1
|
Dauchy X. The quest for the perfect "total PFAS" method: how can the total oxidisable precursor (TOP) assay be made reliable? Anal Bioanal Chem 2025:10.1007/s00216-025-05902-3. [PMID: 40353877 DOI: 10.1007/s00216-025-05902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/03/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) make up a large and complex class of manmade chemicals. They have been widely used in numerous industrial branches and are incorporated into many consumer products. Today, there is a consensus on the fact that PFAS are present in all environmental compartments and that populations all over the world are subjected to them via internal exposure. It has been estimated that thousands of individual PFAS have been manufactured and marketed since the 1950s, to which impurities present in commercial products and intermediate environmental transformation products should be added. Since it is unrealistic to be able to individually identify, detect and quantify all the PFAS present in a sample, several analytical approaches have been developed to assess the presence of "hidden/unseen" PFAS. One of these, known as the total oxidisable precursor (TOP) assay, was first described in 2012. Basically, it converts some PFAS, hereafter referred to as precursors, into stable terminal products readily measurable by routine target methods. This review is based on more than 100 studies in which the original TOP assay was simply applied or optimised. The review found that the TOP assay was selective, sensitive, applicable to many matrices, useful within a forensic context, inexpensive, and easy to implement and has been assessed in the literature on a wide range of precursors. However, this method comprises many subtleties and has some flaws that operators should be made aware of so that they may be addressed as far as possible. Finally, this review tries to lay the foundations for better practices and quality assurance/quality control measures, in order to improve accuracy and reliability of TOP assay results.
Collapse
Affiliation(s)
- Xavier Dauchy
- Nancy Laboratory for Hydrology, Water Chemistry Department, ANSES, 40 Rue Lionnois, Nancy, 54000, France.
| |
Collapse
|
2
|
Zhang J, Cioni L, Jaspers VLB, Asimakopoulos AG, Peng HB, Ross TA, Klaassen M, Herzke D. Shellfish and shorebirds from the East-Asian Australian flyway as bioindicators for unknown per- and polyfluoroalkyl substances using the total oxidizable precursor assay. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137189. [PMID: 39823875 DOI: 10.1016/j.jhazmat.2025.137189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have gained significant global attention due to their extensive industrial use and harmful effects on various organisms. Among these, perfluoroalkyl acids (PFAAs) are well-studied, but their diverse precursors remain challenging to monitor. The Total Oxidizable Precursor (TOP) assay offers a powerful approach to converting these precursors into detectable PFAAs. In this study, the TOP assay was applied to samples from the East Asian-Australian Flyway, a critical migratory route for millions of shorebirds. Samples included shellfish from China's coastal mudflats, key stopover sites for these birds, and blood and liver samples from shorebirds overwintering in Australia. The results showed a substantial increase in perfluorocarboxylic acids (PFCAs) across all sample types following the TOP assay, with the most significant increases in shorebird livers (Sum PFCAs increased by 18,156 %). Intriguingly, the assay also revealed unexpected increases in perfluorosulfonic acids (PFSAs), suggesting the presence of unidentified precursors. These findings highlight the need for further research into these unknown precursors, their sources, and their ecological impacts on shorebirds, other wildlife, and potential human exposure. This study also provides crucial insights into the TOP assay's strengths and limitations in studying PFAS precursor dynamics in biological matrices.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim 7491, Norway.
| | | | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim 7491, Norway
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim 7491, Norway
| | - He-Bo Peng
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9700 CC the Netherlands
| | - Tobias A Ross
- Centre for Integrative Ecology, Deakin University, Geelong 3216, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong 3216, Australia
| | - Dorte Herzke
- NILU, Fram Centre, Tromsø 9296, Norway; Norwegian Institute for Public Health, Oslo, Norway.
| |
Collapse
|
3
|
Chambial P, Thakur N, Kushawaha J, Kumar R. Per- and polyfluoroalkyl substances in environment and potential health impacts: Sources, remediation treatment and management, policy guidelines, destructive technologies, and techno-economic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178803. [PMID: 40020591 DOI: 10.1016/j.scitotenv.2025.178803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl Substances (PFAS), also known as forever chemicals and ubiquitous persistence, pose significant public health challenges due to their potential toxicity, particularly in drinking water and soil contamination. However, PFAS occurrence and their concentrations in different environmental matrices vary globally, but factors influencing trends, transport, fate, toxicity, and interactions with co-contaminants remain largely unexplored. Therefore, this review critically examines the state-of-the-art worldwide PFAS sources, distribution, and pathways, and evaluates how PFASs are processed in wastewater treatment, generally, which causes severe problems with the quality and safety of drinking water. Importantly, the review also underscores health issues due to PFAS consumption and recent research trends on developing effective treatment strategies to manage PFAS contamination. Potential effects of PFAS were linked to urban land use and the proportion of wastewater effluent in streamflow. Besides, major emphasis was provided on challenges for conventional treatment, destructive technologies, environmental accumulation, precursor transformation, and cost-investment related to PFAS removal technologies. To combat PFAS contamination, this review proposes a framework that promotes the comprehensive identification of prevalent compounds, with a focus on their eradication through knowledge-based and targeted analysis. Additionally, it explores the ongoing debate surrounding PFAS laws and legal frameworks, offering ideas for enhancing contamination management. Lastly, this review provides a strategic plan for improving response and preparedness, serving as a foundation for addressing future environmental challenges and informing health risk assessments.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Mandi, Himachal Pradesh 175001, India.
