analysis. Epigenetic ages were estimated using penalized elastic net regression, with residuals defined as TWB-based epigenetic age acceleration (TWBEAA) and healthy-subset-based acceleration (TWBhEAA). Additionally, four previously established EAAs were obtained using Horvath's online DNA Methylation Age Calculator: DNAmEAA, DNAmSBEAA, PhenoEAA, and GrimEAA. Air pollution exposure levels at participants' residential townships were estimated from pre-1 day to pre-1 year using a kriging-based spatial interpolation method. Associations were assessed using multiple linear regression models, with robustness verified through Bayesian Kernel Machine Regression (BKMR). The TWBAge (325 CpG sites) and TWBhAge (179 CpG sites) prediction models demonstrated high accuracy (R2 = 0.95) in predicting chronological age. In the single-pollutant model, pre-1 year PM2.5 exposure was significantly associated with TWBhEAA (β = 0.67 [0.14-1.19], year) and DNAmEAA (β = 0.93 [0.03-1.83], year), while O3 exposure showed a positive association with DNAmSBEAA (β = 0.53 [0.29-0.77], year) and a negative association with GrimEAA (β = -0.44 [-0.70 to -0.17], year). BKMR analysis confirmed these findings. This study is among the first attempts to develop epigenetic clocks tailored for Asian population, providing evidence of air pollution's role in accelerating biological aging. Our findings highlight PM2.5 and O3 exposure as major contributors to EAA, emphasizing the need for air pollution mitigation strategies to promote healthier aging.
Collapse
Affiliation(s)
- Ching-Chun Huang
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan; Environmental and Occupational Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Shih-Chun Pan
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Pau-Chung Chen
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Yue Leon Guo
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan.
| |
Collapse
|
5
|
Mesnage R. Environmental Health Is Overlooked in Longevity Research. Antioxidants (Basel) 2025; 14:421. [PMID: 40298664 PMCID: PMC12024188 DOI: 10.3390/antiox14040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/30/2025] Open
Abstract
Aging is a multifactorial process influenced by genetic predisposition and lifestyle choices. Environmental exposures are too often overlooked. Environmental pollutants-ranging from airborne particulate matter and heavy metals to endocrine disruptors and microplastics-accelerate biological aging. Oxidative stress is a major molecular initiating event, driving inflammation and toxicity across biological levels. We detail the mechanisms by which pollutants enhance reactive oxygen species (ROS) production. This oxidative stress inflicts damage on DNA, proteins, and lipids, accelerating telomere shortening, dysregulating autophagy, and ultimately driving epigenetic age acceleration. For instance, exposure to polycyclic aromatic hydrocarbons, benzene, and pesticides has been associated with increased DNA methylation age. Early-life exposures and lifestyle factors such as tobacco and alcohol consumption further contribute to accelerated biological aging. The cumulative loss of healthy life years caused by these factors can conceivably reach between 5 and 10 years per person. Addressing pollutant-induced accelerated aging through regulatory measures, lifestyle changes, and therapeutic interventions is essential to mitigate their detrimental impacts, ultimately extending healthspan and improving quality of life in aging populations.
Collapse
Affiliation(s)
- Robin Mesnage
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK;
- Buchinger Wilhelmi Clinic, Wilhelm-Beck-Straße 27, 88662 Überlingen, Germany
| |
Collapse
|
6
|
Zheng L, Su B, Cui FP, Li D, Ma Y, Xing M, Tang L, Wang J, Tian Y, Zheng X. Long-Term Exposure to PM 2.5 Constituents, Genetic Susceptibility, and Incident Dementia: A Prospective Cohort Study among 0.2 Million Older Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4493-4504. [PMID: 39998422 DOI: 10.1021/acs.est.4c08188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Fine particulate matter, known as PM2.5, is recognized as a risk factor for dementia. However, the specific linkage between PM2.5 constituents and dementia is not well understood. We conducted a cohort of 217,336 participants of the UK Biobank to explore the association of long-term exposure to PM2.5 constituents with all-cause dementia, Alzheimer's disease (AD), and vascular dementia. We estimated PM2.5 constituents based on residential addresses by an evaluation model and used time-varying Cox models and Quantile g-computation models to assess the effects of individual constituents and their mixtures. Genetic susceptibility to dementia was assessed using a polygenic risk score, and its multiplicative and additive interactions with PM2.5 constituents were analyzed. Our results showed that black carbon (BC), ammonium (NH4+), organic matter (OM), and sulfate (SO42-) were positively associated with all-cause dementia, while BC and OM were linked to AD, with BC being the most influential. The combined effect of PM2.5 constituents and genetic risk was stronger than their individual effect. This study offers new insights into the association between PM2.5 constituents and dementia, especially those from fuel combustion and automobile exhaust, and highlights the need for effective prevention strategies.
