1
|
de Freitas Pereira M, Cohen D, Auer L, Aubry N, Bogeat-Triboulot MB, Buré C, Engle NL, Jolivet Y, Kohler A, Novák O, Pavlović I, Priault P, Tschaplinski TJ, Hummel I, Vaultier MN, Veneault-Fourrey C. Ectomycorrhizal symbiosis prepares its host locally and systemically for abiotic cue signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1784-1803. [PMID: 37715981 DOI: 10.1111/tpj.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade. We submitted ectomycorrhizal or non-ectomycorrhizal P. trichocarpa cuttings to short-term cessation of watering or ozone fumigation to focus on signaling networks before the onset of any physiological damage. Poplar gene expression, metabolite levels, and hormone levels were measured in several organs (roots, leaves, mycorrhizas) and integrated into networks. We discriminated the signal responses modified or maintained by ectomycorrhization. Ectomycorrhizas buffered hormonal changes in response to short-term environmental variations systemically prepared the root system for further fungal colonization and alleviated part of the root abscisic acid (ABA) signaling. The presence of ectomycorrhizas in the roots also modified the leaf multi-omics landscape and ozone responses, most likely through rewiring of the molecular drivers of photosynthesis and the calcium signaling pathway. In conclusion, P. trichocarpa-L. bicolor symbiosis results in a systemic remodeling of the host's signaling networks in response to abiotic changes. In addition, ectomycorrhizal, hormonal, metabolic, and transcriptomic blueprints are maintained in response to abiotic cues, suggesting that ectomycorrhizas are less responsive than non-mycorrhizal roots to abiotic challenges.
Collapse
Affiliation(s)
| | - David Cohen
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Lucas Auer
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| | - Nathalie Aubry
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | | | - Cyril Buré
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Nancy L Engle
- Plant Systems Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Iva Pavlović
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Pierrick Priault
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Timothy J Tschaplinski
- Plant Systems Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Irène Hummel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | | | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| |
Collapse
|
2
|
Shang B, Feng Z, Gao F, Calatayud V. The ozone sensitivity of five poplar clones is not related to stomatal conductance, constitutive antioxidant levels and morphology of leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134402. [PMID: 31683210 DOI: 10.1016/j.scitotenv.2019.134402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Ground-level ozone (O3) is an important phytotoxic air pollutant in China. In order to compare the sensitivity of common poplar clones to O3 in China and explore the possible mechanism, five poplar clones, clone DQ (Populus cathayana), clone 84 K (P. alba × P. glandulosa), clone WQ156 (P. deltoids × P. cathayana), clone 546 (P. deltoides cv. '55/56' × P. deltoides cv. 'Imperial') and clone 107 (P. euramericana cv. '74/76') were exposed to four O3 treatments. According to the date of the initial visible O3 symptom and the slopes of O3 exposure-response relationships with the relative light-saturated rate of CO2 assimilation, we found that clone DQ and clone 546 were the most sensitive to O3, clone 84 K and clone WQ156 were the less sensitive, and clone 107 was the most tolerant, which could provide a basis to select O3 tolerant clones for poplar planting at areas with serious O3 pollution. Elevated O3 significantly reduced photosynthetic parameters, total phenols content, potential antioxidant capacity, leaf mass per area and biomass of five poplar clones, and there were significant interactions between O3 and clones for most photosynthetic parameters. Elevated O3 also significantly increased malondialdehyde content and total ascorbate content. The responses of total antioxidant capacity for poplar clones to elevated O3 were different, as indicated by the increase for clone 107 and reduction for other clones under elevated O3 treatment. Our results on the sensitivity of different poplar clones to O3 are not related to leaf stomatal conductance, leaf constitutive antioxidant levels or leaf morphology of plant grown in clean air. The possible reason is little difference in leaf traits among clones within close species, suggesting that more properties of plants should be considered for exploring the sensitivity mechanism of close species, such as mesophyll conductance, antioxidant enzyme activity and apoplastic antioxidants.