| | - Jyoti Kushawaha
- Department of Environmental Studies, Ramanujan College, University of Delhi, New Delhi 110019, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
4
|
Zhang B, Zhao M, Cong X, Liu C, Li C, Qiu Y, Li S, Chen Y, Li X, Li P. The Association Between Per- and Polyfluoroalkyl Substances Exposure and Thyroid Hormones in Men and Non-Pregnant Women: A Systematic Review and Meta-Analysis. TOXICS 2025; 13:214. [PMID: 40137541 PMCID: PMC11946724 DOI: 10.3390/toxics13030214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Studies have shown that per- and polyfluoroalkyl substances (PFAS) may impact thyroid function in human health. While the consistency between PFAS exposure and thyroid health effects in pregnant women has been validated, the effects on men and non-pregnant women remains inconclusive. To address this, a meta-analysis was carried out in this paper, with 14 eligible studies retrieved from Embase, PubMed, and Web of Science that were published up to 2 June 2024, focusing on the relationship between PFAS exposure and its effect on thyroid hormone levels in the human body. The thyroid function indexes analyzed included thyroid stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), free T3 (FT3), and free T4 (FT4). The estimated value (β) and the corresponding confidence interval (95% CI) were extracted from the literature. A heterogeneity test was carried out, and the sensitivity analysis and publication bias of the studies were analyzed using Stata 18.0. The results revealed that in men and non-pregnant women, PFOA was positively correlated with FT3 (β = 0.011, 95% CI = 0.001, 0.02, I2 = 13.4). However, no significant associations were found between exposure to other PFAS and thyroid hormones. A subgroup analysis further indicated that the correlations between PFAS exposure and thyroid hormone levels were more significant in adolescents, in both America and Europe.
Collapse
Affiliation(s)
- Bin Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; (B.Z.); (X.C.); (C.L.)
| | - Meizi Zhao
- Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China;
| | - Xiangru Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; (B.Z.); (X.C.); (C.L.)
| | - Chunyu Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; (B.Z.); (X.C.); (C.L.)
| | - Chaofei Li
- Zhonghuan (Fujian) Environmental Technology Co., Ltd., Fuzhou 350025, China; (C.L.); (S.L.); (Y.C.)
| | - Yu Qiu
- Fujian Jinhuang Environmental Protection Technology Co., Ltd., Fuzhou 350025, China;
| | - Sha Li
- Zhonghuan (Fujian) Environmental Technology Co., Ltd., Fuzhou 350025, China; (C.L.); (S.L.); (Y.C.)
| | - Yanying Chen
- Zhonghuan (Fujian) Environmental Technology Co., Ltd., Fuzhou 350025, China; (C.L.); (S.L.); (Y.C.)
| | - Xiaoxue Li
- Disaster Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; (B.Z.); (X.C.); (C.L.)
| |
Collapse
|
5
|
Sapozhnikova Y, Stroski KM, Haddad SP, Burket SR, Luers M, Brooks BW. Per- and polyfluoroalkyl substances (PFAS) accumulation in fish occupying different trophic positions from East Canyon Creek, a seasonally effluent-dominated river, Utah, USA. ENVIRONMENTAL RESEARCH 2025; 266:120480. [PMID: 39613019 DOI: 10.1016/j.envres.2024.120480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Fish and seafood are considered a major source of human dietary exposure to per- and polyfluoroalkyl substances (PFAS). In this study, we examined levels of 35 PFAS in fish samples of brown trout and mottled sculpin, which occupy different trophic positions, collected in 2014 from East Canyon Creek in Utah, USA. We observed 20 PFAS with ∑20PFAS ranging from 0.46-63.9 ng/g and from
Collapse
Affiliation(s)
- Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.
| | - Kevin M Stroski
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA; Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Samuel P Haddad
- Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - S Rebekah Burket
- Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Michael Luers
- Snyderville Basin Water Reclamation District, Park City, UT, USA
| | - Bryan W Brooks
- Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
6
|
Baqar M, Chen H, Yao Y, Sun H. Latest trends in the environmental analysis of PFAS including nontarget analysis and EOF-, AOF-, and TOP-based methodologies. Anal Bioanal Chem 2025; 417:555-571. [PMID: 39570388 DOI: 10.1007/s00216-024-05643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Ubiquitous environmental occurrence of per- and polyfluoroalkyl substances (PFAS) underscores the critical need to broaden investigative efforts in effective screening, risk assessment, and remediation. Owing to the broad spectrum of PFAS, various analytical techniques have been extensively utilized to attain inclusivity, with notable attention given to methods such as extractable organic fluorine (EOF), adsorbable organic fluorine (AOF), and the total oxidizable precursor (TOP) assay. These techniques expand the scope of PFAS analysis by estimating perfluoroalkyl acid precursors or the total organochlorine fraction. This review offers a comprehensive comparative overview of up-to-date methodologies, alongside acknowledging the inherent limitations associated with their applications. When coupled with target analysis via low-resolution tandem mass spectrometry, these techniques offer a potential estimation of total PFAS concentrations. Yet, analytical challenges such as the limited availability of reference analytical standards, partial PFAS adsorption, and the entrapment of fluorinated inorganic anions on adsorbent materials often restrict the comprehensiveness of PFAS analysis. So, integrating nontarget analysis using high-resolution mass spectrometry (HRMS) tools fortifies these PFAS mass balance approaches, enabling the development of a more holistic approach for an environmental analysis framework. This review provides additional insights into the comparative advantages of PFAS analytical approaches and explores various data prioritization strategies in nontarget screening methods. It advocates for the necessary optimization of PFAS extraction methods, asserting that integrating the nontarget approach would foster the establishment of a comprehensive monitoring framework across diverse environmental matrices. Such integration holds promise for enhancing scientific comprehension of PFAS contamination across diverse environmental matrices.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Manz KE. Considerations for Measurements of Aggregate PFAS Exposure in Precision Environmental Health. ACS MEASUREMENT SCIENCE AU 2024; 4:620-628. [PMID: 39713038 PMCID: PMC11659993 DOI: 10.1021/acsmeasuresciau.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become a major focus of research due to their widespread environmental presence and adverse health effects associated with human exposure. PFAS include legacy and emerging structures and are characterized by a range of functional groups and carbon-fluorine chains that vary in length (from fewer than 3 carbons to more than 7 carbons). Research has linked PFAS exposure to an array of health concerns, ranging from developmental and reproductive disorders to immune system impairments and an increased risk of certain cancers. In this new era of personalized health, measuring markers of PFAS exposure in human biospecimens is an important part of environmental public health surveillance. PFAS are typically measured in human blood and tissues using targeted approaches, which quantify individual PFAS structures using specific instrumentation. The diversity and complexity of PFAS, the limitations of the targeted approaches due to the sheer number of structures, and the absence of publicly available analytical standards pose significant challenges for measurement methodologies. This perspective aims to describe aggregate PFAS exposure measurements and their potential for use in precision medicine applications including a discussion of the limitations and potential benefits of these aggregate measurements. As public health organizations, healthcare professionals, and the public look for guidance regarding the safe use of and exposure to PFAS, in a pragmatic cost-effective manner, the dynamic field of measurement science is poised to respond with innovative technological solutions to an important public health need.