Collapse
Affiliation(s)
- Lei Zheng
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Beijige-3, Dongcheng District, Beijing 100730, China
| | - Fei-Peng Cui
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Meiqi Xing
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Beijige-3, Dongcheng District, Beijing 100730, China
| |
Collapse
|
7
|
Jutila OEI, Mullin D, Vieno M, Tomlinson S, Taylor A, Corley J, Deary IJ, Cox SR, Baranyi G, Pearce J, Luciano M, Karlsson IK, Russ TC. Life-course exposure to air pollution and the risk of dementia in the Lothian Birth Cohort 1936. Environ Epidemiol 2025; 9:e355. [PMID: 39669703 PMCID: PMC11634326 DOI: 10.1097/ee9.0000000000000355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/18/2024] [Indexed: 12/14/2024] Open
Abstract
Background Air pollution in later life has been associated with dementia; however, limited research has investigated the association between air pollution across the life course, either at specific life periods or cumulatively. The project investigates the association of air pollution with dementia via a life-course epidemiological approach. Methods Participants of the Lothian Birth Cohort, born in 1936, provided lifetime residential history in 2014. Participant's air pollution exposure for time periods 1935, 1950, 1970, 1980, 1990, 2001, and 2007 was modeled using an atmospheric chemistry transport model. Lifetime cumulative exposures were calculated as time-weighted mean exposure. Of 572 participants, 67 developed all-cause dementia [35 with Alzheimer's dementia (AD)] by wave 5 (~82 years). Cox proportional hazards and competing risk models assessed the association between all-cause dementia and AD with particulate matter (diameter of ≤2.5 µm) PM2.5 and nitrogen dioxide (NO2) exposure at specific life periods and cumulatively. False discovery rate (FDR) correction was applied for multiple testing. Results The mean follow-up was 11.26 years. One standard deviation (SD) higher exposure to air pollution in 1935 (PM2.5 = 14.03 μg/m3, NO2 = 5.35 μg/m3) was positively linked but not statistically significant to all-cause dementia [PM2.5 hazard ratio (HR) = 1.16, 95% confidence interval (CI) = 0.90, 1.49; NO2 HR = 1.13, 95% CI = 0.88, 1.47] and AD (PM2.5 HR = 1.38, 95% CI = 1.00, 1.91; NO2 HR = 1.35, 95% CI = 0.92, 1.99). In the competing risk model, one SD elevated PM2.5 exposure (1.12 μg/m3) in 1990 was inversely associated with dementia (subdistribution HR = 0.82, 95% CI = 0.67, 0.99) at P = 0.034 but not after FDR correction (P FDR = 0.442). Higher cumulative PM2.5 per one SD was associated with an increased risk of all-cause dementia and AD for all accumulation models except for the early-life model. Conclusion The in-utero and early-life exposure to PM2.5 and NO2 was associated with higher AD and all-cause dementia risk, suggesting a sensitive/critical period. Cumulative exposure to PM2.5 across the life course was associated with higher dementia risk. Midlife PM2.5 exposure's negative association with all-cause dementia risk may stem from unaddressed confounders or bias.
Collapse
Affiliation(s)
- Otto-Emil I. Jutila
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
- Deanary of Molecular, Genetic and Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Donncha Mullin
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Massimo Vieno
- UK Centre for Ecology & Hydrology (UKCEH), Penicuik, United Kingdom
| | - Samuel Tomlinson
- UK Centre for Ecology & Hydrology (UKCEH), Penicuik, United Kingdom
| | - Adele Taylor
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
| | - Janie Corley
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon R. Cox
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
| | - Gergő Baranyi
- Centre for Research on Environment, Society & Health, School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Longitudinal Studies, UCL, London, United Kingdom
| | - Jamie Pearce
- Centre for Research on Environment, Society & Health, School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ida K. Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Tom C. Russ
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, United Kingdom
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Zhang S, Liu Y, Qi J, Yan Y, Gao T, Zhang X, Sun D, Wang T, Zeng P. Accelerated aging as a mediator of the association between co-exposure to multiple air pollutants and risk of chronic kidney disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117582. [PMID: 39719816 DOI: 10.1016/j.ecoenv.2024.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The association between co-exposure to multiple air pollutants and the occurrence of chronic kidney disease (CKD) was not well-established, and the mediating role of accelerated aging in this association remained uncertain. METHODS Using a cohort of 313,908 participants without CKD at baseline from the UK Biobank, we examined the potential association between co-exposure to multiple air pollutants, including PM2.5, PM10, PM2.5-10, NO2 and NOx, and the incidence of CKD by calculating an air pollution score. Mediation analyses were performed to examine the mediating role of accelerated aging (PhenoAgeAccel or KDM-BioAgeAccel) in this association. RESULTS During the median follow-up time of 12.9 years, 11,117 participants developed CKD. The results showed that per interquartile range (IQR) increment in air pollution score led to an approximately 9.0 % (6.6-11.4 %) elevated risk of occurring CKD. Compared to the first quartile (Q1) of air pollution score, those in the highest quartile (Q4) had a 21.2 % (14.8-27.9 %) higher risk of developing CKD (Ptrend<0.001). Mediation analyses suggested that PhenoAgeAccel and KDM-BioAgeAccel significantly mediated 1.5 % and 5.7 % of the association between air pollution score and incident CKD, respectively. CONCLUSION Co-exposure to multiple air pollutants could increase the risk of developing CKD, with accelerated aging serving as a partial mechanism in the relationship between air pollution and CKD. These findings highlight the importance of reducing air pollution, and suggest a possible mechanism from air pollution to CKD through accelerated aging.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuxin Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jike Qi