Collapse
Affiliation(s)
- Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - ZhaoZhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Feng Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Institute of Agriculture Planning Science, China Agriculture University, Beijing 100193, China
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna 46980, Valencia, Spain
| |
Collapse
|
3
|
Sorgini CA, Barrios-Perez I, Brown PJ, Ainsworth EA. Examining Genetic Variation in Maize Inbreds and Mapping Oxidative Stress Response QTL in B73-Mo17 Nearly Isogenic Lines. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
4
|
Ainsworth EA. Understanding and improving global crop response to ozone pollution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:886-897. [PMID: 27739639 DOI: 10.1111/tpj.13298] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 05/21/2023]
Abstract
Concentrations of ground-level ozone ([O3 ]) over much of the Earth's land surface have more than doubled since pre-industrial times. The air pollutant is highly variable over time and space, which makes it difficult to assess the average agronomic and economic impacts of the pollutant as well as to breed crops for O3 tolerance. Recent modeling efforts have improved quantitative understanding of the effects of current and future [O3 ] on global crop productivity, and experimental advances have improved understanding of the cellular O3 sensing, signaling and response mechanisms. This work provides the fundamental background and justification for breeding and biotechnological approaches for improving O3 tolerance in crops. There is considerable within-species variation in O3 tolerance in crops, which has been used to create mapping populations for screening. Quantitative trait loci (QTL) for O3 tolerance have been identified in model and crop species, and although none has been cloned to date, transcript profiling experiments have identified candidate genes associated with QTL. Biotechnological strategies for improving O3 tolerance are also being tested, although there is considerable research to be done before O3 -tolerant germplasm is available to growers for most crops. Strategies to improve O3 tolerance in crops have been hampered by the lack of translation of laboratory experiments to the field, and the lack of correlation between visual leaf-level O3 damage and yield loss to O3 stress. Future efforts to screen mapping populations in the field and to identify more promising phenotypes for O3 tolerance are needed.
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, USDA ARS, 1201 W. Gregory Drive, Urbana, IL, 61801, USA
- Institute for Genomic Biology & Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Kuzminsky E, Meschini R, Terzoli S, Pavani L, Silvestri C, Choury Z, Scarascia-Mugnozza G. Isolation of Mesophyll Protoplasts from Mediterranean Woody Plants for the Study of DNA Integrity under Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1168. [PMID: 27574524 PMCID: PMC4983556 DOI: 10.3389/fpls.2016.01168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/20/2016] [Indexed: 05/24/2023]
Abstract
Abiotic stresses have considerable negative impact on Mediterranean plant ecosystems and better comprehension of the genetic control of response and adaptation of trees to global changes is urgently needed. The single cell gel electrophoresis (SCGE) assay could be considered a good estimator of DNA damage in an individual eukaryotic cell. This method has been mainly employed in animal tissues, because the plant cell wall represents an obstacle for the extraction of nuclei; moreover, in Mediterranean woody species, especially in the sclerophyll plants, this procedure can be quite difficult because of the presence of sclerenchyma and hardened cells. On the other hand, these plants represent an interesting material to be studied because of the ability of these plants to tolerate abiotic stress. For instance, holm oak (Quercus ilex L.) has been selected as the model plant to identify critical levels of O3 for Southern European forests. Consequently, a quantitative method for the evaluation of cell injury of leaf tissues of this species is required. Optimal conditions for high-yield nuclei isolation were obtained by using protoplast technology and a detailed description of the method is provided and discussed. White poplar (Populus alba L.) was used as an internal control for protoplast isolation. Such a method has not been previously reported in newly fully developed leaves of holm oak. This method combined with SCGE assay represents a new tool for testing the DNA integrity of leaf tissues in higher plants under stress conditions.
Collapse
Affiliation(s)
- Elena Kuzminsky
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Roberta Meschini
- Laboratory of Molecular Cytogenetic and Mutagenesis, Department of Ecological and Biological Science, University of TusciaViterbo, Italy
| | - Serena Terzoli
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Liliana Pavani
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Cristian Silvestri
- Laboratory of Tissue Culture and Biotechnology of Woody Plants, Department of Agricultural and Forestry Sciences, University of TusciaViterbo, Italy
| | - Zineb Choury
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Giuseppe Scarascia-Mugnozza
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| |
Collapse
|
6
|
Gottardini E, Cristofori A, Pellegrini E, La Porta N, Nali C, Baldi P, Sablok G. Suppression Substractive Hybridization and NGS Reveal Differential Transcriptome Expression Profiles in Wayfaring Tree (Viburnum lantana L.) Treated with Ozone. FRONTIERS IN PLANT SCIENCE 2016; 7:713. [PMID: 27313581 PMCID: PMC4887494 DOI: 10.3389/fpls.2016.00713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 05/29/2023]
