1
|
Morgan S, Raza Shah SH, Comstock SS, Goodrich JM, Liang D, Tan Y, McKee K, Ruden D, Sitarik AR, Cassidy-Bushrow AE, Dunlop AL, Petriello MC. Prenatal PFAS exposure and outcomes related to maternal gut microbiome composition in later pregnancy. ENVIRONMENTAL RESEARCH 2025; 279:121709. [PMID: 40311903 DOI: 10.1016/j.envres.2025.121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
The composition of the gut microbiome is dependent on factors including diet, lifestyle, and exposure to environmental chemicals, and has implications for human health. Per- and polyfluoroalkyl substances (PFAS), a class of man-made chemicals that have nonstick and flame-retardant properties may impact on gut microbiome composition. Our objective was to elucidate links between PFAS and maternal gut microbiome composition in two geographically diverse sites of the Environmental Influences on Child Health Outcomes program. The present analysis includes participants in the Atlanta African American Maternal Child Cohort; ATL AA and a predominately non-Hispanic White subsample of the Michigan Archive for Research on Child Health Cohort; MARCH with serum or plasma PFAS concentrations measured in early or late pregnancy and 16s rRNA sequencing from maternal gut microbiome samples available primarily in later pregnancy (2nd-3rd trimester). Linear regression models tested associations between prenatal PFAS levels (separately for the 1st/3rd trimesters) and measures of alpha diversity, bacterial composition differences, and differential taxonomic abundance. Bayesian Kernel Machine Regression and Elastic net regression mixture modeling were also incorporated. In both cohorts, multiple PFAS were significantly associated with the relative abundance of specific microbiome taxa even after adjustment for covariates including maternal diet, age, race, BMI, and smoking; A total of 16 significant family-level associations were identified for ATL AA (e.g., PFOA with Clostridiaceae; natural log fold change = 0.94) and 13 significant family-level associations identified for MARCH e.g., PFOS with Desulfovibrionaceae; natural log fold change = -1.53 (pFDR<0.05), but similarities between cohorts were lacking. Mixture analyses did not identify interactive or combined effects but did provide modest evidence of inclusion of individual PFAS in beta diversity models in both cohorts. In 2 distinct cohorts, there were significant associations between prenatal PFAS and the relative abundance of several bacterial taxa, but these differences were cohort-specific. This work suggests that PFAS may modulate the gut microbiome during pregnancy.
Collapse
Affiliation(s)
- Stephanie Morgan
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Sayed Hassan Raza Shah
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Sarah S Comstock
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Kimberly McKee
- Department of Family Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Douglas Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Alexandra R Sitarik
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA; Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Andrea E Cassidy-Bushrow
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA; Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, 48202, USA; Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Anne L Dunlop
- Department of Gynecology & Obstetrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
Zhou Y, Zhang L, Lin L, Liu Y, Li Q, Zhao Y, Zhang Y. Associations of prenatal organophosphate esters exposure with risk of eczema in early childhood, mediating role of gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137250. [PMID: 39827805 DOI: 10.1016/j.jhazmat.2025.137250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Few epidemiological evidence has focused on the impact of organophosphate esters (OPEs) and the risk of eczema, and underlying role of gut microbiota. Based on the Shanghai Maternal-Child Pairs Cohort, a nested case-control study including 332 eczema cases and 332 controls was conducted. Umbilical cord blood and stools were collected for OPEs detection and gut microbiota sequencing, separately. Eczema cases were identified using the International Study of Asthma and Allergies in Childhood core questionnaire and clinical diagnosis. The environmental risk score (ERS) for OPEs was developed to quantify OPEs burden. Conditional logistic regression models, multivariate analysis by linear models, negative-binomial hurdle regression, and mediation analysis were employed. Tris(2-butoxyethyl) phosphate (TBP), tris (2-butoxy ethyl) phosphate (TBEP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) had detection rates > 50 %, with median concentrations ranged from 0.11 to 2.71 μg/L. TBP (OR = 1.12, 95 % CI: 1.01, 1.25), TDCPP (OR = 1.32, 95 % CI: 1.09, 1.59), and ERS (OR = 6.44, 95 % CI: 3.47, 11.94) were associated with elevated risk of eczema. OPEs exposure was correlated with increased alpha diversity and the abundance of several pathogenic bacteria, such as Klebsiella. Negative associations were observed between OPEs exposure and the abundances of Lachnospiraceae genera. Additionally, a positive correlation was identified between alpha diversity and the risk of eczema during childhood. Alpha diversity indices and Lachnospiraceae serve as significant mediators in this relationship. Results of this study indicate that prenatal exposure to OPEs is linked to an elevated risk of eczema and gut microbiota dysbiosis, potentially contributing to immunotoxicity of OPEs during early life.