Collapse
Affiliation(s)
- Katherine E. Manz
- Department
of Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Ware A, Hess S, Gligor D, Numer S, Gregory J, Farmer C, Raner GM, Medina HE. Identification of Plant Peroxidases Catalyzing the Degradation of Fluorinated Aromatics Using a Peroxidase Library Approach. Eng Life Sci 2024; 24:e202400054. [PMID: 39502856 PMCID: PMC11532638 DOI: 10.1002/elsc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 11/08/2024] Open
Abstract
In this work, the degradation of mono- and polyfluorinated phenolic compounds was demonstrated by a series of crude plant peroxidases, including horseradish root (HRP) and six members of the Cucurbita genus. Highly active samples were identified using a library screening approach in which more than 50 crude plant samples were initially evaluated for defluorination activity toward 4-fluorophenol. The highest concentrations were observed in the HRP, pumpkin skin (PKS), and butternut squash skin (BNS), which consistently gave the highest intrinsic rates of decomposition for all the substrates tested. Although HRP exhibited a significant decrease in activity with increased fluorination of the phenolic substrate, PKS showed only minor reductions. Furthermore, in silico studies indicated that the active site of HRP poorly accommodates the steric bulk of additional fluorines, causing the substrate to dock farther from the catalytic heme and thus slowing the catalysis rate. We propose that the PKS active site might be larger, allowing closer access to the perfluorinated substrate, and therefore maintaining higher activity compared to the HRP enzyme. However, detailed kinetic characterization studies of the peroxidases are recommended. Conclusively, the high catalytic activity of PKS and its high yield per gram of tissue make it an excellent candidate for developing environmentally friendly biocatalytic methods for degrading fluorinated aromatics. Finally, the success of the library approach in identifying highly active samples for polyfluorinated aromatic compound (PFAC) degradation suggests the method may find utility in the quest for other advanced catalysts for PFAS degradation.
Collapse
Affiliation(s)
- Ashton Ware
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Sally Hess
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - David Gligor
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Sierra Numer
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Jack Gregory
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Carson Farmer
- School of EngineeringLiberty UniversityLynchburgVirginiaUSA
| | - Gregory M. Raner
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | | |
Collapse
|
9
|
Zhao M, Yao Y, Dong X, Fang B, Wang Z, Chen H, Sun H. Identification of emerging PFAS in industrial sludge from North China: Release risk assessment by the TOP assay. WATER RESEARCH 2024; 268:122667. [PMID: 39509771 DOI: 10.1016/j.watres.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been widely used across various industries, leading to their prevalent occurrence in sludges generated by wastewater treatment plants (WWTPs). Consequently, industrial sludges serve as typical reservoirs for PFAS. This study examined 46 target PFAS in sludge samples intended for brick production from nine WWTPs in North China, identifying emerging PFAS and categorizing their behaviors through high-resolution mass spectrometry (HRMS) screening and total oxidizable precursor (TOP) assay. Forty-one PFAS were detected, with trifluoroacetic acid (TFA), perfluorooctane sulfonic acid, and hexafluoropropylene oxide dimer acid being the most prevalent. Twenty-nine emerging PFAS were identified, and their behaviors were categorized using TOP assay. Notably, four CF3-containing PFAS were identified, all confirmed as precursors of TFA, with a molar yield of 16.4 %-25.6 % in Milli-Q water during TOP assay validation. These findings indicate that the transformation of these precursors during sludge recycling may substantially contribute to TFA release, underscoring potential risks associated with secondary PFAS release during sludge resource utilization.
Collapse
Affiliation(s)
- Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Sadia M, Ter Laak TL, Cornelissen ER, van Wezel AP. Exploring Perfluoroalkyl and Polyfluoroalkyl Substance Presence and Potential Leaching from Reverse Osmosis Membranes: Implications for Drinking Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15799-15806. [PMID: 39171677 PMCID: PMC11375775 DOI: 10.1021/acs.est.4c04743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Reverse osmosis (RO) is increasingly used in drinking water production to effectively remove micropollutants, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS). However, RO membranes themselves may contain PFAS, which can potentially leach into treated drinking water. Leaching experiments and direct total oxidizable precursor assays revealed the presence and leaching potential of PFOS (branched and linear), PFBA, PFHxA, PFNA, and PFOA in five selected commercial RO membranes. This resulted in the release of tens of milligrams of ΣPFAS per membrane element used in drinking water production. Depending on assumptions made regarding leaching kinetics and volume of produced water per membrane element, predicted concentrations of ΣPFAS in the produced water ranged from less than one up to hundreds of pg/L. These concentrations are two to four orders of magnitude lower than those currently observed in Dutch drinking waters. The origin of PFAS in the membranes remains unclear. Further research is needed to bridge the gap between the laboratory conditions as used in this study and the real-world conditions and for a full understanding of potential leaching scenarios. Such an understanding is critical for water producers using RO technologies to proactively manage and mitigate potential PFAS contamination.