Abstract
Tropospheric ozone (O3) is a global air pollutant that causes high economic damages by decreasing plant productivity. It enters the leaves through the stomata, generates reactive oxygen species, which subsequent decrease in photosynthesis, plant growth, and biomass accumulation. In order to identify genes that are important for conferring O3 tolerance or sensitivity to plants, a suppression subtractive hybridization analysis was performed on the very sensitive woody shrub, Viburnum lantana, exposed to chronic O3 treatment (60 ppb, 5 h d(-1) for 45 consecutive days). Transcript profiling and relative expression assessment were carried out in asymptomatic leaves, after 15 days of O3 exposure. At the end of the experiment symptoms were observed on all treated leaves and plants, with an injured leaf area per plant accounting for 16.7% of the total surface. Cloned genes were sequenced by 454-pyrosequencing and transcript profiling and relative expression assessment were carried out on sequenced reads. A total of 38,800 and 12,495 high quality reads obtained in control and O3-treated libraries, respectively (average length of 319 ± 156.7 and 255 ± 107.4 bp). The Ensembl transcriptome yielded a total of 1241 unigenes with a total sequence length of 389,126 bp and an average length size of 389 bp (guanine-cytosine content = 49.9%). mRNA abundance was measured by reads per kilobase per million and 41 and 37 ensembl unigenes showed up- and down-regulation respectively. Unigenes functionally associated to photosynthesis and carbon utilization were repressed, demonstrating the deleterious effect of O3 exposure. Unigenes functionally associated to heat-shock proteins and glutathione were concurrently induced, suggesting the role of thylakoid-localized proteins and antioxidant-detoxification pathways as an effective strategy for responding to O3. Gene Ontology analysis documented a differential expression of co-regulated transcripts for several functional categories, including specific transcription factors (MYB and WRKY). This study demonstrates that a complex sequence of events takes place in the cells at intracellular and membrane level following O3 exposure and elucidates the effects of this oxidative stress on the transcriptional machinery of the non-model plant species V. lantana, with the final aim to provide the molecular supportive knowledge for the use of this plant as O3-bioindicator.
Collapse
Affiliation(s)
- Elena Gottardini
- Fondazione Edmund Mach, Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation CentreTrento, Italy
| | - Antonella Cristofori
- Fondazione Edmund Mach, Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation CentreTrento, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Nicola La Porta
- Fondazione Edmund Mach, Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation CentreTrento, Italy
- MOUNTFOR Project Centre, European Forest InstituteTrento, Italy
- Consiglio Nazionale delle Ricerche, Istituto per la Valorizzazione del Legno e delle Specie ArboreeFlorence, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Paolo Baldi
- Fondazione Edmund Mach, Genomics and Biology of Fruit Crops Department, Research and Innovation CentreTrento, Italy
| | - Gaurav Sablok
- Fondazione Edmund Mach, Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation CentreTrento, Italy
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology SydneySydney, NSW, Australia
| |
Collapse
|
7
|
Burton AL, Burkey KO, Carter TE, Orf J, Cregan PB. Phenotypic variation and identification of quantitative trait loci for ozone tolerance in a Fiskeby III × Mandarin (Ottawa) soybean population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1113-25. [PMID: 26920548 DOI: 10.1007/s00122-016-2687-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
KEY MESSAGE Soybean quantitative trait loci for ozone response. Ground-level ozone reduces yield in crops such as soybean (Glycine max (L.) Merr.). Phenotypic variation has been observed for this trait in multiple species; however, breeding for ozone tolerance has been limited. A recombinant inbred population was developed from soybean genotypes differing in tolerance to ozone: tolerant Fiskeby III and sensitive Mandarin (Ottawa). Plants were exposed to ozone treatment for 5 days in greenhouse chambers followed by visual scoring for foliar injury. Mean injury score in the mid-canopy was 16 % for Fiskeby III, and 81 % for Mandarin (Ottawa). Injury scores were lower in younger leaves for both parents and progeny, compared to scores in the older leaves. Segregation was consistent with multigenic inheritance. Correlation coefficients for injury between leaf positions ranged from 0.34 to 0.81, with the closer leaf positions showing the greater correlation. Narrow sense heritability within an ozone treatment chamber was 0.59, 0.40, 0.29, 0.30, 0.19, and 0.35 for the 2nd, 3rd, 4th, 5th, 6th, and combined 3rd-5th main stem leaf positions (numbered acropetally), respectively, based on genotypic means over three independent replications. Quantitative trait loci (QTL) analysis showed that loci were associated with distinct leaf developmental stages. QTL were identified on Chromosome 17 for the 2nd and 3rd leaf positions, and on Chromosome 4 for the 5th and 6th leaf positions. Additional loci were identified on Chromosomes 6, 18, 19, and 20. Interacting loci were identified on Chromosomes 5 and 15 for injury on trifoliate 4. The ozone sensitive parent contributed one favorable allele for ozone response.
Collapse
Affiliation(s)
- Amy L Burton
- Plant Science Research Unit, USDA-ARS, 3127 Ligon Street, Raleigh, NC, 27607, USA
| | - Kent O Burkey
- Plant Science Research Unit, USDA-ARS, 3127 Ligon Street, Raleigh, NC, 27607, USA.