Collapse
Affiliation(s)
- Yuhan Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Ling Lin
- Nantong Center for Disease Control & Prevention, Jiangsu 226007, China
| | - Yang Liu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Yingya Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Zhang X, Cao Y, Yang X, Ma F, Zhang H, Xiao W. Association between exposure to per- and polyfluoroalkyl substances and kidney function: a population study. Front Med (Lausanne) 2025; 12:1569031. [PMID: 40206474 PMCID: PMC11979136 DOI: 10.3389/fmed.2025.1569031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
Background The relationship between per- and polyfluoroalkyl substances (PFAS) and kidney function markers remains uncertain. Methods We used PFAS detection data from 5,947 adults in NHANES 2005-2012. We employed multivariable linear regression models to examine associations between PFAS and estimated glomerular filtration rate (eGFR), urine creatinine (UCR), urine albumin (UAL), and urine albumin/creatinine ratio (UACR). To capture non-linear trends, restricted cubic splines were applied. The WQS (weighted quantile sum) and Q-gcomp (quantile g computation) models were used for the mixture analysis. Subgroup analyses were conducted to explore potential interactions. Results Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), 2-(N-methyl-perfluorooctane sulfonamido) acetic acid (N-MEFOSAA), and perfluorononanoic acid (PFNA) were negatively related to eGFR (β = -2.04, 95% CI = -2.85, -1.23; β = -0.97, 95% CI = -1.78, -0.16; β = -1.50, 95% CI = -2.24, -0.76; β = -0.49, 95% CI = -1.25, 0.27; β = -0.68, 95% CI = -1.46, 0.10). PFOA and PFOS were positive associated with UCR (β = 10.61, 95% CI = -1.89, 23.11; β = 12.98, 95% CI = 0.56, 25.41). PFOA, PFOS, PFHxS, PFNA, and PFUA were negatively related to UAL (β = -0.53, 95% CI = -0.73, -0.32; β = -0.39, 95% CI = -0.59, -0.18; β = -0.59, 95% CI = -0.78, -0.40; β = -0.42, 95% CI = -0.65, -0.19; β = -0.04, 95% CI = -0.22, 0.14). PFDA, PFOA, PFOS, PFHxS, and PFNA are significantly inversely associated with UACR (β = -0.01, 95% CI = -0.16, 0.14; β = -0.52, 95% CI = -0.69, -0.35; β = -0.50, 95% CI = -0.67, -0.33; β = -0.49, 95% CI = -0.64, -0.33; β = -0.27, 95% CI = -0.44, -0.10). Nonlinear relationships were found between PFAS and all kidney function indicators. Mixed PFAS exposure showed a negative association with eGFR, UAL and UACR, while showed a positive relationship with UCR. Interactions between PFASs and most subgroups were observed. Conclusion Our study revealed significant associations between PFAS exposure and various kidney function indicators. These findings provide an epidemiological perspective on how PFAS may lead to kidney dysfunction.
