1
|
Zhang Y, Ji X, Chang K, Yin H, Zhao M, Zhao L. The regulatory effect of chitooligosaccharides on islet inflammation in T2D individuals after islet cell transplantation: the mechanism behind Candida albicans abundance and macrophage polarization. Gut Microbes 2025; 17:2442051. [PMID: 39694919 DOI: 10.1080/19490976.2024.2442051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Islet cell transplantation (ICT) represents a promising therapeutic approach for addressing diabetes mellitus. However, the islet inflammation during transplantation significantly reduces the surgical outcome rate, which is related to the polarization of macrophages. Chitooligosaccharides (COS) was previously reported which could modulate the immune system, alleviate inflammation, regulate gut microecology, and repair the intestinal barrier. Therefore, we hypothesized COS could relieve pancreatic inflammation by regulating macrophage polarization and gut microbiota. First, 18S rDNA gene sequencing was performed on fecal samples from the ICT population, showing abnormally increased amount of Candida albicans, possibly causing pancreatic inflammation. Functional oligosaccharides responsible for regulating macrophage polarization and inhibiting the growth of Candida albicans were screened. Afterwards, human flora-associated T2D (HMA-T2D) mouse models of gut microbiota were established, and the ability of the selected oligosaccharides were validated in vivo to alleviate inflammation and regulate gut microbiota. The results indicated that ICT significantly decreased the alpha diversity of gut fungal, altered fungal community structures, and increased Candida albicans abundance. Moreover, Candida albicans promoted M1 macrophage polarization, leading to islet inflammation. COS inhibited Candida albicans growth, suppressed the MyD88-NF-κB pathway, activated STAT6, inhibited M1, and promoted M2 macrophage polarization. Furthermore, COS-treated HMA-T2D mice displayed lower M1 macrophage differentiation and higher M2 macrophage numbers. Additionally, COS also enhanced ZO-1 and Occludin mRNA expression, reduced Candida albicans abundance, and balanced gut microecology. This study illustrated that COS modulated macrophage polarization via the MyD88/NF-κB and STAT6 pathways, repaired the intestinal barrier, and reduced Candida albicans abundance to alleviate islet inflammation.
Collapse
Affiliation(s)
- Yayu Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Kunlin Chang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hao Yin
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, China
| |
Collapse
|
2
|
Li R, Feng K, Du Y, Fan X, Zhang Y, Wang C, Zhang J, Ahmad S, Amna R, Liu C, Niu R, Sun Z. Identification of potential natural compounds to relieve deoxynivalenol-induced intestinal damage based on bioinformatics and reverse network pharmacology. Food Chem Toxicol 2025; 202:115551. [PMID: 40379078 DOI: 10.1016/j.fct.2025.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Deoxynivalenol (DON) is one of the most prevalent mycotoxins globally, causing a variety of toxic effects in both humans and animals. Numerous studies have demonstrated the considerable efficacy of natural medicines in treating and preventing DON-induced damage. Therefore, it is crucial to predict and screen highly efficient natural medicines and further investigate their mechanisms. In this study, we employed bioinformatics approaches to explore DON's pathogenic mechanism and targets. Utilizing drug prediction and screening databases, we conducted reverse prediction and screening of differentially expressed genes (DEGs) and key targets to obtain optimal natural medicines, ultimately identifying quercetin as the most promising candidate. Subsequently, network pharmacology analyses revealed that quercetin alleviated DON-induced intestinal damage by modulating inflammatory targets and the TNF/NF-κB pathways. Our experiments demonstrated that quercetin treatment improved DON-induced growth inhibition and intestinal damage in mice, while successfully reversing the abnormal expression of key target genes. Furthermore, quercetin restored the intestinal microbial imbalance induced by DON. Overall, these findings suggest that quercetin is a promising natural medicine capable of alleviating DON-induced intestinal dysfunction by regulating inflammation-related factor levels and gut microbiota, thereby providing new insights for the future prevention and treatment of mycotoxins.
Collapse
Affiliation(s)
- Rui Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Kang Feng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Yu Du
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Xuebin Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Yaqin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Chenli Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Jingdi Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Sheraz Ahmad
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Rafique Amna
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Ci Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
3
|
Cho MY, Eom JH, Choi EM, Yang SJ, Lee D, Kim YY, Kim HS, Hwang I. Recent advances in therapeutic probiotics: insights from human trials. Clin Microbiol Rev 2025:e0024024. [PMID: 40261032 DOI: 10.1128/cmr.00240-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
SUMMARYRecent advances in therapeutic probiotics have shown promising results across various health conditions, reflecting a growing understanding of the human microbiome's role in health and disease. However, comprehensive reviews integrating the diverse therapeutic effects of probiotics in human subjects have been limited. By analyzing randomized controlled trials (RCTs) and meta-analyses, this review provides a comprehensive overview of key developments in probiotic interventions targeting gut, liver, skin, vaginal, mental, and oral health. Emerging evidence supports the efficacy of specific probiotic strains and combinations in treating a wide range of disorders, from gastrointestinal (GI) and liver diseases to dermatological conditions, bacterial vaginosis, mental disorders, and oral diseases. We discuss the expanding understanding of microbiome-organ connections underlying probiotic mechanisms of action. While many clinical trials demonstrate significant benefits, we acknowledge areas requiring further large-scale studies to establish definitive efficacy and optimal treatment protocols. The review addresses challenges in standardizing probiotic research methodologies and emphasizes the importance of considering individual variations in microbiome composition and host genetics. Additionally, we explore emerging concepts such as the oral-gut-brain axis and future directions, including high-resolution microbiome profiling, host-microbe interaction studies, organoid models, and artificial intelligence applications in probiotic research. Overall, this review offers a comprehensive update on the current state of therapeutic probiotics across multiple domains of human health, providing insights into future directions and the potential for probiotics to revolutionize preventive and therapeutic medicine.