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695-7631, USA.
| | - Thomas E Carter
- Soybean and Nitrogen Fixation Unit, USDA-ARS, 3127 Ligon Street, Raleigh, NC, 27607, USA
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695-7631, USA
| | - James Orf
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, USA
| | - Perry B Cregan
- Soybean Genomics and Improvement Lab, USDA-ARS, 10300 Baltimore Avenue, Bldg. 006, BARC-West, Beltsville, MD, 20705, USA
| |
Collapse
|
8
|
Allwright MR, Payne A, Emiliani G, Milner S, Viger M, Rouse F, Keurentjes JJB, Bérard A, Wildhagen H, Faivre-Rampant P, Polle A, Morgante M, Taylor G. Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). BIOTECHNOLOGY FOR BIOFUELS 2016; 9:195. [PMID: 27617034 PMCID: PMC5017058 DOI: 10.1186/s13068-016-0603-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Second generation (2G) bioenergy from lignocellulosic feedstocks has the potential to develop as a sustainable source of renewable energy; however, significant hurdles still remain for large-scale commercialisation. Populus is considered as a promising 2G feedstock and understanding the genetic basis of biomass yield and feedstock quality are a research priority in this model tree species. RESULTS We report the first coppiced biomass study for 714 members of a wide population of European black poplar (Populus nigra L.), a native European tree, selected from 20 river populations ranging in latitude and longitude between 40.5 and 52.1°N and 1.0 and 16.4°E, respectively. When grown at a single site in southern UK, significant Site of Origin (SO) effects were seen for 14 of the 15 directly measured or derived traits including biomass yield, leaf area and stomatal index. There was significant correlation (p < 0.001) between biomass yield traits over 3 years of harvest which identified leaf size and cell production as strong predictors of biomass yield. A 12 K Illumina genotyping array (constructed from 10,331 SNPs in 14 QTL regions and 4648 genes) highlighted significant population genetic structure with pairwise FST showing strong differentiation (p < 0.001) between the Spanish and Italian subpopulations. Robust associations reaching genome-wide significance are reported for main stem height and cell number per leaf; two traits tightly linked to biomass yield. These genotyping and phenotypic data were also used to show the presence of significant isolation by distance (IBD) and isolation by adaption (IBA) within this population. CONCLUSIONS The three associations identified reaching genome-wide significance at p < 0.05 include a transcription factor; a putative stress response gene and a gene of unknown function. None of them have been previously linked to bioenergy yield; were shown to be differentially expressed in a panel of three selected genotypes from the collection and represent exciting, novel candidates for further study in a bioenergy tree native to Europe and Euro-Asia. A further 26 markers (22 genes) were found to reach putative significance and are also of interest for biomass yield, leaf area, epidermal cell expansion and stomatal patterning. This research on European P. nigra provides an important foundation for the development of commercial native trees for bioenergy and for advanced, molecular breeding in these species.
Collapse
Affiliation(s)
- Mike Robert Allwright
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Adrienne Payne
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Giovanni Emiliani
- CNR-IVALSA, Sesto Fiorentino, via Madonna del Piano, 10, 50019 Sesto Fiorentino, FI Italy
| | - Suzanne Milner
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Maud Viger
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Franchesca Rouse
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Joost J. B. Keurentjes
- Laboratory of Genetics, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | | | | | | | - Andrea Polle
- Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Michele Morgante
- Dipartimento di Scienze agroalimentari, ambientali e animali, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy
- Istituto di Genomica Applicata (IGA), via J. Linussio 51, 33100 Udine, Italy
| | - Gail Taylor
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
9
|
Xu E, Vaahtera L, Hõrak H, Hincha DK, Heyer AG, Brosché M. Quantitative trait loci mapping and transcriptome analysis reveal candidate genes regulating the response to ozone in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2015; 38:1418-33. [PMID: 25496229 DOI: 10.1111/pce.12499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As multifaceted molecules, reactive oxygen species (ROS) are known to accumulate in response to various stresses. Ozone (O3 ) is an air pollutant with detrimental effect on plants and O3 can also be used as a tool to study the role of ROS in signalling. Genetic variation of O3 sensitivity in different Arabidopsis accessions highlights the complex genetic architecture of plant responses to ROS. To investigate the genetic basis of O3 sensitivity, a recombinant inbred line (RIL) population between two Arabidopsis accessions with distinct O3 sensitivity, C24 (O3 tolerant) and Te (O3 sensitive) was used for quantitative trait loci (QTL) mapping. Through analysis of QTL mapping combined with transcriptome changes in response to O3 , we identified three causal QTLs and several potential candidate genes regulating the response to O3 . Based on gene expression data, water loss and stomatal conductance measurement, we found that a combination of relatively low stomatal conductance and constitutive activation of salicylic acid (SA)-mediated defence signalling were responsible for the O3 tolerance in C24. Application of exogenous SA prior to O3 exposure can mimic the constitutive SA signalling in C24 and could attenuate O3 -induced leaf damage in the sensitive Arabidopsis accessions Te and Cvi-0.