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu Yan
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Tongyu Gao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dong Sun
- Department of Nephrology and Clinical Research Center for Kidney Disease, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Clinical Research Center for Kidney Disease, Xuzhou Medical University, Xuzhou 221004, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
9
|
Hao Y, Han K, Wang T, Yu J, Ding H, Dao F. Exploring the potential of epigenetic clocks in aging research. Methods 2024; 231:37-44. [PMID: 39251102 DOI: 10.1016/j.ymeth.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
The process of aging is a notable risk factor for numerous age-related illnesses. Hence, a reliable technique for evaluating biological age or the pace of aging is crucial for understanding the aging process and its influence on the progression of disease. Epigenetic alterations are recognized as a prominent biomarker of aging, and epigenetic clocks formulated on this basis have been shown to provide precise estimations of chronological age. Extensive research has validated the effectiveness of epigenetic clocks in determining aging rates, identifying risk factors for aging, evaluating the impact of anti-aging interventions, and predicting the emergence of age-related diseases. This review provides a detailed overview of the theoretical principles underlying the development of epigenetic clocks and their utility in aging research. Furthermore, it explores the existing obstacles and possibilities linked to epigenetic clocks and proposes potential avenues for future studies in this field.
Collapse
Affiliation(s)
- Yuduo Hao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kaiyuan Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ting Wang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Junwen Yu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Fuying Dao
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
10
|
Hernandez Cordero AI, Leung JM. ERJ advances: epigenetic ageing and leveraging DNA methylation in chronic respiratory diseases. Eur Respir J 2024; 64:2401257. [PMID: 39362670 PMCID: PMC11561405 DOI: 10.1183/13993003.01257-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Chronic respiratory diseases are the third leading cause of death and affect more than 450 million people worldwide [1]. Major risk factors such as cigarette smoking have long been studied in their pathogenesis, but as the global population ages, increasing attention must now be paid to the contributory role of ageing [2]. Epidemiological evidence indicates a decline in lung health over time with lung function classically reaching its peak between 20–30 years of age and starting an inevitable descent thereafter [3]. Modern paradigms suggest that this rise and descent may occur at different rates along the lifespan, which may indicate that the links between age and lung function may be variable between individuals [4]. Deciphering how lung ageing influences the development of chronic respiratory diseases may hold powerful clues into novel therapeutics and management strategies. Epigenetic age is a novel biomarker utilising DNA methylation profiles that can detect accelerated biological ageing. Potential uses in respiratory disease include risk stratification for vulnerable patients and prognostication for poor clinical outcomes. https://bit.ly/3ZMTAK1
Collapse
Affiliation(s)
- Ana I Hernandez Cordero
- Centre for Heart Lung Innovation, St. Paul's Hospital and University of British Columbia, Vancouver, BC, Canada
- Edwin S.H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Janice M Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital and University of British Columbia, Vancouver, BC, Canada
- Edwin S.H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Cui F, Zheng L, Zhang J, Tang L, Ma Y, Li D, Wang J, Xing M, Xie J, Yang J, Tian Y. Long-term exposure to fine particulate matter constituents, genetic susceptibility, and incident heart failure among 411 807 adults. Eur J Heart Fail 2024. [PMID: 39439267 DOI: 10.1002/ejhf.3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/29/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
AIMS Long-term fine particulate matter (PM2.5) exposure has been linked to incident heart failure (HF), but the impacts of its constituents remain unknown. We aimed to investigate the associations of PM2.5 constituents with incident HF, and further evaluate the modification effects of genetic susceptibility. METHODS AND RESULTS PM2.5 and its constituents, including elemental carbon (EC), organic matter (OM), ammonium (NH4 +), nitrate (NO3 -), and sulfate (SO4 2-), were estimated using the European Monitoring and Evaluation Programme model applied to the UK (EMEP4UK) driven by Weather and Research Forecast model meteorology. A polygenic risk score (PRS) was calculated to represent genetic susceptibility to HF. We employed Cox models to evaluate the associations of PM2.5 constituents with incident HF. Quantile-based g-computation model was used to identify the main contributor of PM2.5 constituents. Among 411 807 individuals in the UK Biobank, 7554 participants developed HF during a median follow-up of 12.05 years. The adjusted hazard ratios of HF for each interquartile range increase in PM2.5, EC, OM, NH4 +, NO3 -, and SO4 2- were 1.50 (1.46-1.54), 1.31 (1.27-1.34), 1.12 (1.09-1.15), 1.42 (1.41-1.44), 1.26 (1.23-1.29), and 1.25 (1.24-1.26), respectively. EC (43%) played the most important role, followed by NH4 + and SO4 2-. Moreover, synergistic additive interactions accounted for 9-16% of the HF events in individuals exposed to both PM2.5, NH4 +, NO3 -, and SO4 2- and PRS. CONCLUSION Long-term exposure to PM2.5 constituents may elevate HF risk, and EC was the major contributor. Additive effects of PM2.5 constituents and PRS on HF risk were revealed.