Collapse
Affiliation(s)
- Xue Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongping Cao
- Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Xiaona Yang
- Linping District Center for Disease Control and Prevention, Linping District Health Supervision Institute, Hangzhou, Zhejiang, China
| | - Fei Ma
- Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Hengyang Zhang
- Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Wenwen Xiao
- Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
4
|
Batzella E, Fletcher T, Pitter G, da Re F, Russo F, di Nisio A, Canova C. Decreases in serum PFAS are associated with decreases in serum lipids: A longitudinal study on a highly exposed population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176227. [PMID: 39270861 DOI: 10.1016/j.scitotenv.2024.176227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Perfluoroalkyl substances (PFAS) are widely used, ubiquitous and highly persistent man-made chemicals. Previous cross-sectional studies have consistently linked PFAS exposure to alterations in lipid profiles. However, longitudinal investigations are preferred to mitigate issues related to reverse causation and confounding. Hence, we aimed to investigate the association between changes in serum PFAS and changes in serum lipids, while shedding light on potential modifiers of the examined relationships. METHODS We used data from a health surveillance program offered to residents of a vast area of the Veneto Region (North-Eastern Italy), who had been exposed to PFAS via contaminated drinking water until 2013. We included subjects aged ≥20 years who provided two blood samples over an average 4-year interval (n = 8101). We examined the relationships between changes in PFOA, PFOS and PFHxS and changes in total cholesterol (TC), high-density lipoprotein cholesterol (HDLC) and low-density lipoprotein cholesterol (LDL-C). Linear models were fitted for change in the natural logarithm (ln) of each lipid in relation to the change in the ln of PFAS. From the estimated regression coefficients, we calculated the predicted percentage change in the response for a ln-decrease in PFAS serum concentrations. RESULTS Overall concentrations of PFOA, PFOS, PFHxS fell by 62.1 %, 24.4 % and 35.4 % from baseline, while small increases in lipids were observed. Declines in PFAS concentrations were associated with decreases in all lipids. For a ln-decrease in PFOA HDL-C decreased by 1.99 % (95 % CI: 1.28, 2.70), TC by 1.49 % (95 % CI: 0.88, 2.10), and LDL-C by 1.40 % (95 % CI: 0.45, 2.37). CONCLUSIONS We found a positive association between changes in PFAS concentrations and changes in cholesterol levels, observing the most marked contrasts across sexes and age groups. Our findings support the reversibility of the associations identified in cross-sectional analyses, emphasizing the importance of water treatment measures in mitigating adverse health effects.
Collapse
Affiliation(s)
- Erich Batzella
- Unit of Biostatistics, Epidemiology and Public Health, Dpt. of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gisella Pitter
- Screening and Health Impact Assessment Unit, Azienda Zero-Veneto Region, Padova, Italy
| | - Filippo da Re
- Directorate of Prevention, Food Safety, and Veterinary Public Health-Veneto Region, Venice, Italy
| | - Francesca Russo
- Directorate of Prevention, Food Safety, and Veterinary Public Health-Veneto Region, Venice, Italy
| | - Andrea di Nisio
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Dpt. of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| |
Collapse
|
5
|
Zhang Q, Zhang M, Zhao C. Exposure to Per- and Polyfluoroalkyl Substances and Risk of Psoriasis: A Population-Based Study. TOXICS 2024; 12:828. [PMID: 39591006 PMCID: PMC11598214 DOI: 10.3390/toxics12110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
PFAS are a group of synthetic chemicals that have been reported to be associated with adverse health outcomes. However, the relationship of PFAS exposure with psoriasis risk has not been reported. Utilizing data from the 2003-2018 NHANES, we explored the relationship of PFAS exposure with psoriasis risk. Our study included 5370 participants and examined serum levels of five PFAS compounds: PFOA, PFOS, PFHxS, PFNA, and PFDA, along with self-reported psoriasis status. Generalized linear regression, quantile g-computation, repeated hold out WQS regression, and BKMR models were employed to assess individual and combined effects of PFAS on psoriasis risk. We found each doubling the PFOS concentration was associated with a 19% increased risk of psoriasis (OR: 1.19; 95% CI: 1.01, 1.41) in the overall population. Sex-stratified analyses indicated significant associations between PFOA and PFNA exposure and psoriasis risk in females. Mixture analyses using WQS regression indicated that PFAS mixtures were associated with an 11% increased risk of psoriasis (OR: 1.11, 95% CI: 1.01, 1.22) in females in both the negative and positive direction. BKMR analyses also indicated a positive trend of PFAS mixtures with psoriasis risk in females. Our findings indicate a possible association between PFAS exposure and psoriasis risk, particularly in females.