Collapse
Affiliation(s)
- Mu-Yeol Cho
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | - Je-Hyun Eom
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | - Eun-Mi Choi
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | | | - Dahye Lee
- Department of Orthodontics, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Young Youn Kim
- Department of Oral and Maxillofacial Surgery, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Hye-Sung Kim
- Department of Oral and Maxillofacial Surgery, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Inseong Hwang
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| |
Collapse
|
4
|
Dong Y, Zhang L, Qiu D, Yao R, Jia H, Wang H, Zhou L, Zhang J, Zhang N. Lactobacillus murinus ZNL-13 Modulates Intestinal Barrier Damage and Gut Microbiota in Cyclophosphamide-Induced Immunosuppressed Mice. Foods 2025; 14:1416. [PMID: 40282817 PMCID: PMC12026897 DOI: 10.3390/foods14081416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Cyclophosphamide (CTX) is a widely used anticancer drug in clinical practice; however, its administration can lead to gastrointestinal damage and immune suppression. Lactobacillus murinus (L. murinus) has been shown to regulate immune cell activity and protect the gastrointestinal system, showing potential application as a functional food. The objective of this study was to investigate the effects of L. murinus ZNL-13 on CTX-induced intestinal mucosal injury and gut microbiota in mice. The results demonstrated that L. murinus ZNL-13 significantly alleviated weight loss and intestinal pathological damage. Moreover, in CTX-induced intestinal injury mice, L. murinus ZNL-13 enhanced the release of immune factors, suppressed cell apoptosis, and protected the intestinal mucosal barrier. Additionally, it activated the TLR4/NF-κB pathway, thereby promoting immune cell activity. Furthermore, L. murinus ZNL-13 contributed to the restoration of gut microbial homeostasis by increasing the relative abundance of short-chain fatty acid-producing bacteria. Taken together, this investigation highlights the potential of L. murinus ZNL-13 in protecting the intestinal barrier and enhancing immune function while laying the groundwork for its development as a novel probiotic and functional food.
Collapse
Affiliation(s)
- Yihan Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.D.); (L.Z.); (D.Q.); (R.Y.); (H.J.); (H.W.); (L.Z.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Luyao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.D.); (L.Z.); (D.Q.); (R.Y.); (H.J.); (H.W.); (L.Z.)
| | - Di Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.D.); (L.Z.); (D.Q.); (R.Y.); (H.J.); (H.W.); (L.Z.)
| | - Renxin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.D.); (L.Z.); (D.Q.); (R.Y.); (H.J.); (H.W.); (L.Z.)
| | - Haitao Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.D.); (L.Z.); (D.Q.); (R.Y.); (H.J.); (H.W.); (L.Z.)
| | - Haiyang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.D.); (L.Z.); (D.Q.); (R.Y.); (H.J.); (H.W.); (L.Z.)
| | - Luyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.D.); (L.Z.); (D.Q.); (R.Y.); (H.J.); (H.W.); (L.Z.)
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.D.); (L.Z.); (D.Q.); (R.Y.); (H.J.); (H.W.); (L.Z.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Na Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.D.); (L.Z.); (D.Q.); (R.Y.); (H.J.); (H.W.); (L.Z.)
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Wang X, Nie T, Li A, Ma J. Hesperidin mitigated deoxynivalenol-induced liver injury by inhibiting ROS/ P53/ PGC-1α-mediated disruption of mitochondrial dynamics and PANoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156747. [PMID: 40315639 DOI: 10.1016/j.phymed.2025.156747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Deoxynivalenol (DON) is a physico-chemically stable food contaminant that is difficult to destroy during food production and culinary processing. Consumption of food contaminated with DON can impair the liver's antioxidant capacity and trigger various forms of programmed cell death. Hesperidin (HDN) is a highly antioxidant flavonoid compound with excellent biological activity and is a potential drug for treating liver damage. While the various pharmacological actions of HDN have been increasingly clarified over time, its protective role and precise mechanisms in mitigating liver damage caused by DON exposure are still largely shrouded in mystery. PURPOSE AND METHODS To investigate the potential of HDN to mitigate DON-induced liver injury and elucidate its specific mechanisms of action, we established both in vitro and in vivo models of DON exposure and administered HDN intervention. RESULTS Our findings revealed that DON exposure triggered oxidative stress in the liver, DNA damage, and P53 pathway activation, resulted in mitochondrial dynamics disorder and dysfunction, and induced PANoptosis in the liver. HDN significantly attenuated these changes. Using COIP, protein-protein molecular docking, and immunofluorescence methods, we discovered that PGC-1α and P53 can connect tightly, regulating the dynamics and function of the mitochondria. In addition, we intervened in vitro using the N-acetyl-l-cysteine, the pifithrin α, and the Mito TEMPO. CONCLUSION The findings demonstrated that HDN attenuated PANoptosis induced through mtROS overproduction by inhibiting ROS/ P53/ PGC-1α-mediated mitochondrial damage, which ameliorated DON-induced liver injury.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Nie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Aqun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China.