Collapse
Affiliation(s)
- Enjun Xu
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Lauri Vaahtera
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, D-14476, Germany
| | - Arnd G Heyer
- Department of Plant Biotechnology, Institute of Biology, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, FI-00014, Finland
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| |
Collapse
|
10
|
Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M. Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:293-306. [PMID: 25371505 PMCID: PMC4265164 DOI: 10.1093/jxb/eru419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tropospheric ozone causes various negative effects on plants and affects the yield and quality of agricultural crops. Here, we report a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with ozone tolerance. A diversity panel consisting of 328 accessions representing all subgroups of O. sativa was exposed to ozone stress at 60 nl l(-1) for 7h every day throughout the growth season, or to control conditions. Averaged over all genotypes, ozone significantly affected biomass-related traits (plant height -1.0%, shoot dry weight -15.9%, tiller number -8.3%, grain weight -9.3%, total panicle weight -19.7%, single panicle weight -5.5%) and biochemical/physiological traits (symptom formation, SPAD value -4.4%, foliar lignin content +3.4%). A wide range of genotypic variance in response to ozone stress were observed in all phenotypes. Association mapping based on more than 30 000 single-nucleotide polymorphism (SNP) markers yielded 16 significant markers throughout the genome by applying a significance threshold of P<0.0001. Furthermore, by determining linkage disequilibrium blocks associated with significant SNPs, we gained a total of 195 candidate genes for these traits. The following sequence analysis revealed a number of novel polymorphisms in two candidate genes for the formation of visible leaf symptoms, a RING and an EREBP gene, both of which are involved in cell death and stress defence reactions. This study demonstrated substantial natural variation of responses to ozone in rice and the possibility of using GWAS in elucidating the genetic factors underlying ozone tolerance.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Felix Frimpong
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Yitao Qi
- Key Laboratory of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Elsa Matthus
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Linbo Wu
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Stefanie Höller
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Thorsten Kraska
- Campus Klein-Altendorf, University of Bonn, Klein-Altendorf 2, 53359 Rheinbach, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| |
Collapse
|
11
|
Dumont J, Cohen D, Gérard J, Jolivet Y, Dizengremel P, LE Thiec D. Distinct responses to ozone of abaxial and adaxial stomata in three Euramerican poplar genotypes. PLANT, CELL & ENVIRONMENT 2014; 37:2064-2076. [PMID: 24506578 DOI: 10.1111/pce.12293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Ozone induces stomatal sluggishness, which impacts photosynthesis and transpiration. Stomatal responses to variation of environmental parameters are slowed and reduced by ozone and may be linked to difference of ozone sensitivity. Here we determine the ozone effects on stomatal conductance of each leaf surface. Potential causes of this sluggish movement, such as ultrastructural or ionic fluxes modification, were studied independently on both leaf surfaces of three Euramerican poplar genotypes differing in ozone sensitivity and in stomatal behaviour. The element contents in guard cells were linked to the gene expression of ion channels and transporters involved in stomatal movements, directly in microdissected stomata. In response to ozone, we found a decrease in the stomatal conductance of the leaf adaxial surface correlated with high calcium content in guard cells compared with a slight decrease on the abaxial surface. No ultrastructural modifications of stomata were shown except an increase in the number of mitochondria. The expression of vacuolar H(+) /Ca(2+) -antiports (CAX1 and CAX3 homologs), β-carbonic anhydrases (βCA1 and βCA4) and proton H(+) -ATPase (AHA11) genes was strongly decreased under ozone treatment. The sensitive genotype characterized by constitutive slow stomatal response was also characterized by constitutive low expression of genes encoding vacuolar H(+) /Ca(2+) -antiports.