Collapse
Affiliation(s)
- Feipeng Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Linxi Tang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yudiyang Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dankang Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meiqi Xing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yaohua Tian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Nwanaji-Enwerem JC, Bozack AK, Ward-Caviness C, Diaz-Sanchez D, Devlin RB, Bind MC, Cardenas A. Bronchial cell epigenetic aging in a human experimental study of short-term diesel and ozone exposures. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae017. [PMID: 39416749 PMCID: PMC11482248 DOI: 10.1093/eep/dvae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Blood-based, observational, and cross-sectional epidemiological studies suggest that air pollutant exposures alter biological aging. In a single-blinded randomized crossover human experiment of 17 volunteers, we examined the effect of randomized 2-h controlled air pollution exposures on respiratory tissue epigenetic aging. Bronchial epithelial cell DNA methylation 24 h post-exposure was measured using the HumanMethylation450K BeadChip, and there was a minimum 2-week washout period between exposures. All 17 volunteers were exposed to ozone, but only 13 were exposed to diesel exhaust. Horvath DNAmAge [Pearson coefficient (r) = 0.64; median absolute error (MAE) = 2.7 years], GrimAge (r = 0.81; MAE = 13 years), and DNAm Telomere Length (DNAmTL) (r = -0.65) were strongly correlated with chronological age in this tissue. Compared to clean air, ozone exposure was associated with longer DNAmTL (median difference 0.11 kb, Fisher's exact P-value = .036). This randomized trial suggests a weak relationship of ozone exposure with DNAmTL in target respiratory cells. Still, causal relationships with long-term exposures need to be evaluated.
Collapse
Affiliation(s)
- Jamaji C Nwanaji-Enwerem
- Department of Emergency Medicine and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, CA 94305, United States
| | - Anne K Bozack
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, CA 94305, United States
| | - Cavin Ward-Caviness
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27709, United States
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27709, United States
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27709, United States
| | - Marie‐Abèle C Bind
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
13
|
Calderón-Garcidueñas L, Cejudo-Ruiz FR, Stommel EW, González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Tehuacanero-Cuapa S, Rodríguez-Gómez A, Bautista F, Goguitchaichvili A, Pérez-Guille BE, Soriano-Rosales RE, Koseoglu E, Mukherjee PS. Single-domain magnetic particles with motion behavior under electromagnetic AC and DC fields are a fatal cargo in Metropolitan Mexico City pediatric and young adult early Alzheimer, Parkinson, frontotemporal lobar degeneration and amyotrophic lateral sclerosis and in ALS patients. Front Hum Neurosci 2024; 18:1411849. [PMID: 39246712 PMCID: PMC11377271 DOI: 10.3389/fnhum.2024.1411849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Metropolitan Mexico City (MMC) children and young adults exhibit overlapping Alzheimer and Parkinsons' diseases (AD, PD) and TAR DNA-binding protein 43 pathology with magnetic ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs). We studied magnetophoresis, electron microscopy and energy-dispersive X-ray spectrometry in 203 brain samples from 14 children, 27 adults, and 27 ALS cases/controls. Saturation isothermal remanent magnetization (SIRM), capturing magnetically unstable FeNPs ~ 20nm, was higher in caudate, thalamus, hippocampus, putamen, and motor regions with subcortical vs. cortical higher SIRM in MMC ≤ 40y. Motion behavior was associated with magnetic exposures 25-100 mT and children exhibited IRM saturated curves at 50-300 mT associated to change in NPs position and/or orientation in situ. Targeted magnetic profiles moving under AC/AD magnetic fields could distinguish ALS vs. controls. Motor neuron magnetic NPs accumulation potentially interferes with action potentials, ion channels, nuclear pores and enhances the membrane insertion process when coated with lipopolysaccharides. TEM and EDX showed 7-20 nm NP Fe, Ti, Co, Ni, V, Hg, W, Al, Zn, Ag, Si, S, Br, Ce, La, and Pr in abnormal neural and vascular organelles. Brain accumulation of magnetic unstable particles start in childhood and cytotoxic, hyperthermia, free radical formation, and NPs motion associated to 30-50 μT (DC magnetic fields) are critical given ubiquitous electric and magnetic fields exposures could induce motion behavior and neural damage. Magnetic UFPM/NPs are a fatal brain cargo in children's brains, and a preventable AD, PD, FTLD, ALS environmental threat. Billions of people are at risk. We are clearly poisoning ourselves.