Collapse
Affiliation(s)
- Mohammad Sadia
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE 1090, The Netherlands
| | - Thomas L Ter Laak
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE 1090, The Netherlands
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein, BB 3430, The Netherlands
| | - Emile R Cornelissen
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein, BB 3430, The Netherlands
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent University, Frieda Saeysstraat 1, Gent 9052, Belgium
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE 1090, The Netherlands
| |
Collapse
|
11
|
DeWitt JC, Glüge J, Cousins IT, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, Patton S, Trier X, Vierke L, Wang Z, Adu-Kumi S, Balan S, Buser AM, Fletcher T, Haug LS, Heggelund A, Huang J, Kaserzon S, Leonel J, Sheriff I, Shi YL, Valsecchi S, Scheringer M. Zürich II Statement on Per- and Polyfluoroalkyl Substances (PFASs): Scientific and Regulatory Needs. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:786-797. [PMID: 39156923 PMCID: PMC11325642 DOI: 10.1021/acs.estlett.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 08/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic organic chemicals of global concern. A group of 36 scientists and regulators from 18 countries held a hybrid workshop in 2022 in Zürich, Switzerland. The workshop, a sequel to a previous Zürich workshop held in 2017, deliberated on progress in the last five years and discussed further needs for cooperative scientific research and regulatory action on PFASs. This review reflects discussion and insights gained during and after this workshop and summarizes key signs of progress in science and policy, ongoing critical issues to be addressed, and possible ways forward. Some key take home messages include: 1) understanding of human health effects continues to develop dramatically, 2) regulatory guidelines continue to drop, 3) better understanding of emissions and contamination levels is needed in more parts of the world, 4) analytical methods, while improving, still only cover around 50 PFASs, and 5) discussions of how to group PFASs for regulation (including subgroupings) have gathered momentum with several jurisdictions proposing restricting a large proportion of PFAS uses. It was concluded that more multi-group exchanges are needed in the future and that there should be a greater diversity of participants at future workshops.
Collapse
Affiliation(s)
- Jamie C. DeWitt
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis 97331, Oregon, United States
| | - Juliane Glüge
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich CH-8092, Switzerland
| | - Ian T. Cousins
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Dorte Herzke
- NILU,
Tromsø 9296, Norway and Department of Food Safety, Norwegian
Institute of Public Health, Oslo 0213, Norway
| | - Rainer Lohmann
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett 02882, Rhode Island, United States
| | - Mark Miller
- National
Institute of Environmental Health Sciences, U.S. Public Health Service, Research
Triangle Park 27709, North Carolina, United States
| | - Carla A. Ng
- Department
of Civil & Environmental Engineering and Environmental and Occupational
Health, University of Pittsburgh, Pittsburgh 15261, Pennsylvania, United States
| | - Sharyle Patton
- Health
and
Environment Program Commonweal, Bolinas 94924, California, United States
| | - Xenia Trier
- Department
of Plant and Environmental Sciences, Section for Environmental Chemistry
and Physics, University of Copenhagen, Copenhagen 1165, Denmark
| | - Lena Vierke
- German
Environment Agency (UBA), Dessau-Roßlau 06844, Germany
| | - Zhanyun Wang
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | | | - Simona Balan
- California
Department of Toxic Substances Control, Safer Consumer Products Program, Berkeley 94710, California, United States
| | | | - Tony Fletcher
- Department
of Public Health, Environments & Society, London School of Hygiene & Tropical Medicine, London WC1H 9SH, U.K.
| | - Line Småstuen Haug
- Department
of Food Safety, Norwegian Institute of Public
Health, Oslo 0213, Norway
| | | | - Jun Huang
- School
of Environment, Tsinghua University, Beijing 100084, China
| | - Sarit Kaserzon
- Queensland
Alliance for Environmental Health Sciences, The University of Queensland, Queensland 4102, Australia
| | - Juliana Leonel
- Department
of Oceanography, Universidade Federal de
Santa Catarina, Florianopólis 40170110, Brazil
| | - Ishmail Sheriff
- School
of Civil Engineering, Universiti Sains Malaysia, Penang 14300, Malaysia
| | - Ya-Li Shi
- School
of Environment, Hangzhou Institute for Advanced Study, University
of Chinese Academy of Sciences, Hangzhou, CN, 310024 and State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Sara Valsecchi
- Water
Research Institute-National Research Council, Brugherio 20861, Italy
| | - Martin Scheringer
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich CH-8092, Switzerland
- RECETOX, Masaryk
University, Brno 62500, Czech Republic
| |
Collapse
|
12
|
Cioni L, Nikiforov V, Benskin JP, Coêlho ACM, Dudášová S, Lauria MZ, Lechtenfeld OJ, Plassmann MM, Reemtsma T, Sandanger TM, Herzke D. Combining Advanced Analytical Methodologies to Uncover Suspect PFAS and Fluorinated Pharmaceutical Contributions to Extractable Organic Fluorine in Human Serum (Tromsø Study). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12943-12953. [PMID: 38985529 PMCID: PMC11271008 DOI: 10.1021/acs.est.4c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
A growing number of studies have reported that routinely monitored per- and polyfluoroalkyl substances (PFAS) are not sufficient to explain the extractable organic fluorine (EOF) measured in human blood. In this study, we address this gap by screening pooled human serum collected over 3 decades (1986-2015) in Tromsø (Norway) for >5000 PFAS and >300 fluorinated pharmaceuticals. We combined multiple analytical techniques (direct infusion Fourier transform ion cyclotron resonance mass spectrometry, liquid chromatography-Orbitrap-high-resolution mass spectrometry, and total oxidizable precursors assay) in a three-step suspect screening process which aimed at unequivocal suspect identification. This approach uncovered the presence of one PFAS and eight fluorinated pharmaceuticals (including some metabolites) in human serum. While the PFAS suspect only accounted for 2-4% of the EOF, fluorinated pharmaceuticals accounted for 0-63% of the EOF, and their contribution increased in recent years. Although fluorinated pharmaceuticals often contain only 1-3 fluorine atoms, our results indicate that they can contribute significantly to the EOF. Indeed, the contribution from fluorinated pharmaceuticals allowed us to close the organofluorine mass balance in pooled serum from 2015, indicating a good understanding of organofluorine compounds in humans. However, a portion of the EOF in human serum from 1986 and 2007 still remained unexplained.