Collapse
Affiliation(s)
- Qing Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China;
| | - Mengyue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China;
| | - Cunxi Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China;
| |
Collapse
|
6
|
Lin CY, Huey-Jen Hsu S, Lee HL, Wang C, Sung FC, Su TC. Examining a decade-long trend in exposure to per- and polyfluoroalkyl substances and their correlation with lipid profiles: Insights from a prospective cohort study on the young Taiwanese population. CHEMOSPHERE 2024; 364:143072. [PMID: 39128777 DOI: 10.1016/j.chemosphere.2024.143072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are artificial chemicals extensively utilized in everyday products, and numerous cross-sectional epidemiological studies consistently link PFAS exposure with lipid profiles across diverse populations and age groups. In longitudinal studies, the findings also indicate a positive correlation between PFAS and lipid profiles; however, this association remains unexplored in adolescents and young adults. Notably, previous research has predominantly focused on conventional lipid biomarkers, with limited exploration of the relationship between PFAS and diverse lipoprotein subfractions. Furthermore, there is a lack of comprehensive investigation into the temporal trends in PFAS concentrations in Taiwan. To address this research gap, we conducted a prospective study following 592 adolescents and young adults (12-30 years old at enrollment) from the YOung TAiwanese Cohort (YOTA) over a duration of 10 years. During the follow-up period, we measured 11 types of PFAS and various lipid profile biomarkers (low-density lipoprotein cholesterol (LDL-C), small dense LDL-C (sdLDL-C), low-density lipoprotein triglyceride (LDL-TG), high-density lipoprotein cholesterol (HDL-C), HDL3-C, lipoprotein(a), triglyceride). Our results revealed a general decline in PFAS concentrations in the study population. Regarding the correlation between the average levels (averaged across the initial and second tracking periods) of PFAS and lipid profiles (during the second tracking period), we observed positive correlations with total cholesterol and LDL-C for perfluorononanoic acid (PFNA), perfluoroundecanoic acid (PFUdA), perfluorododecanoic acid (PFDoA), N-methylperfluorooctane sulfonamide acetic acid (N-MeFOSAA), and the sum of PFAS (sum of the 11 kinds of PFAS). Additionally, average levels of PFUdA, N-MeFOSAA, and the sum of PFAS exhibited positive associations with sdLDL-C. This study unveiled an overall decrease in PFAS concentrations and underscores a potential link between PFAS exposure and adverse changes in lipid profiles among young populations, emphasizing the need for further exploration into the mechanisms of PFAS on lipid metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Sandy Huey-Jen Hsu
- Department of Laboratory Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, 100, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung, 404, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan; School of Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
7
|
Du H, Cui L, Zhao X, Yu Z, He T, Zhang B, Fan X, Zhao M, Zhu R, Zhang Z, Li M, Li J, Oh Y, Gu N. Butylparaben induces glycolipid metabolic disorders in mice via disruption of gut microbiota and FXR signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134821. [PMID: 38850927 DOI: 10.1016/j.jhazmat.2024.134821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Butylparaben, a common preservative, is widely used in food, pharmaceuticals and personal care products. Epidemiological studies have revealed the close relationship between butylparaben and diabetes; however the mechanisms of action remain unclear. In this study, we administered butylparaben orally to mice and observed that exposure to butylparaben induced glucose intolerance and hyperlipidemia. RNA sequencing results demonstrated that the enrichment of differentially expressed genes was associated with lipid metabolism, bile acid metabolism, and inflammatory response. Western blot results further validated that butylparaben promoted hepatic lipogenesis, inflammation, gluconeogenesis, and insulin resistance through the inhibition of the farnesoid X receptor (FXR) pathway. The FXR agonists alleviated the butylparaben-induced metabolic disorders. Moreover, 16 S rRNA sequencing showed that butylparaben reduced the abundance of Bacteroidetes, S24-7, Lactobacillus, and Streptococcus, and elevated the Firmicutes/Bacteroidetes ratio. The gut microbiota dysbiosis caused by butylparaben led to decreased bile acids (BAs) production and increased inflammatory response, which further induced hepatic glycolipid metabolic disorders. Our results also demonstrated that probiotics attenuated butylparaben-induced disturbances of the gut microbiota and hepatic metabolism. Taken collectively, the findings reveal that butylparaben induced gut microbiota dysbiosis and decreased BAs production, which further inhibited FXR signaling, ultimately contributing to glycolipid metabolic disorders in the liver.