| |
Collapse
|
6
|
Yadav P, Debnath N, Pradhan D, Mehta PK, Kumar A, Yadav ML, Yadav AK. Probiotic Lactobacillus-Derived Extracellular Vesicles: Insights Into Disease Prevention and Management. Mol Nutr Food Res 2025:e70013. [PMID: 40200671 DOI: 10.1002/mnfr.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 04/10/2025]
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as versatile and promising tools for therapeutic interventions across a spectrum of medical applications. Among these, Lactobacillus-derived extracellular vesicles (LDEVs) have garnered significant attention due to their diverse physiological functions and applications in health advancement. These LDEVs modulate host cell signaling pathways through the delivery of bioactive molecules, including nucleic acids and proteins. The immunomodulatory properties of LDEVs are important, as they have been shown to regulate the balance between pro-inflammatory and anti-inflammatory responses in various diseases. These LDEVs play a crucial role in maintaining gut homeostasis by modulating the composition and function of the gut microbiota, which has implications for health conditions, including inflammatory bowel diseases, metabolic disorders, and neurological disorders. Furthermore, LDEVs hold potential to deliver therapeutic payloads to specific tissues or organs. Engineered LDEVs can be loaded with therapeutic agents such as antimicrobial peptides or nucleic acid-based therapies to treat various diseases. By leveraging the unique properties of LDEVs, researchers can develop innovative strategies for disease prevention, treatment, and overall well-being. Thus, this review aims to provide a comprehensive overview of the therapeutic benefits of LDEVs and their implications for promoting overall well-being.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Diwas Pradhan
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Munna Lal Yadav
- Discovery Research Division, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
- Department of Zoology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| |
Collapse
|
7
|
Huang L, Wang P, Liu S, Deng G, Qi X, Sun G, Gao X, Zhang L, Zhang Y, Xiao Y, Gao T, Maitiabula G, Wang X. Gut microbiota-derived tryptophan metabolites improve total parenteral nutrition-associated infections by regulating Group 3 innate lymphoid cells. IMETA 2025; 4:e70007. [PMID: 40236767 PMCID: PMC11995168 DOI: 10.1002/imt2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 04/17/2025]
Abstract
Clinical nutritional support is recognized by Klinefner's Surgery as one of the four pivotal advancements in surgical practice during the 20th century. Surgeons regard clinical nutrition as a "life-saving" discipline, pivotal in preserving the lives of numerous critically ill patients and facilitating the success of many surgical procedures. Parenteral nutrition (PN) support serves as a crucial component of clinical nutritional therapy, while a range of complications associated with total parenteral nutrition (TPN) can significantly undermine the efficacy of patient treatment. Impaired intestinal homeostasis is strongly associated with the occurrence and progression of TPN-related infections, yet the underlying mechanisms remain poorly understood. In this study, RNA sequencing and single-cell RNA sequencing (scRNA-Seq) revealed that reduced secretion of interleukin-22 (IL-22) by intestinal Group 3 innate lymphoid cells (ILC3s) is a significant factor contributing to the onset of TPN-related infections. Additionally, through 16S ribosomal RNA (16S rRNA) gene sequencing of the gut microbiota from patients with chronic intestinal failure and metagenomic sequencing analysis of the gut microbiota from mice, we observed that TPN reduced the abundance of Lactobacillus murinus (L. murinus), while supplementation with L. murinus could promote IL-22 secretion by ILC3s. Mechanistically, L. murinus upregulates indole-3-carboxylic acid, which activates the nuclear receptor Rorγt to stimulate IL-22 secretion by ILC3s. This pathway strengthens gut barrier integrity and reduces infection susceptibility. Our findings enhance our understanding of the mechanisms driving the onset of TPN-related infections, highlighting the critical role of gut microbiota in maintaining immune homeostasis and improving clinical outcomes.
Collapse
Affiliation(s)
- Longchang Huang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Peng Wang
- Department of Digestive Disease Research CenterGastrointestinal Surgery, The First People's Hospital of FoshanFoshanChina
| | - Shuai Liu
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Guifang Deng
- Department of Clinical NutritionUnion Shenzhen Hospital of Huazhong University of Science and TechnologyShenzhenChina
| | - Xin Qi
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Guangming Sun
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Xuejin Gao
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Li Zhang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yupeng Zhang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yaqin Xiao
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Tingting Gao
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Gulisudumu Maitiabula
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Xinying Wang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| |
Collapse
|
8
|
Ji X, Ding H, Zhou F, Zhang F, Wu D. Taurine ameliorates deoxynivalenol-induced intestinal injury in piglets: Restoration of mitochondrial function linked to the PGC1α-NRF1/2 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117938. [PMID: 39986055 DOI: 10.1016/j.ecoenv.2025.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Deoxynivalenol (DON) is a prevalent foodborne contaminant present in crops, posing significant risks to food safety and public health worldwide. Mitochondria, as the primary target of DON, play a crucial role in DON-mediated gastrointestinal toxicity. Taurine, a multifunctional nutrient, has been reported to exert antioxidant and anti-inflammatory effects by modulating mitochondrial function. However, whether taurine could alleviate intestinal injury by restoring mitochondrial function under DON exposure remains unclear. To address this knowledge gap, this study systematically investigated the potential protective effects of taurine on DON-induced intestinal damage in a piglet model. Twenty-four piglets were randomly assigned to four groups for 24 days: BD group (basal diet), DON group (3 mg/kg DON-contaminated diet), DON+LT group (DON diet with 0.3 % taurine), and DON+HT group (DON diet with 0.6 % taurine). Serum samples were collected for biochemical analysis, while jejunal tissues were examined for histology, barrier function, oxidative stress, inflammation, apoptosis, mitochondrial function, as well as related gene and protein expression. The results revealed that taurine effectively restored jejunal morphology disrupted by DON, as evidenced by increases in villus height/width and the villus height to crypt depth ratio. It preserved intestinal barrier integrity, reflected by reductions in diamine oxidase and D-lactate levels, alongside increased expression of genes and proteins related to intestinal mucus and mechanical barrier function. Furthermore, taurine mitigated intestinal oxidative stress by reducing reactive oxygen species, 8-hydroxydeoxyguanosine, and malondialdehyde levels, while enhancing antioxidant defenses. It also alleviated inflammation by suppressing pro-inflammatory cytokines and attenuated intestinal epithelial apoptosis through mitochondrial caspase-dependent and apoptosis-inducing factor-mediated pathways. Intriguingly, taurine improved the damaged mitochondrial structure and functionality within the intestinal epithelium irritated by DON. This improvement included enhanced respiratory chain complex activity, increased ATP levels, and mtDNA copy number. Additionally, taurine regulated gene expression related to mitochondrial respiration, fusion, fission, and autophagy. Simultaneously, taurine reversed the DON-induced inhibition of the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α)-nuclear respiratory factor 1/2 (NRF1/2) axis, a critical pathway regulating mitochondrial biogenesis, respiratory function, and oxidative stress responses. Correlation analysis revealed significant associations between the PGC1α-NRF1/2 axis and mitochondrial function, as well as correlations with intestinal health parameters, including barrier function, redox status, inflammation, and apoptosis. In summary, this study provides the first evidence that dietary taurine supplementation effectively alleviates intestinal injury in DON-challenged piglets through mitochondrial restoration, which is strongly associated with the reactivation of the PGC1α-NRF1/2 axis. Our findings highlight the potential of mitochondrial-targeted therapies to mitigate gastrointestinal toxicity caused by the foodborne contaminant DON in both humans and animals.