Collapse
Affiliation(s)
| | | | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | | | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Francisco Bautista
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacan, Mexico
| | - Avto Goguitchaichvili
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacan, Mexico
| | | | | | - Emel Koseoglu
- Department of Neurology, Erciyes Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
14
|
Liang R, Fan L, Lai X, Shi D, Wang H, Shi W, Liu W, Yu L, Song J, Wang B. Air pollution exposure, accelerated biological aging, and increased thyroid dysfunction risk: Evidence from a nationwide prospective study. ENVIRONMENT INTERNATIONAL 2024; 188:108773. [PMID: 38810493 DOI: 10.1016/j.envint.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Long-term air pollution exposure is a major health concern, yet its associations with thyroid dysfunction (hyperthyroidism and hypothyroidism) and biological aging remain unclear. We aimed to determine the association of long-term air pollution exposure with thyroid dysfunction and to investigate the potential roles of biological aging. METHODS A prospective cohort study was conducted on 432,340 participants with available data on air pollutants including particulate matter (PM2.5, PM10, and PM2.5-10), nitrogen dioxide (NO2), and nitric oxide (NO) from the UK Biobank. An air pollution score was calculated using principal component analysis to reflect joint exposure to these pollutants. Biological aging was assessed using the Klemera-Doubal method biological age and the phenotypic age algorithms. The associations of individual and joint air pollutants with thyroid dysfunction were estimated using the Cox proportional hazards regression model. The roles of biological aging were explored using interaction and mediation analyses. RESULTS During a median follow-up of 12.41 years, 1,721 (0.40 %) and 9,296 (2.15 %) participants developed hyperthyroidism and hypothyroidism, respectively. All air pollutants were observed to be significantly associated with an increased risk of incident hypothyroidism, while PM2.5, PM10, and NO2 were observed to be significantly associated with an increased risk of incident hyperthyroidism. The hazard ratios (HRs) for hyperthyroidism and hypothyroidism were 1.15 (95 % confidence interval: 1.00-1.32) and 1.15 (1.08-1.22) for individuals in the highest quartile compared with those in the lowest quartile of air pollution score, respectively. Additionally, we noticed that individuals with higher pollutant levels and biologically older generally had a higher risk of incident thyroid dysfunction. Moreover, accelerated biological aging partially mediated 1.9 %-9.4 % of air pollution-associated thyroid dysfunction. CONCLUSIONS Despite the possible underestimation of incident thyroid dysfunction, long-term air pollution exposure may increase the risk of incident thyroid dysfunction, particularly in biologically older participants, with biological aging potentially involved in the mechanisms.
Collapse
Affiliation(s)
- Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Hao Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wendi Shi
- Lucy Cavendish College, University of Cambridge, Cambridge CB3 0BU, UK
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
15
|
Zhou X, Sampath V, Nadeau KC. Effect of air pollution on asthma. Ann Allergy Asthma Immunol 2024; 132:426-432. [PMID: 38253122 PMCID: PMC10990824 DOI: 10.1016/j.anai.2024.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Asthma is a chronic inflammatory airway disease characterized by respiratory symptoms, variable airflow obstruction, bronchial hyperresponsiveness, and airway inflammation. Exposure to air pollution has been linked to an increased risk of asthma development and exacerbation. This review aims to comprehensively summarize recent data on the impact of air pollution on asthma development and exacerbation. Specifically, we reviewed the effects of air pollution on the pathogenic pathways of asthma, including type 2 and non-type 2 inflammatory responses, and airway epithelial barrier dysfunction. Air pollution promotes the release of epithelial cytokines, driving TH2 responses, and induces oxidative stress and the production of proinflammatory cytokines. The enhanced type 2 inflammation, furthered by air pollution-induced dysfunction of the airway epithelial barrier, may be associated with the exacerbation of asthma. Disruption of the TH17/regulatory T cell balance by air pollutants is also related to asthma exacerbation. As the effects of air pollution exposure may accumulate over time, with potentially stronger impacts in the development of asthma during certain sensitive life periods, we also reviewed the effects of air pollution on asthma across the lifespan. Future research is needed to better characterize the sensitive period contributing to the development of air pollution-induced asthma and to map air pollution-associated epigenetic biomarkers contributing to the epigenetic ages onto asthma-related genes.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
16
|
Schmidt S. Speeding Up Time: New Urinary Peptide Clock Associates Greater Air Pollution Exposures with Faster Biological Aging. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:44001. [PMID: 38568857 PMCID: PMC10990112 DOI: 10.1289/ehp14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 04/05/2024]
Abstract
A study in Belgium supports earlier findings on associations between higher air pollution exposures and markers of faster biological aging, this time by using urinary peptide levels instead of DNA-based markers.
Collapse
|
17
|
Baranyi G, Williamson L, Feng Z, Carnell E, Vieno M, Dibben C. Higher air pollution exposure in early life is associated with worse health among older adults: A 72-year follow-up study from Scotland. Health Place 2024; 86:103208. [PMID: 38367322 DOI: 10.1016/j.healthplace.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Air pollution increases the risk of mortality and morbidity. However, limited evidence exists on the very long-term associations between early life air pollution exposure and health, as well as on potential pathways. This study explored the relationship between fine particle (PM2.5) exposure at age 3 and limiting long-term illness (LLTI) at ages 55, 65 and 75 using data from the Scottish Longitudinal Study Birth Cohort 1936, a representative administrative cohort study. We found that early life PM2.5 exposure was associated with higher odds of LLTI in mid-to-late adulthood (OR = 1.10, 95% CI: 1.06, 1.14 per 10 μg m-3 increment) among the 2085 participants, with stronger associations among those growing up in disadvantaged families. Path analyses suggested that 15-21% of the association between early life PM2.5 concentrations and LLTI at age 65 (n = 1406) was mediated through childhood cognitive ability, educational qualifications, and adult social position. Future research should capitalise on linked administrative and health data, and explore causal mechanisms between environment and specific health conditions across the life course.