Collapse
Affiliation(s)
- Jennifer Dumont
- INRA, UMR 1137, Ecologie et Ecophysiologie Forestières, Champenoux, F-54280, France; Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières, Vandoeuvre-lès-Nancy, F-54500, France; IFR110 EFABA, Vandoeuvre-lès-Nancy, F-54500, France
| | | | | | | | | | | |
Collapse
|
12
|
Zona D, Gioli B, Fares S, De Groote T, Pilegaard K, Ibrom A, Ceulemans R. Environmental controls on ozone fluxes in a poplar plantation in Western Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:201-210. [PMID: 24060739 DOI: 10.1016/j.envpol.2013.08.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
Tropospheric O3 is a strong oxidant that may affect vegetation and human health. Here we report on the O3 fluxes from a poplar plantation in Belgium during one year. Surprisingly, the winter and autumn O3 fluxes were of similar magnitude to ones observed during most of the peak vegetation development. Largest O3 uptakes were recorded at the beginning of the growing season in correspondence to a minimum stomatal uptake. Wind speed was the most important control and explained 44% of the variability in the nighttime O3 fluxes, suggesting that turbulent mixing and the mechanical destruction of O3 played a substantial role in the O3 fluxes. The stomatal O3 uptake accounted for a seasonal average of 59% of the total O3 uptake. Multiple regression and partial correlation analyses showed that net ecosystem exchange was not affected by the stomatal O3 uptake.
Collapse
Affiliation(s)
- D Zona
- Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Wilrijk, Belgium; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | | | | | | | | | | | | |
Collapse
|
13
|
Bohler S, Sergeant K, Jolivet Y, Hoffmann L, Hausman JF, Dizengremel P, Renaut J. A physiological and proteomic study of poplar leaves during ozone exposure combined with mild drought. Proteomics 2013; 13:1737-54. [PMID: 23613368 DOI: 10.1002/pmic.201200193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 02/15/2013] [Accepted: 02/25/2013] [Indexed: 12/24/2022]
Abstract
The occurrence of high-ozone concentrations during drought episodes is common considering that they are partially caused by the same meteorological phenomena. It was suggested that mild drought could protect plants against ozone-induced damage by causing the closure of stomata and preventing the entry of ozone into the leaves. The present experiment attempts to create an overview of the changes in cellular processes in response to ozone, mild drought and a combined treatment based on the use of 2D-DiGE to compare the involved proteins, and a number of supporting analyses. Morphological symptoms were worst in the combined treatment, indicating a severe stress, but fewer proteins were differentially abundant in the combined treatment than for ozone alone. Stomatal conductance was slightly lowered in the combined treatment. Shifts in carbon metabolism indicated that the metabolism changed to accommodate for protective measures and changes in the abundance of proteins involved in redox protection indicated the presence of an oxidative stress. This study allowed identifying a set of proteins that changed similarly during ozone and drought stress, indicative of crosstalk in the molecular response of plants exposed to these stresses. The abundance of other key proteins changed only when the plants are exposed to specific conditions. Together this indicates the coexistence of generalized and specialized responses to different conditions.
Collapse
Affiliation(s)
- Sacha Bohler
- Department of Environment and Agro-biotechnologies, CRP-Gabriel Lippmann, Belvaux, GD. Luxembourg.
| | | | | | | | | | | | | |
Collapse
|
14
|
Viger M, Rodriguez-Acosta M, Rae AM, Morison JIL, Taylor G. Toward improved drought tolerance in bioenergy crops: QTL for carbon isotope composition and stomatal conductance inPopulus. Food Energy Secur 2013. [DOI: 10.1002/fes3.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Maud Viger
- Centre for Biological Sciences; Life Sciences Building; University of Southampton; Southampton SO17 1BJ United Kingdom
| | - Maricela Rodriguez-Acosta
- Centre for Biological Sciences; Life Sciences Building; University of Southampton; Southampton SO17 1BJ United Kingdom
| | - Anne M. Rae
- Centre for Biological Sciences; Life Sciences Building; University of Southampton; Southampton SO17 1BJ United Kingdom
| | - James I. L. Morison
- Centre for Forestry and Climate Change; Forest Research; Alice Holt Farnham Surrey United Kingdom
| | - Gail Taylor
- Centre for Biological Sciences; Life Sciences Building; University of Southampton; Southampton SO17 1BJ United Kingdom
| |
Collapse
|
15
|
Dghim AA, Dumont J, Hasenfratz-Sauder MP, Dizengremel P, Le Thiec D, Jolivet Y. Capacity for NADPH regeneration in the leaves of two poplar genotypes differing in ozone sensitivity. PHYSIOLOGIA PLANTARUM 2013; 148:36-50. [PMID: 22978704 DOI: 10.1111/j.1399-3054.2012.01686.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/27/2012] [Indexed: 06/01/2023]
Abstract
Cell capacity for cytosolic NADPH regeneration by NADP-dehydrogenases was investigated in the leaves of two hybrid poplar (Populus deltoides × Populus nigra) genotypes in response to ozone (O3 ) treatment (120 ppb for 17 days). Two genotypes with differential O3 sensitivity were selected, based on visual symptoms and fallen leaves: Robusta (sensitive) and Carpaccio (tolerant). The estimated O3 flux (POD0 ), that entered the leaves, was similar for the two genotypes throughout the treatment. In response to that foliar O3 flux, CO2 assimilation was inhibited to the same extent for the two genotypes, which could be explained by a decrease in Rubisco (EC 4.1.1.39) activity. Conversely, an increase in PEPC (EC 4.1.1.31) activity was observed, together with the activation of certain cytosolic NADP-dehydrogenases above their constitutive level, i.e. NADP-G6PDH (EC 1.1.1.49), NADP-ME (malic enzyme) (EC 1.1.1.40) and NADP-ICDH (NADP-isocitrate dehydrogenase) (EC1.1.1.42). However, the activity of non-phosphorylating NADP-GAPDH (EC 1.2.1.9) remained unchanged. From the 11th fumigation day, NADP-G6PDH and NADP-ME profiles made it possible to differentiate between the two genotypes, with a higher activity in Carpaccio than in Robusta. At the same time, Carpaccio was able to maintain high levels of NADPH in the cells, while NADPH levels decreased in Robusta O3 -treated leaves. All these results support the hypothesis that the capacity for cells to regenerate the reducing power, especially the cytosolic NADPH pool, contributes to improve tolerance to high ozone exposure.