Collapse
Affiliation(s)
- Lara Cioni
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT—the Arctic
University of Norway, Tromsø NO-9037, Norway
| | | | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Silvia Dudášová
- Helmholtz
Centre for Environmental Research—UFZ, Leipzig DE-04103, Germany
| | - Melanie Z. Lauria
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Merle M. Plassmann
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | - Thorsten Reemtsma
- Helmholtz
Centre for Environmental Research—UFZ, Leipzig DE-04103, Germany
| | - Torkjel M. Sandanger
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT—the Arctic
University of Norway, Tromsø NO-9037, Norway
| | - Dorte Herzke
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Norwegian
Institute for Public Health, Oslo NO-0213, Norway
| |
Collapse
|
13
|
Glover CM, Pazoki F, Munoz G, Sauvé S, Liu J. Applying the modified UV-activated TOP assay to complex matrices impacted by aqueous film-forming foams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171292. [PMID: 38432371 DOI: 10.1016/j.scitotenv.2024.171292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large chemical family, and numerous chemical species can co-exist in environmental samples, especially those impacted by aqueous film-forming foams (AFFFs). Given the limited availability of chemical standards, capturing the total amount of PFAS is challenging. Thus, the total oxidizable precursor (TOP) assay has been developed to estimate the total amount of PFAS via the oxidative conversion of precursors into perfluorocarboxylic acids (PFCAs). This study aims to enhance the robustness of the TOP assay by replacing heat activation with UV activation. We evaluated the molar yields of known precursors in water in the presence of varying levels of Suwannee River natural organic matter (SRNOM) and in two soils. The impact of UV activation was also evaluated in two soils spiked with three well-characterized AFFFs, six AFFF-impacted field soils, and nine rinse samples of AFFF-impacted stainless-steel pipe. In the presence of 100 mg/L SNROM, 6:2 fluorotelomer sulfonate (FTS), 8:2 FTS, and N-ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA) in deionized water had good molar recovery as PFCAs (average of 102 ± 9.8 %); at 500 mg/L SNROM, the recovery significantly dropped to an average of 51 ± 19 %. In two soils (with 4 % and 8.8 % organic matter) with individual precursor spikes, the average molar recovery was 101 ± 9.4 %, except N-EtFOSAA, which had a reduced recovery in the soil with 8.8 % organic matter (OM). UV-activated assays outperformed heat-activated ones, especially in AFFF-impacted soils and pipe extract samples, with an average of 1.4-1.5× higher PFCA recovery. In almost all test samples, UV activation resulted in a notable shift towards longer PFCA chain lengths, particularly for samples with high OM content. The study confirmed the advantages of UV activation, including a significantly shortened exposure time (1 h vs. 6 h) and reduced matrix effects from OM due to the dual functions of UV in activating persulfate and photodegrading OM.
Collapse
Affiliation(s)
- Caitlin M Glover
- Department of Civil Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada
| | - Faezeh Pazoki
- Department of Civil Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada
| | - Gabriel Munoz
- Département de chimie, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Sébastien Sauvé
- Département de chimie, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada.
| |
Collapse
|
14
|
Iannone A, Carriera F, Passarella S, Fratianni A, Avino P. There's Something in What We Eat: An Overview on the Extraction Techniques and Chromatographic Analysis for PFAS Identification in Agri-Food Products. Foods 2024; 13:1085. [PMID: 38611389 PMCID: PMC11011820 DOI: 10.3390/foods13071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Per- and polyfluorinated alkyl substances (PFASs) are a group of anthropogenic chemicals used in a range of industrial processes and consumer products. Recently, their ubiquitous presence in the environment as well as their toxicological effects in humans have gained relevant attention. Although the occurrence of PFASs is widely investigated in scientific community, the standardization of analytical method for all matrices still remains an important issue. In this review, we discussed extraction and detection methods in depth to evaluate the best procedures of PFAS identification in terms of analytical parameters (e.g., limits of detection (LODs), limits of quantification (LOQs), recoveries). Extraction approaches based on liquid-liquid extraction (LLE), alkaline digestion, and solid phase extraction (SPE), followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analysis are the main analytical methods applied in the literature. The results showed detectable recoveries of PFOA and PFOS in meat, milk, vegetables, eggs products (90.6-101.2% and of 89.2-98.4%), and fish (96-108%). Furthermore, the low LOD and LOQ values obtained for meat (0.00592-0.01907 ng g-1; 0.050 ng g-1), milk (0.003-0.009 ng g-1; 0.010-0.027 ng g-1), fruit (0.002-0.009 ng g-1; 0.006-0.024 ng g-1), and fish (0.00369-0.017.33 ng g-1; 0.05 ng g-1) also confirmed the effectiveness of the recent quick, easy, cheap, effective, rugged, and safe method (QuEChERS) for simple, speedy, and sensitive ultra-trace PFAS analysis.