Collapse
Affiliation(s)
- Haining Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; School of Chinese Material Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lili Cui
- Key Laboratory of External Drug Delivery System and Preparation Technology, Yunnan University of Chinese Medicine, 650500, China
| | - Xinyi Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ziteng Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Tianyue He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Meimei Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ziyi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Mengcong Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jiaxin Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama 640-8441, Japan
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; School of Chinese Material Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
8
|
Zhang B, Yang Y, Li Q, Ding X, Tian M, Ma Q, Xu D. Impacts of PFOS, PFOA and their alternatives on the gut, intestinal barriers and gut-organ axis. CHEMOSPHERE 2024; 361:142461. [PMID: 38810808 DOI: 10.1016/j.chemosphere.2024.142461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/28/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
With the restricted use of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), a number of alternatives to PFOS and PFOA have attracted great interest. Most of the alternatives are still characterized by persistence, bioaccumulation, and a variety of toxicity. Due to the production and use of these substances, they can be detected in the atmosphere, soil and water body. They affect human health through several exposure pathways and especially enter the gut by drinking water and eating food, which results in gut toxicity. In this review, we summarized the effects of PFOS, PFOA and 9 alternatives on pathological changes in the gut, the disruption of physical, chemical, biological and immune barriers of the intestine, and the gut-organ axis. This review provides a valuable understanding of the gut toxicity of PFOS, PFOA and their alternatives as well as the human health risks of emerging contaminants.
Collapse
Affiliation(s)
- Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yunhui Yang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Qing Li
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Xiaolin Ding
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Mingming Tian
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Qiao Ma
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| |
Collapse
|
9
|
Zhu Y, Yang X, Song X, Jia Y, Zhang Y, Zhu L. Insights into the Enhanced Bioavailability of Per- and Polyfluoroalkyl Substances in Food Caused by Chronic Inflammatory Bowel Disease. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11912-11922. [PMID: 38934536 DOI: 10.1021/acs.est.4c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Understanding the bioavailability of per- and polyfluoroalkyl substances (PFAS) in food is essential for accurate human health risk assessment. Given the rising incidence of inflammatory bowel disease (IBD), this study aimed to investigate the impacts of IBD on the bioavailability of PFAS in food using mice models. The relative bioavailability (RBA) of PFAS was the highest in the chronic IBD mice (64.3-144%), followed by the healthy (60.8-133%) and acute IBD mice (41.5-121%), suggesting that chronic IBD enhanced the PFAS exposure risk. In vitro tests showed that the intestinal micelle stability increased as a result of reduced content of short-chain fatty acids, thus promoting the PFAS bioaccessibility in the digestive fluid of chronic IBD. Additionally, increased pathogenic and decreased beneficial bacteria in the gut of IBD groups facilitated the intestinal permeability, thus enhancing PFAS absorption. These together explained the higher RBA of PFAS in the chronic IBD. However, remarkably lower enzymatic activities suggested severely impaired digestive ability in the acute IBD, which facilitated the excretion of PFAS from feces, thus lowering the RBA. Conversely, PFAS exposure might exacerbate IBD by changing the gut microbiota structures. This study hints that individuals with chronic intestinal inflammation might have higher PFAS exposure risk than the healthy population.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xin Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaohua Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
10
|
Kosarek NN, Preston EV. Contributions of Synthetic Chemicals to Autoimmune Disease Development and Occurrence. Curr Environ Health Rep 2024; 11:128-144. [PMID: 38653907 PMCID: PMC11783219 DOI: 10.1007/s40572-024-00444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW Exposure to many synthetic chemicals has been linked to a variety of adverse human health effects, including autoimmune diseases. In this scoping review, we summarize recent evidence detailing the effects of synthetic environmental chemicals on autoimmune diseases and highlight current research gaps and recommendations for future studies. RECENT FINDINGS We identified 68 recent publications related to environmental chemical exposures and autoimmune diseases. Most studies evaluated exposure to persistent environmental chemicals and autoimmune conditions including rheumatoid arthritis (RA), systemic lupus (SLE), systemic sclerosis (SSc), and ulcerative colitis (UC) and Crohn's disease. Results of recent original research studies were mixed, and available data for some exposure-outcome associations were particularly limited. PFAS and autoimmune inflammatory bowel diseases (UC and CD) and pesticides and RA appeared to be the most frequently studied exposure-outcome associations among recent publications, despite a historical research focus on solvents. Recent studies have provided additional evidence for the associations of exposure to synthetic chemicals with certain autoimmune conditions. However, impacts on other autoimmune outcomes, particularly less prevalent conditions, remain unclear. Owing to the ubiquitous nature of many of these exposures and their potential impacts on autoimmune risk, additional studies are needed to better evaluate these relationships, particularly for understudied autoimmune conditions. Future research should include larger longitudinal studies and studies among more diverse populations to elucidate the temporal relationships between exposure-outcome pairs and to identify potential population subgroups that may be more adversely impacted by immune modulation caused by exposure to these chemicals.