Collapse
Affiliation(s)
- Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hongyan Ding
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Fen Zhou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China.
| | - Dong Wu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
9
|
Wang Y, Liang Y, Huang Y, Wang W, Long X, Jiang L, Cheng T, Du J, Luo X. The mechanism of tea tree oil regulating the damage of hydrogen sulfide to spleen and intestine of chicken. Poult Sci 2025; 104:104605. [PMID: 39626606 PMCID: PMC11652936 DOI: 10.1016/j.psj.2024.104605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 01/25/2025] Open
Abstract
Intensification of poultry industry has led to a surge in animal product output, but this has also revealed issues with environmental management in poultry houses, particularly the harmful effects of high hydrogen sulfide (H2S) levels on poultry health. The study aimed to assess the therapeutic impact of tea tree oil (TTO) on H2S-induced spleen and intestinal injuries in chickens. A total of 240 one-day-old Lohmann Brown chicks were randomly divided into three groups: the control group (CON), the H2S exposure group (AVG), and the TTO treatment group (TTG), with four replicates, each consisting of 20 chicks. The experiment lasted 42 days. Results showed that TTO treatment alleviated tissue damage in the thymus, kidneys, spleen, and bursa of Fabricius, and improved the organ index (P < 0.05) compared with the AVG. Serum analysis revealed that TTO lowered levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), triglycerides(TG), CD3 positive CD4 positive T cells(CD3+CD4+), CD4 positive to CD8 positive Rratio(CD4+/CD8+), and alkaline phosphatase(AKP), while increasing albumin(ALB), globulin(GLO), immunoglobulin A(IgA), and immunoglobulin G(IgG) levels (P < 0.05). Intestinal findings indicated that TTO treatment enhanced villus height, reduced crypt depth, and upregulated the expression of Claudin 1, Occludin, and ZO-1 mRNA in the jejunum (P < 0.05). After TTO treatment, H2S-induced oxidative stress injury and apoptosis protein expression in spleen were improved (P < 0.05). TTO also reduced interferon-γ(INF-γ), tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) proteins (P < 0.05), while raising CD3+CD8+ T-cell subsets (P < 0.05). Compared with CON, TTO treatment alleviated serum biochemical disorders and intestinal damage caused by H2S exposure and restored them to normal (P > 0.05). In conclusion, TTO can improve spleen and intestinal function and reduce the effects of H2S on growth performance and health of chickens.
Collapse
Affiliation(s)
- Yachao Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China; Biomass Center, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China.
| | - Yilei Liang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China; Biomass Center, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China
| | - Yan Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China; Biomass Center, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China
| | - Wei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China; Biomass Center, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China
| | - Xiaoyan Long
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China; Biomass Center, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China
| | - Li Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China
| | - Tingting Cheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China; Biomass Center, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China
| | - Jinfeng Du
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China
| | - Xuegang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China; Biomass Center, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, PR China
| |
Collapse
|
10
|
Chen Q, Ma L, Wen Y, Lyu W, Yu M, Yang H, Xiao Y. The Effect of Clostridium butyricum-Derived Lipoteichoic Acid on Lipopolysaccharide-Stimulated Porcine Intestinal Epithelial Cells. Vet Med Sci 2025; 11:e70157. [PMID: 39749788 PMCID: PMC11696525 DOI: 10.1002/vms3.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Clostridium butyricum is a probiotic widely used in animal husbandry, and there is evidence to suggest that it can alleviate intestinal inflammation in pigs and may be related to its lipoteichoic acid (LTA), but the mechanism is still unclear. OBJECTIVE This study aimed to determine the regulatory effect and potential mechanism of C. butyricum LTA on LPS-stimulated inflammation in intestinal porcine epithelial line-J2 (IPEC-J2). METHODS IPEC-J2 cells were treated with LPS and different concentrations of LTA (0.05, 0.1 and 0.15 mM). After treatment of 0.5, 1.5 and 4.5 h, the cell culture media were collected for the measurement of TNF-α and IL-10 by using ELISA kits, and the cells were collected for RT-qPCR and Western blotting detections. Further elucidating the pathway of LTA regulating IL-10 and TNF-α gene expression by inhibiting key proteins in the toll-like receptor pathway with antagonists C34, PDTC, SB230580 and U0126. RESULTS High-dose LTA significantly promoted the secretion of the anti-inflammatory factor IL-10 in IPEC-J2 cells, and inhibited the expression and secretion of pro-inflammatory TNF-α in the short term. LTA inhibited the gene expression of TLR4 in LPS-stimulated cells and reduced the protein phosphorylation levels of p38, ERK1/2 and p65. The inhibition of TLR4, p38, ERK1/2 and p65 reduced the TNF-α gene expression caused by LPS; LTA increased TLR2 gene expression, inhibition of p38, ERK and p65 rather than TLR4 reduced the IL-10 gene expression. CONCLUSION Our study found that C. butyricum LTA was an important component of C. butyricum regulating the inflammatory response of IPEC-J2 cells. LTA mainly reduced the expression of TNF-α by inhibiting TLR4, while stimulating TLR2 increased the expression of IL-10. Downstream p65, p38 and ERK1/2 were involved in regulating both TNF-α and IL-10. However, TLR4 was only related to the increase in TNF-α caused by LPS and not to the increase in IL-10 caused by LTA. Our work supplemented the probiotic mechanism of C. butyricum and provided a theoretical basis for the application of C. butyricum LTA.