Collapse
Affiliation(s)
- Ata Allah Dghim
- UMR1137 EEF, Université de Lorraine, F-54500, Vandoeuvre-lès-Nancy, Cedex, France
| | | | | | | | | | | |
Collapse
|
16
|
Cohen D, Bogeat-Triboulot MB, Vialet-Chabrand S, Merret R, Courty PE, Moretti S, Bizet F, Guilliot A, Hummel I. Developmental and environmental regulation of Aquaporin gene expression across Populus species: divergence or redundancy? PLoS One 2013; 8:e55506. [PMID: 23393587 PMCID: PMC3564762 DOI: 10.1371/journal.pone.0055506] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/24/2012] [Indexed: 11/29/2022] Open
Abstract
Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.
Collapse
Affiliation(s)
- David Cohen
- INRA, UMR1137 Ecologie et Ecophysiologie Forestières, Champenoux, France
- Université de Lorraine, UMR1137 Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Vandœuvre-lès-Nancy, France
| | - Marie-Béatrice Bogeat-Triboulot
- INRA, UMR1137 Ecologie et Ecophysiologie Forestières, Champenoux, France
- Université de Lorraine, UMR1137 Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Vandœuvre-lès-Nancy, France
- * E-mail:
| | - Silvère Vialet-Chabrand
- INRA, UMR1137 Ecologie et Ecophysiologie Forestières, Champenoux, France
- Université de Lorraine, UMR1137 Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Vandœuvre-lès-Nancy, France
| | - Rémy Merret
- INRA, UMR1137 Ecologie et Ecophysiologie Forestières, Champenoux, France
- Université de Lorraine, UMR1137 Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Vandœuvre-lès-Nancy, France
| | - Pierre-Emmanuel Courty
- Zürich-Basel Plant Science Center, Botanical Institute, University of Basel, Basel, Switzerland
| | - Sébastien Moretti
- Vital-IT, SIB Swiss Institute of Bioinformatics, Quartier Sorge, bâtiment Génopode, Lausanne, Switzerland
- Department of Ecology and Evolution, bâtiment Biophore, Lausanne University, Lausanne, Switzerland
| | - François Bizet
- INRA, UMR1137 Ecologie et Ecophysiologie Forestières, Champenoux, France
- Université de Lorraine, UMR1137 Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Vandœuvre-lès-Nancy, France
| | - Agnès Guilliot
- INRA, UMR1137 Ecologie et Ecophysiologie Forestières, Champenoux, France
- Université de Lorraine, UMR1137 Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Vandœuvre-lès-Nancy, France
| | - Irène Hummel
- INRA, UMR1137 Ecologie et Ecophysiologie Forestières, Champenoux, France
- Université de Lorraine, UMR1137 Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Vandœuvre-lès-Nancy, France
| |
Collapse
|
17
|
Metabolomics and Transcriptomics Increase Our Understanding About Defence Responses and Genotypic Differences of Northern Deciduous Trees to Elevating Ozone, CO2 and Climate Warming. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-08-098349-3.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Monclus R, Leplé JC, Bastien C, Bert PF, Villar M, Marron N, Brignolas F, Jorge V. Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp. BMC PLANT BIOLOGY 2012. [PMID: 23013168 DOI: 10.15454/easuqv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions. RESULTS Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like 'ripening' and 'adventitious roots development'. CONCLUSION Beyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest.