Collapse
Affiliation(s)
- Noelle N Kosarek
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Emma V Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Floor 14, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Rio P, Gasbarrini A, Gambassi G, Cianci R. Pollutants, microbiota and immune system: frenemies within the gut. Front Public Health 2024; 12:1285186. [PMID: 38799688 PMCID: PMC11116734 DOI: 10.3389/fpubh.2024.1285186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Pollution is a critical concern of modern society for its heterogeneous effects on human health, despite a widespread lack of awareness. Environmental pollutants promote several pathologies through different molecular mechanisms. Pollutants can affect the immune system and related pathways, perturbing its regulation and triggering pro-inflammatory responses. The exposure to several pollutants also leads to alterations in gut microbiota with a decreasing abundance of beneficial microbes, such as short-chain fatty acid-producing bacteria, and an overgrowth of pro-inflammatory species. The subsequent intestinal barrier dysfunction, together with oxidative stress and increased inflammatory responses, plays a role in the pathogenesis of gastrointestinal inflammatory diseases. Moreover, pollutants encourage the inflammation-dysplasia-carcinoma sequence through various mechanisms, such as oxidative stress, dysregulation of cellular signalling pathways, cell cycle impairment and genomic instability. In this narrative review, we will describe the interplay between pollutants, gut microbiota, and the immune system, focusing on their relationship with inflammatory bowel diseases and colorectal cancer. Understanding the biological mechanisms underlying the health-to-disease transition may allow the design of public health policies aimed at reducing the burden of disease related to pollutants.
Collapse
Affiliation(s)
| | | | | | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
12
|
Zhou Y, Zhang L, Li Q, Wang P, Wang H, Shi H, Lu W, Zhang Y. Prenatal PFAS exposure, gut microbiota dysbiosis, and neurobehavioral development in childhood. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133920. [PMID: 38457972 DOI: 10.1016/j.jhazmat.2024.133920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Studies on the role of the gut microbiota in the associations between per- and polyfluoroalkyl substance (PFAS) exposure and adverse neurodevelopment are limited. Umbilical cord serum and faeces samples were collected from children, and the Strengths and Difficulties Questionnaire (SDQ) was conducted. Generalized linear models, linear mixed-effects models, multivariate analysis by linear models and microbiome regression-based kernel association tests were used to evaluate the associations among PFAS exposure, the gut microbiota, and neurobehavioural development. Perfluorohexane sulfonic acid (PFHxS) exposure was associated with increased scores for conduct problems and externalizing problems, as well as altered gut microbiota alpha and beta diversity. PFHxS concentrations were associated with higher relative abundances of Enterococcus spp. but lower relative abundances of several short-chain fatty acid-producing genera (e.g., Ruminococcus gauvreauii group spp.). PFHxS exposure was also associated with increased oxidative phosphorylation. Alpha and beta diversity were found significantly associated with conduct problems and externalizing problems. Ruminococcus gauvreauii group spp. abundance was positively correlated with prosocial behavior scores. Increased alpha diversity played a mediating role in the associations of PFHxS exposure with conduct problems. Our results suggest that the gut microbiota might play an important role in PFAS neurotoxicity, which may have implications for PFAS control.
Collapse
Affiliation(s)
- Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Wenwei Lu
- School of Science and Technology, Jiangnan University, Jiangsu 214122, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
Shi G, Zhu B, Wu Q, Dai J, Sheng N. Prenatal exposure to hexafluoropropylene oxide trimer acid (HFPO-TA) disrupts the maternal gut microbiome and fecal metabolome homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169330. [PMID: 38135079 DOI: 10.1016/j.scitotenv.2023.169330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Initially considered a "safe" substitute for perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been extensively used in the production of fluoropolymers for several years, leading to its environmental ubiquity and subsequent discovery of its significant bio-accumulative properties and toxicological effects. However, the specific impact of HFPO-TA on females, particularly those who are pregnant, remains unclear. In the present study, pregnant mice were exposed to 0.63 mg/kg/day HFPO-TA from gestational day (GD) 2 to GD 18. We then determined the potential effects of exposure on gut microbiota and fecal metabolites at GD 12 (mid-pregnancy) and GD 18 (late pregnancy). Our results revealed that, in addition to liver damage, HFPO-TA exposure during the specified window altered the structure and function of cecal gut microbiota. Notably, these changes showed the opposite trends at GD 12 and GD 18. Specifically, at GD 12, HFPO-TA exposure primarily resulted in the down-regulation of relative abundances within genera from the Bacteroidetes and Proteobacteria phyla, as well as associated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. With extended exposure time, the down-regulated genera within Proteobacteria became significantly up-regulated, accompanied by corresponding up-regulation of human disease- and inflammation-associated pathways, suggesting that HFPO-TA exposure can induce intestinal inflammation and elevate the risk of infection during late pregnancy. Pearson correlation analysis revealed that disturbances in the gut microbiota were accompanied by abnormal fecal metabolite. Additionally, alterations in hormones related to the steroid hormone biosynthesis pathway at both sacrifice time indicated that HFPO-TA exposure might change the steroid hormone level of pregnant mice, but need further study. In conclusion, this study provides new insights into the mechanisms underlying HFPO-TA-induced adverse effects and increases awareness of potential persistent health risks to pregnant females.