Collapse
Affiliation(s)
- Alessia Iannone
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Fabiana Carriera
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Sergio Passarella
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Alessandra Fratianni
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Pasquale Avino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
- Institute of Atmospheric Pollution Research, Division of Rome, c/o Ministry of Environment and Energy Security, Via Cristoforo Colombo 44, IT-00147 Rome, Italy
| |
Collapse
|
15
|
Sadia M, Beut LB, Pranić M, Wezel AP, Laak TL. Sorption of per- and poly-fluoroalkyl substances and their precursors on activated carbon under realistic drinking water conditions: Insights into sorbent variability and PFAS structural effects. Heliyon 2024; 10:e25130. [PMID: 38317999 PMCID: PMC10839585 DOI: 10.1016/j.heliyon.2024.e25130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/17/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
Recent stringent drinking water quality standards create challenges for water utilities to meet these standards. Advanced treatment techniques will have to be applied on many drinking water production locations to meet these quality standards. This study investigated the sorption of per- and polyfluorinated-alkyl substances (PFAS) onto granular activated carbon (GAC). The study was performed at environmentally relevant PFAS concentrations and a realistic water-to-GAC ratio, providing a realism often overlooked in existing studies. Three different forms of GAC were evaluated, differing in micropore and mesopore structures. Tap water spiked with 5 ng/L of each of 31 PFAS was used in the sorption experiments, i.e. perfluorocarboxylic acids (C4-C12), perfluorosulfonic acids (PFSA, C5-C10) including linear and branched isomers, and three groups of PFAS precursors (per-/polyfluoroalkyl ether acids, sulfonamides, and sulfonamide acetic acids). The three studied GAC did not exhibit distinct differences in PFAS sorption. The removal of PFAS was below 50 % for most studied PFAS, except for the short-chain PFAS precursors. Sorption was affected by both the carbon chain length and functional groups for PFAS, while this was not observed for PFAS precursors. The presence of ether linkages and sulfonamide groups notably enhanced sorption. Linear and branched PFSA demonstrated similar sorption behavior, whereas branched isomers of the sulfonamide acetic acid precursors exhibited significantly higher sorption. This indicates that sorption was determined by both hydrophobic and electrostatic interactions. Given the relatively low PFAS removal by GAC under environmentally relevant test conditions, further improvements in sorbents are required to ensure that PFAS concentrations in produced drinking water comply with drinking water standards.
Collapse
Affiliation(s)
- Mohammad Sadia
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
| | - Lola Beltrán Beut
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
| | - Marko Pranić
- Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, the Netherlands
| | - Annemarie P.van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
| | - Thomas L.ter Laak
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
- KWR Water Research Institute, Groningenhaven 7, 3430BB Nieuwegein, the Netherlands
| |
Collapse
|
16
|
Zhao M, Yao Y, Dong X, Baqar M, Fang B, Chen H, Sun H. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances (PFAS) in Soils from an Oil Refinery in Southwestern China: A Combined Approach with TOP Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20194-20205. [PMID: 37991390 DOI: 10.1021/acs.est.3c05859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Oil refinery activity can be an emission source of perfluoroalkyl and polyfluoroalkyl substances (PFAS) to the environment, while the contamination profiles in soils remain unknown. This study investigated 44 target PFAS in soil samples collected from an oil refinery in Southeastern China, identified novel PFAS, and characterized their behaviors by assessing their changes before and after employing advanced oxidation using a combination of nontarget analysis and a total oxidizable precursor (TOP) assay. Thirty-four target PFAS were detected in soil samples. Trifluoroacetic acid (TFA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were the dominant PFAS. Twenty-three novel PFAS of 14 classes were identified, including 8 precursors, 11 products, and 4 stable PFAS characterized by the TOP assay. Particularly, three per-/polyfluorinated alcohols were identified for the first time, and hexafluoroisopropanol (HFIP) quantified up to 657 ng/g dw is a novel precursor for TFA. Bistriflimide (NTf2) potentially associated with an oil refinery was also reported for the first time in the soil samples. This study highlighted the advantage of embedding the TOP assay in nontarget analysis to reveal not only the presence of unknown PFAS but also their roles in environmental processes. Overall, this approach provides an efficient way to uncover contamination profiles of PFAS especially in source-impacted areas.
Collapse
Affiliation(s)
- Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
17
|
Göckener B, Fliedner A, Weinfurtner K, Rüdel H, Badry A, Koschorreck J. Tracking down unknown PFAS pollution - The direct TOP assay in spatial monitoring of surface waters in Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165425. [PMID: 37429475 DOI: 10.1016/j.scitotenv.2023.165425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
PFAS contamination of surface waters in central Europe was investigated in a spatial monitoring using suspended particulate matter and sediment samples. The samples were collected in 2021 at 171 sampling sites in Germany and at five sites in Dutch waters. All samples were analyzed for 41 different PFAS by target analysis to establish a baseline for these compounds. In addition, a sum parameter approach (direct Total Oxidizable Precursor (dTOP) assay) was used to investigate the PFAS load in the samples more comprehensively. PFAS pollution varied widely between water bodies. Target analysis detected ∑PFAS concentrations between <0.5 and 53.1 μg kg-1 dry weight (dw), while levels of <1.0-337 μg kg-1 dw were determined by dTOP assay. Associations were observed for ∑PFSAdTOP and the percentage of urban area in the vicinity of the sampling sites and, less strongly, for distances to industrial sites (i.e. galvanic/paper) and airports. PFAS hotspots were identified by setting the 90th percentile of the data sets for ∑PFAStarget or ∑PFASdTOP as a threshold. Of the 17 hotspots identified by target analysis or dTOP assay, respectively, there were only six overlaps. Thus, 11 highly contaminated sites could not be identified by classical target analysis. The results demonstrate that target analysis captures only a fraction of the actual PFAS load, while unknown precursors remain undetected. Consequently, if only the results of target analysis are considered in assessments, there is a risk that sites heavily polluted with precursors will not be identified delaying mitigation actions and risking prolonged negative impacts on human health and ecosystems. Moreover, effective PFAS management requires establishing a baseline for PFAS using target and sum parameters such as the dTOP assay, and then monitoring this baseline on a regular basis to support emission control and to inform risk management of its effectiveness.