Collapse
Affiliation(s)
- Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsInstitute of Agro‐Product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsInstitute of Agro‐Product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yang Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsInstitute of Agro‐Product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsInstitute of Agro‐Product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Minjie Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsInstitute of Agro‐Product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsInstitute of Agro‐Product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsInstitute of Agro‐Product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
11
|
Hu ZY, Yang SJ, Chang YH, Wang XQ, Liu RQ, Jiang FW, Chen MS, Wang JX, Liu S, Zhu HM, Shi YS, Zhao Y, Li JL. AHR activation relieves deoxynivalenol-induced disruption of porcine intestinal epithelial barrier functions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136095. [PMID: 39395393 DOI: 10.1016/j.jhazmat.2024.136095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Mycotoxins are ubiquitous natural pollutants that pose a serious threat to public health. Deoxynivalenol (DON) as one of the most prominent mycotoxins has a noticeable adverse effect on intestinal barrier function, which depends on the intestinal barrier integrity. However, the potential mechanisms and effective therapeutic strategies remain unclear. Aryl hydrocarbon receptor (AHR) has been implicated in the modulation of intestinal barrier function and inflammation. The study aims to investigate the unique role of AHR in mediating DON-induced intestinal epithelial barrier function. In the current study, we revealed that DON triggered mitochondrial structural damage and functional impairment, leading to oxidative stress and apoptosis in porcine jejunal epithelial cells (IPEC-J2). DON altered the integrity of IPEC-J2 cells by disrupting the distribution and function of tight junction proteins. Additionally, DON activated TNF-α/NF-κB/MLCK signaling pathway, thereby eliciting inflammatory response. Notably, DON inhibited AHR nuclear translocation and attenuated xenobiotic response element promoter activity and its target genes. However, overexpression of AHR mitigated DON-induced disruption of intestinal epithelial barrier functions by suppressing TNF-α/NF-κB/MLCK pathway in IPEC-J2 cells. Our findings indicate that AHR regulates intestinal epithelial barrier function and therefore is a novel therapeutic molecule for intestinal disorders.
Collapse
Affiliation(s)
- Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shang-Jia Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan-Hang Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui-Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
12
|
Wei J, Su J, Wang G, Li W, Wen Z, Liu H. Chitooligosaccharides improves intestinal mucosal immunity and intestinal microbiota in blue foxes. Front Immunol 2024; 15:1506991. [PMID: 39628477 PMCID: PMC11611864 DOI: 10.3389/fimmu.2024.1506991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Objective Gut health is critical to the health of the host. This study was conducted to investigate the effects of Chitooligosaccharides (COS) on intestinal morphology, intestinal barrier, intestinal immunity and cecum microbiota of blue foxes. Methods Seventy-two 125-day-old blue foxes were randomly divided into basal diet (BD) group, 200 ppm COS1 (1.5 kDa) group and 200 ppm COS2 (3 kDa) group for 8 weeks. Results We elucidated that dietary COS1 supplementation promoted the development of intestinal villus morphology in blue foxes. Importantly, COS1 increased the number of goblet cells in duodenum, jejunum and ileum by 27.71%, 23.67%, 14.97% and S-IgA secretion in duodenum, jejunum and ileum by 71.59% and 38.56%, and up-regulate the expression of Occludin and ZO-1 by 50.18% and 148.62%, respectively. Moreover, COS1 promoted the pro-inflammatory and anti-inflammatory balance of small intestinal mucosa, and increased the diversity of cecum microbiota of blue foxes, especially Lactobacillus_agilis and Lactobacillus_murinus, and up-regulated the signaling pathways related to polysaccharide decomposition and utilization. Conclusion Here, we present dietary COS1 (1.5 kDa) can promote intestinal villus development, enhance intestinal barrier function, regulate intestinal immune balance and cecum microbiota homeostasis.