Collapse
Affiliation(s)
- Guohui Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Ji H, Guo M, Yang F, Liang H, Wang Z, Chen Y, Zheng H, Miao M, Yuan W. Prenatal per- and polyfluoroalkyl substances exposure and gut microbiota of infants: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115891. [PMID: 38159339 DOI: 10.1016/j.ecoenv.2023.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) has been reported to be linked to a series of adverse health outcomes in mothers and their children. As the gut microbiota is a sensitive biomarker for assessing the toxicity of environmental contaminants, this study attempted to investigate whether prenatal PFASs exposure was associated with the gut microbiota of infants. Based on the Shanghai-Minhang Birth Cohort Study, this prospective cohort study included 69 mother-infant pairs. Fasting blood samples were collected from pregnant women for the PFASs assay. We collected fecal samples of infants at 1 year of age and analyzed the V3-V4 hypervariable region of the bacterial 16 S rRNA gene by high-throughput sequencing. Among the detected 11 PFASs, the concentration of perfluorooctanoic acid (22.19 ng/mL) was the highest, followed by perfluorooctane sulfonic acid (12.08 ng/mL). Compared with infants whose mothers' total PFASs concentrations during pregnancy were at the 40th percentile or lower (reference group), the species richness and diversity of microbiota were lower in infants prenatally exposed to a high level of PFASs (the sum of PFASs concentrations above the 60th percentile). Prenatal exposure to PFASs was associated with a higher proportion of Acidaminococcaceae, Acidaminococcus, Megamonas, Megasphaera micronuciformis and Megamonas funiformis in infants. The changes of the species have been suggested to be associated with immune and metabolic dysfunction in humans. Functional alterations of gut microbiota due to PFASs exposure were dominated by an enrichment of butanoate metabolism. Our preliminary findings may shed light on the potential role of the microbiota underlying the well-known impact of prenatal PFASs exposure on health outcomes of humans in later life.
Collapse
Affiliation(s)
- Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Fen Yang
- Department of Global Public Health, Karolinska Institutet, Sweden
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
15
|
Niu H, Xu M, Tu P, Xu Y, Li X, Xing M, Chen Z, Wang X, Lou X, Wu L, Sun S. Emerging Contaminants: An Emerging Risk Factor for Diabetes Mellitus. TOXICS 2024; 12:47. [PMID: 38251002 PMCID: PMC10819641 DOI: 10.3390/toxics12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Emerging contaminants have been increasingly recognized as critical determinants in global public health outcomes. However, the intricate relationship between these contaminants and glucose metabolism remains to be fully elucidated. The paucity of comprehensive clinical data, coupled with the need for in-depth mechanistic investigations, underscores the urgency to decipher the precise molecular and cellular pathways through which these contaminants potentially mediate the initiation and progression of diabetes mellitus. A profound understanding of the epidemiological impact of these emerging contaminants, as well as the elucidation of the underlying mechanistic pathways, is indispensable for the formulation of evidence-based policy and preventive interventions. This review systematically aggregates contemporary findings from epidemiological investigations and delves into the mechanistic correlates that tether exposure to emerging contaminants, including endocrine disruptors, perfluorinated compounds, microplastics, and antibiotics, to glycemic dysregulation. A nuanced exploration is undertaken focusing on potential dietary sources and the consequential role of the gut microbiome in their toxic effects. This review endeavors to provide a foundational reference for future investigations into the complex interplay between emerging contaminants and diabetes mellitus.
Collapse
Affiliation(s)
- Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Manjin Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Pengcheng Tu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Yunfeng Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
16
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|