Collapse
Affiliation(s)
- Bernd Göckener
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), 57392 Schmallenberg, Germany.
| | - Annette Fliedner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), 57392 Schmallenberg, Germany
| | - Karlheinz Weinfurtner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), 57392 Schmallenberg, Germany
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), 57392 Schmallenberg, Germany
| | - Alexander Badry
- German Environment Agency (Umweltbundesamt), 06813 Dessau-Rosslau, Germany
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), 06813 Dessau-Rosslau, Germany
| |
Collapse
|
18
|
Cioni L, Plassmann M, Benskin JP, Coêlho ACM, Nøst TH, Rylander C, Nikiforov V, Sandanger TM, Herzke D. Fluorine Mass Balance, including Total Fluorine, Extractable Organic Fluorine, Oxidizable Precursors, and Target Per- and Polyfluoroalkyl Substances, in Pooled Human Serum from the Tromsø Population in 1986, 2007, and 2015. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14849-14860. [PMID: 37747946 PMCID: PMC10569050 DOI: 10.1021/acs.est.3c03655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Of the thousands of per- and polyfluoroalkyl substances (PFAS) known to exist, only a small fraction (≤1%) are commonly monitored in humans. This discrepancy has led to concerns that human exposure may be underestimated. Here, we address this problem by applying a comprehensive fluorine mass balance (FMB) approach, including total fluorine (TF), extractable organic fluorine (EOF), total oxidizable precursors (TOP), and selected target PFAS, to human serum samples collected over a period of 28 years (1986, 2007, and 2015) in Tromsø, Norway. While concentrations of TF did not change between sampling years, EOF was significantly higher in 1986 compared to 2007 and 2015. The ∑12PFAS concentrations were highest in 2007 compared to 1986 and 2015, and unidentified EOF (UEOF) decreased from 1986 (46%) to 2007 (10%) and then increased in 2015 (37%). While TF and EOF were not influenced by sex, women had higher UEOF compared to men, opposite to target PFAS. This is the first FMB in human serum to include TOP, and it suggests that precursors with >4 perfluorinated carbon atoms make a minor contribution to EOF (0-4%). Additional tools are therefore needed to identify substances contributing to the UEOF in human serum.
Collapse
Affiliation(s)
- Lara Cioni
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Merle Plassmann
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | | | - Therese H. Nøst
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Charlotta Rylander
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | | | - Torkjel M. Sandanger
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Dorte Herzke
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Norwegian
Institute for public Health, Oslo NO-0213, Norway
| |
Collapse
|
19
|
Jia Y, Shan C, Fu W, Wei S, Pan B. Occurrences and fates of per- and polyfluoralkyl substances in textile dyeing wastewater along full-scale treatment processes. WATER RESEARCH 2023; 242:120289. [PMID: 37413748 DOI: 10.1016/j.watres.2023.120289] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Industrial wastewater is a substantial source of per- and polyfluoroalkyl substances (PFASs) in the environment. However, very limited information is available on the occurrences and fates of PFASs along industrial wastewater treatment processes, particularly for the textile dyeing industry where PFASs occur extensively. Herein, the occurrences and fates of 27 legacy and emerging PFASs were investigated along the processes of three full-scale textile dyeing wastewater treatment plants (WWTPs) based on UHPLC-MS/MS in combination with self-developed solid extraction protocol featuring selective enrichment for ultrasensitive analysis. The total PFASs ranged at 630-4268 ng L-1 in influents, 436-755 ng L-1 in effluents, and 91.5-1182 μg kg-1 in the resultant sludge. PFAS species distribution varied among WWTPs, with one WWTP dominated by legacy perfluorocarboxylic acids while the other two dominated by emerging PFASs. Perfluorooctane sulfonate (PFOS) was trivial in the effluents from all the three WWTPs, indicating its diminished use in textile industry. Various emerging PFASs were detected at different abundances, demonstrating their use as alternatives to legacy PFASs. Most conventional processes of the WWTPs were inefficient in removing PFASs, especially for the legacy PFASs. The microbial processes could remove the emerging PFASs to different extents, whereas commonly elevated the concentrations of legacy PFASs. Over 90% of most PFASs could be removed by reverse osmosis (RO) and was enriched into the RO concentrate accordingly. The total oxidizable precursors (TOP) assay revealed that the total concentration of PFASs was increased by 2.3-4.1 times after oxidation, accompanied by formation of terminal perfluoroalkyl acids (PFAAs) and degradation of emerging alternatives to various extents. This study is believed to shed new light on the monitoring and management of PFASs in industries.