Collapse
Affiliation(s)
- Jiali Wei
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Su
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guiwu Wang
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wei Li
- Technological Innovation Center for Fur Animal Breeding of Hebei, Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | | | - Huitao Liu
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
13
|
Kowalik K, Kulig K, Karnas E, Barczyk-Woznicka O, Zuba-Surma E, Pyza E, Rapala-Kozik M, Karkowska-Kuleta J. Extracellular vesicles of Lactiplantibacillus plantarum PCM 2675 and Lacticaseibacillus rhamnosus PCM 489: an introductory characteristic. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:580-596. [PMID: 39811727 PMCID: PMC11725429 DOI: 10.20517/evcna.2024.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025]
Abstract
Aim: Extracellular vesicles (EVs) are involved in intercellular and interkingdom communication in the complex communities that constitute the niche-specific microbiome of the colonized host. Therefore, studying the structure and content of EVs produced by resident bacteria is crucial to understanding their functionality and impact on the host and other microorganisms. Methods: Bacterial EVs were isolated by differential centrifugation, their size and concentration were measured by transmission electron microscopy and nanoparticle tracking analysis, and the cargo proteins were identified by liquid chromatography coupled to tandem mass spectrometry. The cytotoxicity of bacterial EVs was tested using the human epithelial cell line A549 and an in vivo model of Galleria mellonella larvae. Results: The isolation and preliminary characteristics of EVs from two strains of lactic acid bacteria - Lactiplantibacillus plantarum PCM 2675 and Lacticaseibacillus rhamnosus PCM 489 - were presented, confirming the production of vesicular structures with sizes in the range of 50-170 nm for L. plantarum and 80-250 nm for L. rhamnosus. In addition, various proteins were identified within EVs cargo, with distinct locations of origin, including membrane, cytoplasmic and extracellular proteins, and with diverse functions, including enzymes with confirmed proteolytic activity. Furthermore, bacterial EVs did not show statistically significant cytotoxicity to the host under the tested conditions. Conclusions: A better understanding of the composition and functionality of bacterial EVs may contribute to their future effective use in supporting human health.
Collapse
Affiliation(s)
- Katarzyna Kowalik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków 30-387, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków 30-387, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
14
|
Zhang Y, Song M, Fan J, Guo X, Tao S. Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. J Anim Sci Biotechnol 2024; 15:149. [PMID: 39506860 PMCID: PMC11542448 DOI: 10.1186/s40104-024-01102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024] Open
Abstract
Probiotic extracellular vesicles (pEVs) are biologically active nanoparticle structures that can regulate the intestinal tract through direct or indirect mechanisms. They enhance the intestinal barrier function in livestock and poultry and help alleviate intestinal diseases. The specific effects of pEVs depend on their internal functional components, including nucleic acids, proteins, lipids, and other substances. This paper presents a narrative review of the impact of pEVs on the intestinal barrier across various segments of the intestinal tract, exploring their mechanisms of action while highlighting the limitations of current research. Investigating the mechanisms through which probiotics operate via pEVs could deepen our understanding and provide a theoretical foundation for their application in livestock production.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Mengzhen Song
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Xuming Guo
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
15
|
Mi J, Tong Y, Zhang Q, Wang Q, Wang Y, Wang Y, Lin G, Ma Q, Li T, Huang S. Alginate Oligosaccharides Enhance Gut Microbiota and Intestinal Barrier Function, Alleviating Host Damage Induced by Deoxynivalenol in Mice. J Nutr 2024; 154:3190-3202. [PMID: 39357672 DOI: 10.1016/j.tjnut.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Alginate oligosaccharides (AOS) exhibits notable effects in terms of anti-inflammatory, antibacterial, and antioxidant properties. Deoxynivalenol (DON) has the potential to trigger intestinal inflammation by upregulating pro-inflammatory cytokines and apoptosis, thereby compromising the integrity of the intestinal barrier function and perturbing the balance of the gut microbiota. OBJECTIVES We assessed the impact of AOS on mitigating DON-induced intestinal damage and systemic inflammation in mice. METHODS After a 1-wk acclimatization period, the mice were divided into 4 groups. For 3 wk, the AOS and AOS + DON groups were gavaged daily with 200 μL of AOS [200 mg/kg body weight (BW)], whereas the CON and DON groups received an equivalent volume of sterile Phosphate-Buffered Saline (PBS). Subsequently, for 1 wk, the DON and AOS + DON groups received 100 μL of DON (4.8 mg/kg BW) daily, whereas the control (CON) and AOS groups continued receiving PBS. RESULTS After administering DON via gavage to mice, there was a significant decrease (P < 0.05) in body weights compared with the CON group. Interestingly, AOS exhibited a tendency to mitigate this weight loss in the AOS + DON group. In the feces of mice treated with both AOS and DON, the concentration of DON significantly increased (P < 0.05) compared with the DON group alone. Histological analysis revealed that DON exposure caused increased intestinal damage, including shortened villi and eroded epithelial cells, which was ameliorated by presupplementation with AOS, alleviating harm to the intestinal barrier function. In both jejunum and colon tissues, DON exposure significantly reduced (P < 0.05) the expression of tight junction proteins (claudin and occludin in the colon) and the mucin protein mucin 2, compared with the CON group. Prophylactic administration of AOS alleviated these reductions, thereby improving the expression levels of these key proteins. Additionally, AOS supplementation protected DON-exposed mice by increasing the abundance of probiotics such as Bifidobacterium, Faecalibaculum, and Romboutsia. These gut microbes are known to enhance (P < 0.05) anti-inflammatory responses and the production of short-chain fatty acids (SCFAs), including total SCFAs, acetate, and valerate, compared with the DON group. CONCLUSIONS This study unveils that AOS not only enhances gut microbiota and intestinal barrier function but also significantly mitigates DON-induced intestinal damage.
Collapse
Affiliation(s)
- Jinqiu Mi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yaoyi Tong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiyue Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China; College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qingfeng Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China; School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Tiantian Li
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China.