Collapse
Affiliation(s)
- Gergő Baranyi
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Lee Williamson
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom; Longitudinal Studies Centre - Scotland, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Zhiqiang Feng
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Edward Carnell
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, United Kingdom
| | - Massimo Vieno
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, United Kingdom
| | - Chris Dibben
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Calderón-Garcidueñas L, Stommel EW, Torres-Jardón R, Hernández-Luna J, Aiello-Mora M, González-Maciel A, Reynoso-Robles R, Pérez-Guillé B, Silva-Pereyra HG, Tehuacanero-Cuapa S, Rodríguez-Gómez A, Lachmann I, Galaz-Montoya C, Doty RL, Roy A, Mukherjee PS. Alzheimer and Parkinson diseases, frontotemporal lobar degeneration and amyotrophic lateral sclerosis overlapping neuropathology start in the first two decades of life in pollution exposed urbanites and brain ultrafine particulate matter and industrial nanoparticles, including Fe, Ti, Al, V, Ni, Hg, Co, Cu, Zn, Ag, Pt, Ce, La, Pr and W are key players. Metropolitan Mexico City health crisis is in progress. Front Hum Neurosci 2024; 17:1297467. [PMID: 38283093 PMCID: PMC10811680 DOI: 10.3389/fnhum.2023.1297467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024] Open
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS) are present in urban children exposed to fine particulate matter (PM2.5), combustion and friction ultrafine PM (UFPM), and industrial nanoparticles (NPs). Metropolitan Mexico City (MMC) forensic autopsies strongly suggest that anthropogenic UFPM and industrial NPs reach the brain through the nasal/olfactory, lung, gastrointestinal tract, skin, and placental barriers. Diesel-heavy unregulated vehicles are a key UFPM source for 21.8 million MMC residents. We found that hyperphosphorylated tau, beta amyloid1-42, α-synuclein, and TAR DNA-binding protein-43 were associated with NPs in 186 forensic autopsies (mean age 27.45 ± 11.89 years). The neurovascular unit is an early NPs anatomical target, and the first two decades of life are critical: 100% of 57 children aged 14.8 ± 5.2 years had AD pathology; 25 (43.9%) AD+TDP-43; 11 (19.3%) AD + PD + TDP-43; and 2 (3.56%) AD +PD. Fe, Ti, Hg, Ni, Co, Cu, Zn, Cd, Al, Mg, Ag, Ce, La, Pr, W, Ca, Cl, K, Si, S, Na, and C NPs are seen in frontal and temporal lobes, olfactory bulb, caudate, substantia nigra, locus coeruleus, medulla, cerebellum, and/or motor cortical and spinal regions. Endothelial, neuronal, and glial damages are extensive, with NPs in mitochondria, rough endoplasmic reticulum, the Golgi apparatus, and lysosomes. Autophagy, cell and nuclear membrane damage, disruption of nuclear pores and heterochromatin, and cell death are present. Metals associated with abrasion and deterioration of automobile catalysts and electronic waste and rare earth elements, i.e., lanthanum, cerium, and praseodymium, are entering young brains. Exposure to environmental UFPM and industrial NPs in the first two decades of life are prime candidates for initiating the early stages of fatal neurodegenerative diseases. MMC children and young adults-surrogates for children in polluted areas around the world-exhibit early AD, PD, FTLD, and ALS neuropathological hallmarks forecasting serious health, social, economic, academic, and judicial societal detrimental impact. Neurodegeneration prevention should be a public health priority as the problem of human exposure to particle pollution is solvable. We are knowledgeable of the main emission sources and the technological options to control them. What are we waiting for?