Collapse
Affiliation(s)
- Romain Monclus
- UFR-Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, F-45067, Orléans, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Monclus R, Leplé JC, Bastien C, Bert PF, Villar M, Marron N, Brignolas F, Jorge V. Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp. BMC PLANT BIOLOGY 2012; 12:173. [PMID: 23013168 PMCID: PMC3520807 DOI: 10.1186/1471-2229-12-173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/22/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions. RESULTS Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like 'ripening' and 'adventitious roots development'. CONCLUSION Beyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest.
Collapse
Affiliation(s)
- Romain Monclus
- UFR-Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, F-45067, Orléans, France
| | - Jean-Charles Leplé
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France
| | - Catherine Bastien
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France
| | - Pierre-François Bert
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France
- Present address: INRA, UMR1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, F-33882, Villenave d'Ornon, France
| | - Marc Villar
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France
| | - Nicolas Marron
- INRA, UMR1137 Écologie et Écophysiologie Forestières (EEF), F-54280, Champenoux, France
- Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières (EEF), Faculté des Sciences, F-54500, Vandœuvre-lès-Nancy, France
| | - Franck Brignolas
- UFR-Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, F-45067, Orléans, France
- INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), F-45067, Orléans, France
| | - Véronique Jorge
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France
| |
Collapse
|
20
|
Gillespie KM, Xu F, Richter KT, McGrath JM, Markelz RJC, Ort DR, Leakey ADB, Ainsworth EA. Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2. PLANT, CELL & ENVIRONMENT 2012; 35:169-84. [PMID: 21923758 DOI: 10.1111/j.1365-3040.2011.02427.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Antioxidant metabolism is responsive to environmental conditions, and is proposed to be a key component of ozone (O(3)) tolerance in plants. Tropospheric O(3) concentration ([O(3)]) has doubled since the Industrial Revolution and will increase further if precursor emissions rise as expected over this century. Additionally, atmospheric CO(2) concentration ([CO(2)]) is increasing at an unprecedented rate and will surpass 550 ppm by 2050. This study investigated the molecular, biochemical and physiological changes in soybean exposed to elevated [O(3) ] in a background of ambient [CO(2)] and elevated [CO(2)] in the field. Previously, it has been difficult to demonstrate any link between antioxidant defences and O(3) stress under field conditions. However, this study used principle components analysis to separate variability in [O(3)] from variability in other environmental conditions (temperature, light and relative humidity). Subsequent analysis of covariance determined that soybean antioxidant metabolism increased with increasing [O(3)], in both ambient and elevated [CO(2)]. The transcriptional response was dampened at elevated [CO(2)], consistent with lower stomatal conductance and lower O(3) flux into leaves. Energetically expensive increases in antioxidant metabolism and tetrapyrrole synthesis at elevated [O(3)] were associated with greater transcript levels of enzymes involved in respiratory metabolism.
Collapse
Affiliation(s)
- Kelly M Gillespie
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Blomster T, Salojärvi J, Sipari N, Brosché M, Ahlfors R, Keinänen M, Overmyer K, Kangasjärvi J. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1866-83. [PMID: 22007024 PMCID: PMC3327221 DOI: 10.1104/pp.111.181883] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/15/2011] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are ubiquitous signaling molecules in plant stress and development. To gain further insight into the plant transcriptional response to apoplastic ROS, the phytotoxic atmospheric pollutant ozone was used as a model ROS inducer in Arabidopsis (Arabidopsis thaliana) and gene expression was analyzed with microarrays. In contrast to the increase in signaling via the stress hormones salicylic acid, abscisic acid, jasmonic acid (JA), and ethylene, ROS treatment caused auxin signaling to be transiently suppressed, which was confirmed with a DR5-uidA auxin reporter construct. Transcriptomic data revealed that various aspects of auxin homeostasis and signaling were modified by apoplastic ROS. Furthermore, a detailed analysis of auxin signaling showed that transcripts of several auxin receptors and Auxin/Indole-3-Acetic Acid (Aux/IAA) transcriptional repressors were reduced in response to apoplastic ROS. The ROS-derived changes in the expression of auxin signaling genes partially overlapped with abiotic stress, pathogen responses, and salicylic acid signaling. Several mechanisms known to suppress auxin signaling during biotic stress were excluded, indicating that ROS regulated auxin responses via a novel mechanism. Using mutants defective in various auxin (axr1, nit1, aux1, tir1 afb2, iaa28-1, iaa28-2) and JA (axr1, coi1-16) responses, ROS-induced cell death was found to be regulated by JA but not by auxin. Chronic ROS treatment resulted in altered leaf morphology, a stress response known as "stress-induced morphogenic response." Altered leaf shape of tir1 afb2 suggests that auxin was a negative regulator of stress-induced morphogenic response in the rosette.
Collapse
|