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China.
| |
Collapse
|
16
|
Du X, Zhang M, Wang R, Zeng Z, Zhao W, Fang B, Lan H, Hung W, Gao H. Bifidobacterium lactis-Derived Vesicles Attenuate Hippocampal Neuroinflammation by Targeting IL-33 to Regulate FoxO6/P53 Signaling. Nutrients 2024; 16:3586. [PMID: 39519420 PMCID: PMC11547434 DOI: 10.3390/nu16213586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hippocampal Neuroinflammation (HNF) is a critical driver of cognitive impairment. The lipopolysaccharide (LPS) accumulate amyloid beta (Aβ) and lead to HNF. The Bifidobacterium lactis (BL) 99 have anti-inflammatory ability. However, whether BL99-derived microbiota-derived vesicles (MV) could alleviate LPS-induced HNF remains unclear. METHODS To investigate, we used ultrafiltration with ultracentrifuge to extract BL99-derived-MV (BL99-MV). We used hippocampal neuronal HT22 cells (HT22) to establish the LPS-induced HNF model, and explored whether BL99-MV alleviate LPS-induced HNF. RESULTS The confocal microscopy showed that BL99-MV were taken up by HT22 and reduced the oxidative stress (ROS) level. The PCR showed that BL99-MV up-regulate IL-10 level, and down-regulate TNF-α, IL-1β, and IL-6. Transcriptomic analysis revealed 4127 differentially expressed genes, with 2549 genes upregulated and 1578 genes downregulated in the BL99-MV group compared to the LPS group. Compared to the LPS group, BL99-MV decreased FoxO6, IL-33, P53, and NFκB expression, but increased FoxO1 and Bcl2 expression. The WB showed that BL99-MV modulated NFκB, FoxO6, P53, Caspase9, and Caspase3 protein expression by reducing IL-33 expression in HT22. The findings demonstrated IL-33 as a regulator for FoxO6/P53 signaling. CONCLUSIONS Here, we hypothesized that BL99-MV alleviated LPS-induced HNF to promote HT22 survival and synaptic development by regulating FoxO6/P53 signaling by targeting IL-33.
Collapse
Affiliation(s)
- Xiaoyu Du
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (M.Z.)
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (M.Z.)
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (W.Z.); (B.F.)
| | - Zhaozhong Zeng
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (Z.Z.); (H.L.)
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Wen Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (W.Z.); (B.F.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (W.Z.); (B.F.)
| | - Hanglian Lan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (Z.Z.); (H.L.)
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Weilian Hung
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (Z.Z.); (H.L.)
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (M.Z.)
| |
Collapse
|
17
|
Lei Q, Divakarla SK, Winsley T, Roux S, Chrzanowski W. Bioprocessing strategies for enhanced probiotic extracellular vesicle production: culture condition modulation. Front Bioeng Biotechnol 2024; 12:1441552. [PMID: 39280339 PMCID: PMC11392866 DOI: 10.3389/fbioe.2024.1441552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Probiotic extracellular vesicles are biochemically active structures responsible for biological effects elicited by probiotic bacteria. Lactobacillus spp., which are abundant in the human body (e.g., gut), are known to have anti-inflammatory and antimicrobial properties, and are commonly used in food products, supplements, and in discovery research. There is increasing evidence that Lactobacillus-derived extracellular vesicles (LREVs) have potent immunomodulatory capacity that is superior to probiotics themselves. However, key mechanistic insights into the process that controls production and thus, the function of LREVs, are lacking. Currently, it is unknown how the probiotic culture microenvironment orchestrates the type, yield and function of LREVs. Here, we investigated how multifactor modulation of the biomanufacturing process controls the yield and biological functionality of the LREVs. To achieve this, we selected Lacticaseibacillus rhamnosus as the candidate probiotic, initially cultivated under traditional culture conditions, i.e., 100% broth concentration and pH 5.5. Subsequently, we systematically modified the culture conditions of the probiotic by adjusting three critical process parameters: (1) culture medium pH (pH 3.5, 5.5 and 7.5), (2) growth time (48 and 72 h), and (3) broth concentration (50% and 10% of original broth concentration). EVs were then isolated separately from each condition. The critical quality attributes (CQA) of LREVs, including physical characteristics (size, distribution, concentration) and biological composition (protein, carbohydrate, lipid), were analysed. Functional impacts of LREVs on human epidermal keratinocytes and Staphylococcus aureus were also assessed as CQA. Our findings show that the production of LREVs is influenced by environmental stresses induced by the culture conditions. Factors like broth concentration, pH levels, and growth time significantly impact stress levels in L. rhamnosus, affecting both the production and composition of LREVs. Additionally, we have observed that LREVs are non-toxicity for keratinocytes, the major cell type of the epidermis, and possess antimicrobial properties against S. aureus, a common human skin pathogen. These properties are prerequisites for the potential application of EVs to treat skin conditions, including infected wounds. However, the functionality of LREVs depends on the culture conditions and stress levels experienced by L. rhamnosus during production. Understanding this relationship between the culture microenvironment, probiotic stress response, and LREV characteristics, can lead to the biomanufacturing of customised probiotic-derived EVs for various medical and industrial applications.
Collapse
Affiliation(s)
- Qingyu Lei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, VIC, Australia
| | - Shiva Kamini Divakarla
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, VIC, Australia
- BiomeCentric PTY LTD., Molendinar, QLD, Australia
| | | | - Shaun Roux
- BiomeCentric PTY LTD., Molendinar, QLD, Australia
| | - Wojciech Chrzanowski
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, VIC, Australia
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Division of Clinical Immunology, Karolinska Institute, Stockholm, Sweden
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Wang Y, Zhang M, Li K, Zhang C, Tian H, Luo Y. Investigation of Deoxynivalenol Contamination in Local Area and Evaluation of Its Multiple Intestinal Toxicity. Toxins (Basel) 2024; 16:353. [PMID: 39195763 PMCID: PMC11359542 DOI: 10.3390/toxins16080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium fungi widespread in wheat, corn, barley and other grain crops, posing the potential for being toxic to human and animal health, especially in the small intestine, which is the primary target organ for defense against the invasion of toxins. This study firstly investigated DON contamination in a local area of a wheat production district in China. Subsequently, the mechanism of DON toxicity was analyzed through cellular molecular biology combining with intestinal flora and gene transcription analysis; the results indicated that DON exposure can decrease IPEC-J2 cell viability and antioxidant capacity, stimulate the secretion and expression of proinflammatory factors, destroy the gut microbiota and affect normal functions of the body. It is illustrated that DON could induce intestinal damage through structural damage, functional injury and even intestinal internal environment disturbance, and, also, these intestinal toxicity effects are intrinsically interrelated. This study may provide multifaceted information for the treatment of intestinal injury induced by DON.