Collapse
Affiliation(s)
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Mario Aiello-Mora
- Otorrinolaryngology Department, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | - Richard L. Doty
- Perelman School of Medicine, Smell and Taste Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Anik Roy
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
19
|
Dutta S, Goodrich JM, Dolinoy DC, Ruden DM. Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes (Basel) 2023; 15:16. [PMID: 38275598 PMCID: PMC10815440 DOI: 10.3390/genes15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Biological clock technologies are designed to assess the acceleration of biological age (B-age) in diverse cell types, offering a distinctive opportunity in toxicogenomic research to explore the impact of environmental stressors, social challenges, and unhealthy lifestyles on health impairment. These clocks also play a role in identifying factors that can hinder aging and promote a healthy lifestyle. Over the past decade, researchers in epigenetics have developed testing methods that predict the chronological and biological age of organisms. These methods rely on assessing DNA methylation (DNAm) levels at specific CpG sites, RNA levels, and various biomolecules across multiple cell types, tissues, and entire organisms. Commonly known as 'biological clocks' (B-clocks), these estimators hold promise for gaining deeper insights into the pathways contributing to the development of age-related disorders. They also provide a foundation for devising biomedical or social interventions to prevent, reverse, or mitigate these disorders. This review article provides a concise overview of various epigenetic clocks and explores their susceptibility to environmental stressors.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Douglas M. Ruden
- C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
20
|
Ogletree SS, Huang JH, Reif D, Yang L, Dunstan C, Osakwe N, Oh JI, Hipp JA. The relationship between greenspace exposure and telomere length in the National Health and Nutrition Examination Survey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167452. [PMID: 37777139 PMCID: PMC11635903 DOI: 10.1016/j.scitotenv.2023.167452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The exposome, reflecting the range of environmental exposures individuals encounter throughout their life, can influence a variety of health outcomes and can play a role in how the environment impacts our genes. Telomeres, genetic structures regulating cell growth and senescence, are one pathway through which the exposome may impact health. Greenspace exposure, representing the amount of green areas in one's neighborhood, is one component of the exposome and has been associated with multiple health benefits. To investigate the potential link between greenspace exposure and telomere length, we analyzed data from the 1999-2001 National Health and Nutrition Examination Survey (NHANES) sample. Our study examined individual, risk, and contextual factors. We found that greater greenspace exposure in one's neighborhood was associated with longer telomere lengths when considering individual and risk factors, suggesting a positive effect of living in greener neighborhoods. However, this relationship became non-significant when contextual factors, such as air pollution and deprivation, were included in the analysis. These findings highlight a complex relationship between greenspace and telomere length, warranting further research to explore contextual factors in detail.
Collapse
Affiliation(s)
- S Scott Ogletree
- Edinburgh School of Architecture and Landscape Architecture, OPENspace Research Centre, University of Edinburgh, United Kingdom; Center for Geospatial Analytics, North Carolina State University, United States of America.
| | - Jing-Huei Huang
- Center for Geospatial Analytics, North Carolina State University, United States of America; Montgomery County Parks Department, Maryland-National Capital Park and Planning Commission, United States of America
| | - David Reif
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, United States of America
| | - Lin Yang
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Canada; Departments of Oncology and Community Health Sciences, University of Calgary, Canada
| | - Christopher Dunstan
- Center for Geospatial Analytics, North Carolina State University, United States of America
| | - Nnamdi Osakwe
- Bioinformatics Research Center, North Carolina State University, United States of America
| | - Jae In Oh
- Department of Parks, Recreation, and Tourism Management, North Carolina State University, United States of America
| | - J Aaron Hipp
- Center for Geospatial Analytics, North Carolina State University, United States of America; Department of Parks, Recreation, and Tourism Management, North Carolina State University, United States of America
| |
Collapse
|
21
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, Proteomic, and Metabolomic Correlates of Traffic-Related Air Pollution in the Context of Cardiorespiratory Health: A Systematic Review, Pathway Analysis, and Network Analysis. TOXICS 2023; 11:1014. [PMID: 38133415 PMCID: PMC10748071 DOI: 10.3390/toxics11121014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
22
|
Martens DS, An DW, Yu YL, Chori BS, Wang C, Silva AI, Wei FF, Liu C, Stolarz-Skrzypek K, Rajzer M, Latosinska A, Mischak H, Staessen JA, Nawrot TS. Association of Air Pollution with a Urinary Biomarker of Biological Aging and Effect Modification by Vitamin K in the FLEMENGHO Prospective Population Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127011. [PMID: 38078706 PMCID: PMC10712426 DOI: 10.1289/ehp13414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND A recently developed urinary peptidomics biological aging clock can be used to study accelerated human aging. From 1990 to 2019, exposure to airborne particulate matter (PM) became the leading environmental risk factor worldwide. OBJECTIVES This study investigated whether air pollution exposure is associated with accelerated urinary peptidomic aging, independent of calendar age, and whether this association is modified by other risk factors. METHODS In a Flemish population, the urinary peptidomic profile (UPP) age (UPP-age) was derived from the urinary peptidomic profile measured by capillary electrophoresis coupled with mass spectrometry. UPP-age-R was calculated as the residual of the regression of UPP-age on chronological age, which reflects accelerated aging predicted by UPP-age, independent of chronological age. A high-resolution spatial-temporal interpolation method was used to assess each individual's exposure to PM 10 , PM 2.5 , black carbon (BC), and nitrogen dioxide (NO 2 ). Associations of UPP-age-R with these pollutants were investigated by mixed models, accounting for clustering by residential address and confounders. Effect modifiers of the associations between UPP-age-R and air pollutants that included 18 factors reflecting vascular function, renal function, insulin resistance, lipid metabolism, or inflammation were evaluated. Direct and indirect (via UPP-age-R) effects of air pollution on mortality were evaluated by multivariable-adjusted Cox models. RESULTS Among 660 participants (50.2% women; mean age: 50.7 y), higher exposure to PM 10 , PM 2.5 , BC, and NO 2 was associated with a higher UPP-age-R. Studying effect modifiers showed that higher plasma levels of desphospho-uncarboxylated matrix Gla protein (dpucMGP), signifying poorer vitamin K status, steepened the slopes of UPP-age-R on the air pollutants. In further analyses among participants with dpucMGP ≥ 4.26 μ g / L (median), an interquartile range (IQR) higher level in PM 10 , PM 2.5 , BC, and NO 2 was associated with a higher UPP-age-R of 2.03 [95% confidence interval (CI): 0.60, 3.46], 2.22 (95% CI: 0.71, 3.74), 2.00 (95% CI: 0.56, 3.43), and 2.09 (95% CI: 0.77, 3.41) y, respectively. UPP-age-R was an indirect mediator of the associations of mortality with the air pollutants [multivariable-adjusted hazard ratios from 1.094 (95% CI: 1.000, 1.196) to 1.110 (95% CI: 1.007, 1.224)] in participants with a high dpucMGP, whereas no direct associations were observed. DISCUSSION Ambient air pollution was associated with accelerated urinary peptidomics aging, and high vitamin K status showed a potential protective effect in this population. Current guidelines are insufficient to decrease the adverse health effects of airborne pollutants, including healthy aging trajectories. https://doi.org/10.1289/EHP13414.