Collapse
Affiliation(s)
- Yuqian Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
20
|
M F Coêlho AC, Cioni L, Van Dreunen W, Berg V, Rylander C, Urbarova I, Herzke D, Sandanger TM. Legacy perfluoroalkyl acids and their oxidizable precursors in plasma samples of Norwegian women. ENVIRONMENT INTERNATIONAL 2023; 178:108026. [PMID: 37356307 DOI: 10.1016/j.envint.2023.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Humans are exposed to perfluoroalkyl acids (PFAA) mainly through direct pathways, such as diet and drinking water, but indirect exposure also occurs when PFAA precursors break down to form legacy PFAA. Exposure to PFAA precursors raises particular concern, as neither the exposure nor the precursors themselves have been well described. In the present study, we aimed to assess the indirect contribution of oxidizable PFAA precursors to the total per- and polyfluoroalkyl substances (PFAS) burden in human plasma following the voluntary phase-out of production of long-chain PFAS. In addition, multiple logistic regression was used to explore associations between selected lifestyle and dietary factors and the oxidizable PFAA precursors fraction. This study included 302 cancer-free participants of the Norwegian Women and Cancer postgenome cohort. PFAS analyses were performed in plasma samples to determine PFAS concentrations before and after oxidation with the Total Oxidizable Precursor (TOP) assay. In pre-TOP analyses, perfluorooctane sulfonic acid (PFOS) was the dominant compound, followed by perfluorooctanoic acid (PFOA).The vast majority (98%) of the study population had increased post-TOP concentrations for at least one PFAA. The formation of PFAA accounted for 12% of the total PFAS burden, with seven PFAA observed post-TOP in at least 30% of study participants. PFHpA, br- PFOA, and PFDA were only detected in post-TOP analyses and showed the highest increase in concentrations. Of the PFAA with increased concentrations, we noted significant associations for year of birth, parity, BMI, and some dietary factors, although they were not consistent between the different PFAA. These results indicate that while the TOP assay might not provide a complete assessment of total PFAS burden in humans, it offers comprehensive assessment of unknown PFAA precursors that might be present in plasma, and it could therefore be implemented as an auxiliary tool in this regard.
Collapse
Affiliation(s)
- Ana Carolina M F Coêlho
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Lara Cioni
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway; Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| | - Wendy Van Dreunen
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Vivian Berg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway; Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North-Norway, Tromsø, Norway
| | - Charlotta Rylander
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ilona Urbarova
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway; Department for Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway; Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| |
Collapse
|
21
|
Sapozhnikova Y, Taylor RB, Bedi M, Ng C. Assessing per- and polyfluoroalkyl substances in globally sourced food packaging. CHEMOSPHERE 2023:139381. [PMID: 37392795 DOI: 10.1016/j.chemosphere.2023.139381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
The purpose of this study was to investigate the presence and levels of per- and polyfluoroalkyl substances (PFAS) in food packaging originating from different geographic locations. Food packaging samples were extracted and analyzed by targeted analysis with liquid chromatography-mass spectrometry (LC-MS/MS) before and after a total oxidizable precursor (TOP) assay. Additionally, full-scan high resolution MS (HRMS) was used to screen for PFAS not included in the targeted list. Of the 88 food packaging samples, 84% had detectable levels of at least one PFAS prior to oxidation with a TOP assay, with 6:2 fluorotelomer phosphate diester (6:2 diPAP) found most frequently and at the highest levels (224 ng/g). Other frequently detected substances (in 15-17% of samples) were PFHxS, PFHpA and PFDA. Shorter chain perfluorinated carboxylic acids PFHpA (C7), PFPeA (C5) and PFHxS (C6) were present at levels up to 51.3, 24.1 and 18.2 ng/g, respectively. Average ∑PFAS levels were 28.3 ng/g and 381.9 ng/g before and after oxidation with the TOP assay. The 25 samples with highest frequency of detection and amounts of measured PFAS were selected for migration experiments with food simulants to better understand potential dietary exposure. PFHxS, PFHpA, PFHxA and 6:2 diPAP were measured in the food simulants of five samples at concentrations ranging from 0.04 to 12.2 ng/g and at increasing concentrations over the 10-day migration period. To estimate potential exposure to PFAS that had migrated from food packaging samples, weekly intake was calculated and ranged from 0.0006 ng/kg body weight/week for PFHxA exposure in tomato packaging to 1.1200 ng/kg body weight/week for PFHxS exposure in cake paper. These values were below the established EFSA maximum tolerable weekly intake (TWI) of 4.4 ng/kg body weight/week for the sum of PFOA, PFNA, PFHxS and PFOS.
Collapse
Affiliation(s)
- Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.
| | - Raegyn B Taylor
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Megha Bedi
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
22
|
Ateia M, Chiang D, Cashman M, Acheson C. Total Oxidizable Precursor (TOP) Assay-Best Practices, Capabilities and Limitations for PFAS Site Investigation and Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:292-301. [PMID: 37313434 PMCID: PMC10259459 DOI: 10.1021/acs.estlett.3c00061] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The comprehensive characterization of per- and polyfluoroalkyl substances (PFASs) is necessary for the effective assessment and management of risk at contaminated sites. While current analytical methods are capable of quantitatively measuring a number of specific PFASs, they do not provide a complete picture of the thousands of PFASs that are utilized in commercial products and potentially released into the environment. These unmeasured PFASs include many PFAS precursors, which may be converted into related PFAS chemicals through oxidation. The total oxidizable precursor (TOP) assay offers a means of bridging this gap by oxidizing unknown PFAS precursors and intermediates and converting them into stable PFASs with established analytical standards. The application of the TOP assay to samples from PFAS-contaminated sites has generated several new insights, but it has also presented various technical challenges for laboratories. Despite the increased number of literature studies that include the TOP assay, there is a critical and growing gap in the application of this method beyond researchers in academia. This article outlines the benefits and challenges of using the TOP assay with aqueous samples for site assessments and suggests ways to address some of its limitations.
Collapse
Affiliation(s)
- Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, Ohio 45268, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Dora Chiang
- WSP USA, Atlanta, Georgia 30326, United States
| | - Michaela Cashman
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narraganset, Rhode Island 02882, United States
| | - Carolyn Acheson
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, Ohio 45268, United States
| |
Collapse
|