Collapse
Affiliation(s)
- Yebo Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Minjie Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Ke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Chune Zhang
- Ningxia Hui Autonomous Region Grain and Oil Product Quality Inspection Center, Yinchuan 750001, China;
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Ying Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| |
Collapse
|
19
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. The Profound Influence of Gut Microbiome and Extracellular Vesicles on Animal Health and Disease. Int J Mol Sci 2024; 25:4024. [PMID: 38612834 PMCID: PMC11012031 DOI: 10.3390/ijms25074024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The animal gut microbiota, comprising a diverse array of microorganisms, plays a pivotal role in shaping host health and physiology. This review explores the intricate dynamics of the gut microbiome in animals, focusing on its composition, function, and impact on host-microbe interactions. The composition of the intestinal microbiota in animals is influenced by the host ecology, including factors such as temperature, pH, oxygen levels, and nutrient availability, as well as genetic makeup, diet, habitat, stressors, and husbandry practices. Dysbiosis can lead to various gastrointestinal and immune-related issues in animals, impacting overall health and productivity. Extracellular vesicles (EVs), particularly exosomes derived from gut microbiota, play a crucial role in intercellular communication, influencing host health by transporting bioactive molecules across barriers like the intestinal and brain barriers. Dysregulation of the gut-brain axis has implications for various disorders in animals, highlighting the potential role of microbiota-derived EVs in disease progression. Therapeutic approaches to modulate gut microbiota, such as probiotics, prebiotics, microbial transplants, and phage therapy, offer promising strategies for enhancing animal health and performance. Studies investigating the effects of phage therapy on gut microbiota composition have shown promising results, with potential implications for improving animal health and food safety in poultry production systems. Understanding the complex interactions between host ecology, gut microbiota, and EVs provides valuable insights into the mechanisms underlying host-microbe interactions and their impact on animal health and productivity. Further research in this field is essential for developing effective therapeutic interventions and management strategies to promote gut health and overall well-being in animals.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
20
|
Wang S, Luo J, Wang H, Chen T, Sun J, Xi Q, Zhang Y. Extracellular Vesicles: A Crucial Player in the Intestinal Microenvironment and Beyond. Int J Mol Sci 2024; 25:3478. [PMID: 38542448 PMCID: PMC10970531 DOI: 10.3390/ijms25063478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
The intestinal ecological environment plays a crucial role in nutrient absorption and overall well-being. In recent years, research has focused on the effects of extracellular vesicles (EVs) in both physiological and pathological conditions of the intestine. The intestine does not only consume EVs from exogenous foods, but also those from other endogenous tissues and cells, and even from the gut microbiota. The alteration of conditions in the intestine and the intestinal microbiota subsequently gives rise to changes in other organs and systems, including the central nervous system (CNS), namely the microbiome-gut-brain axis, which also exhibits a significant involvement of EVs. This review first gives an overview of the generation and isolation techniques of EVs, and then mainly focuses on elucidating the functions of EVs derived from various origins on the intestine and the intestinal microenvironment, as well as the impacts of an altered intestinal microenvironment on other physiological systems. Lastly, we discuss the role of microbial and cellular EVs in the microbiome-gut-brain axis. This review enhances the understanding of the specific roles of EVs in the gut microenvironment and the central nervous system, thereby promoting more effective treatment strategies for certain associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.W.); (J.L.); (H.W.); (T.C.); (J.S.); (Q.X.)
| |
Collapse
|
21
|
Li M, Mao B, Tang X, Zhang Q, Zhao J, Chen W, Cui S. Lactic acid bacteria derived extracellular vesicles: emerging bioactive nanoparticles in modulating host health. Gut Microbes 2024; 16:2427311. [PMID: 39538968 PMCID: PMC11572086 DOI: 10.1080/19490976.2024.2427311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Lactic acid bacteria derived extracellular vesicles (LAB-EVs) are nano-sized and carry a variety of biological cargoes. LAB-EVs have proven to be potential mediators of intercellular communication, serving not only the parental bacteria but also the host cell in both physiology and pathology. LAB-EVs are therapeutically beneficial in various diseases through a cell-free strategy. Particularly, EVs secreted from probiotics can exert health-promoting effects on humans. Additionally, the excitement around LAB-EVs has extended to their use as nano-sized drug carriers, since they can traverse biological barriers. Nevertheless, significant challenges in terms of isolation, characterization, and safety must be addressed to ensure the clinical application of LAB-EVs. Therefore, this review emphasizes the isolation and purification methods of LAB-EVs. We also introduce the biogenesis, cargo sorting, and functions of LAB-EVs. The biological regulatory factors of LAB-EVs are summarized and discussed. Special attention is given to the interaction between LAB-EVs and the host, their ability to maintain intestinal homeostasis, and the immunity and inflammation they induce in diverse diseases. Furthermore, we summarize the characterization of LAB-EV cargoes by advanced analytical methods such as proteomics. Finally, we discuss the challenges and opportunities of LAB-EVs as a means of diagnosis and treatment in clinical translation. In conclusion, this review scrutinizes current knowledge and provides guidelines for proposing new perspectives for future research in the field of LAB-EVs.
Collapse
Affiliation(s)
- Mohan Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|