Collapse
Affiliation(s)
- Dries S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - De-Wei An
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Yu-Ling Yu
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Babangida S. Chori
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Ana Inês Silva
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Fang-Fei Wei
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chen Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Katarzyna Stolarz-Skrzypek
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Kraków, Poland
| | - Marek Rajzer
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Kraków, Poland
| | | | | | - Jan A. Staessen
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium
- Biomedical Sciences Group, Faculty of Medicine, University of Leuven, Leuven, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Baranyi G, Williamson L, Feng Z, Tomlinson S, Vieno M, Dibben C. Early life PM 2.5 exposure, childhood cognitive ability and mortality between age 11 and 86: A record-linkage life-course study from Scotland. ENVIRONMENTAL RESEARCH 2023; 238:117021. [PMID: 37659643 DOI: 10.1016/j.envres.2023.117021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Living in areas with high air pollution concentrations is associated with all-cause and cause-specific mortality. Exposure in sensitive developmental periods might be long-lasting but studies with very long follow-up are rare, and mediating pathways between early life exposure and life-course mortality are not fully understood. METHODS Data were drawn from the Scottish Longitudinal Study Birth Cohort of 1936, a representative record-linkage study comprising 5% of the Scottish population born in 1936. Participants had valid age 11 cognitive ability test scores along with linked mortality data until age 86. Fine particle (PM2.5) concentrations estimated with the EMEP4UK atmospheric chemistry transport model were linked to participants' residential address derived from the National Identity Register in 1939 (age 3). Confounder-adjusted Cox regression estimated associations between PM2.5 and mortality; regression-based causal mediation analysis explored mediation through childhood cognitive ability. RESULTS The final sample consisted of 2734 individuals with 1608 deaths registered during the 1,833,517 person-months at risk follow-up time. Higher early life PM2.5 exposure increased the risk of all-cause mortality (HR = 1.03, 95% CI: 1.01-1.04 per 10 μg m-3 increment), associations were stronger for mortality between age 65 and 86. PM2.5 increased the risk of cancer-related mortality (HR = 1.05, 95% CI: 1.02-1.08), especially for lung cancer among females (HR = 1.11, 95% CI: 1.02-1.21), but not for cardiovascular and respiratory diseases. Higher PM2.5 in early life (≥50 μg m-3) was associated with lower childhood cognitive ability, which, in turn, increased the risk of all-cause mortality and mediated 25% of the total associations. CONCLUSIONS In our life-course study with 75-year of continuous mortality records, we found that exposure to air pollution in early life was associated with higher mortality in late adulthood, and that childhood cognitive ability partly mediated this relationship. Findings suggest that past air pollution concentrations will likely impact health and longevity for decades to come.
Collapse
Affiliation(s)
- Gergő Baranyi
- Centre for Research on Environment, Society and Health, School of Geosciences, The University of Edinburgh, Edinburgh, UK.
| | - Lee Williamson
- Centre for Research on Environment, Society and Health, School of Geosciences, The University of Edinburgh, Edinburgh, UK; Longitudinal Studies Centre - Scotland, School of GeoSciences, The University of Edinburgh, Edinburgh, UK
| | - Zhiqiang Feng
- Centre for Research on Environment, Society and Health, School of Geosciences, The University of Edinburgh, Edinburgh, UK
| | - Sam Tomlinson
- UK Centre for Ecology & Hydrology, Library Ave, Bailrigg, Lancaster, UK
| | - Massimo Vieno
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK
| | - Chris Dibben
- Centre for Research on Environment, Society and Health, School of Geosciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution: A systematic review, pathway analysis, and network analysis relating traffic-related air pollution to subclinical and clinical cardiorespiratory outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296386. [PMID: 37873294 PMCID: PMC10592990 DOI: 10.1101/2023.09.30.23296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease, and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|