1
|
Malheiro C, Prodana M, Cardoso DN, Morgado RG, Loureiro S. Ageing influences the toxicity of two innovative nanofertilizers to the soil invertebrates Enchytraeus crypticus and Folsomia candida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123989. [PMID: 38642791 DOI: 10.1016/j.envpol.2024.123989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
The increasing global food demand is threatening the sustainability of agrifood production systems. The intensification of agricultural practices, with inadequate use of pesticides and fertilizers, poses major challenges to the good functioning of agroecosystems and drastically degrades the soil quality. Nanotechnology is expected to optimize the current farming practices and mitigate some associated impacts. Layered double hydroxides (LDHs) are a class of nanomaterials with high potential for use in agricultural productions, mostly due to their sustained release of nutrients. Considering its novelty and lack of studies on the terrestrial ecosystem, it is essential to assess potential long-term harmful consequences to non-target organisms. Our study aimed to evaluate the effect of Zn-Al-NO3 LDH and Mg-Al-NO3 LDH ageing on the survival and reproduction of two soil invertebrate species Enchytraeus crypticus and Folsomia candida. We postulated that the toxicity of nanomaterials to soil invertebrates would change with time, such that the ageing of soil amendments would mediate their impacts on both species. Our results showed that the toxicity of LDHs was species-dependent, with Zn-Al-NO3 LDH being more toxic to E. crypticus, while Mg-Al-NO3 LDH affected more F. candida, especially in the last ageing period, where reproduction was the most sensitive biological parameter. The toxicity of both nanomaterials increased with ageing time, as shown by the decrease of the EC50 values over time. The influence of LDH dissolution and availability of Zn and Mg in the soil pore water was the main factor related to the toxicity, although we cannot rule out the influence of other structural constituents of LDHs (e.g., nitrates and aluminium). This study supports the importance of incorporating ageing in the ecotoxicity testing of nanomaterials, considering their slow release, as effects on soil organisms can change and lead to more severe impacts on the ecosystem functioning.
Collapse
Affiliation(s)
- C Malheiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - M Prodana
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - D N Cardoso
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - R G Morgado
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - S Loureiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Malheiro C, Prodana M, Cardoso DN, Soares AMVM, Morgado RG, Loureiro S. Soil habitat function after innovative nanoagriproducts application: Effect of ageing on the avoidance behaviour of the soil invertebrates Enchytraeus crypticus and Folsomia candida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165955. [PMID: 37536601 DOI: 10.1016/j.scitotenv.2023.165955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Research on nanotechnology with applications in agriculture has been gathering attention because it may achieve a good balance between agricultural production and environmental integrity. Among the vast nanomaterials, layered double hydroxides (LDHs) are a promising solution for supplying crops with macro- and/or micronutrients. Still, little is known about their safety implications for non-target organisms, such as soil invertebrates. The habitat function of soils might be impacted by potential stressors, which can be assessed through avoidance behaviour tests. This study aimed to assess the effect of two innovative agriproducts, Zn-Al-NO3 LDH and Mg-Al-NO3 LDH, on the avoidance behaviour of the enchytraeid Enchytraeus crypticus and the collembolan Folsomia candida, over time. Simultaneously, Zn and Mg potential release from LDHs to soil was evaluated. Overall, the behaviour of soil invertebrates differed between species, with enchytraeids being more sensitive to LDHs-treated soils than collembolans, possibly explained by their different physiological traits. The behaviour of soil organisms also depended on the LDH structural composition and was time-variable. Soil treated with Zn-Al-NO3 LDH was perceived as less favourable compared to Mg-Al-NO3 LDH, which was preferred to clean soil at most tested concentrations. LDHs toxicity was partly, but not exclusively, related to Zn and Mg release. Cations release over time was demonstrated in the chemical assessment. Still, LDHs toxicity to soil invertebrates decreased as increasing AC50 values were derived over time. Slower dissolution over time might explain the decrease in toxicity. Our study demonstrates that both soil invertebrates could sense LDHs in soil and eventually adapt their behaviour by avoiding or preferring, according to the type and level of LDH present.
Collapse
Affiliation(s)
- C Malheiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - M Prodana
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - D N Cardoso
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - R G Morgado
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - S Loureiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Liu G, Gu X, Wu J, Li H, Su L, Chen M, Chen S, Liu Y. The interaction effects of biodegradable microplastics and Cd on Folsomia candida soil collembolan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57041-57049. [PMID: 36930309 DOI: 10.1007/s11356-023-26213-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
In real-field soil conditions, multiple chemicals exposure may be the real scenario for soil biota. The co-occurrence of microplastics (MPs) and cadmium (Cd) is common in soils, which may pose a potential risk to soil ecosystems. Degradable microplastics are producing more MPs, and the potential effects on soil ecosystems are unknown. Therefore, a standard soil animal collembolan Folsomia candida was used to evaluate the single and interaction effects of biodegradable MPs (PLA) and Cd. The results showed that single and co-biodegradable PLA and Cd all had negative influences on the survival, reproduction, and growth of F. candida, and the effects intensified with PLA concentrations. The survival rate, reproduction rate, adult body length, and juvenile body length decreased by 20.0%, 24.2%, 22.9%, and 32.2% at MPs-100 treatment. But combined PLA and Cd alleviated the toxicity of single Cd on F. candida at lower PLA concentrations. The number of juveniles increased by 29.3%, the survival rate increased by 7.52%, the adult body length increased by 11.7%, and the juvenile body length increased by 19.0% at MPs-1 + Cd than single Cd treatment. Biochemical assays on antioxidant enzymes had the same results. Antioxidant enzymes CAT and POD were more sensitive than SOD. CAT and POD activities were induced quickly at shorter exposure periods, and MP treatment thus may be promising biomarkers on soil collembolan for soil MP exposure. PLA is degraded with time in soils; therefore, the long-term effects of co-MPs and Cd in soils are suggested to be further studied.
Collapse
Affiliation(s)
- Guoqiang Liu
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Xuanzhu Gu
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jing Wu
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Haidong Li
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Lianghu Su
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Mei Chen
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Sujuan Chen
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Yonghua Liu
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China.
| |
Collapse
|
4
|
Kovačević M, Stjepanović N, Hackenberger DK, Lončarić Ž, Hackenberger BK. Comprehensive study of the effects of strobilurin-based fungicide formulations on Enchytraeus albidus. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1554-1564. [PMID: 36462129 DOI: 10.1007/s10646-022-02609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Excessive application of fungicides in crop fields can cause adverse effects on soil organisms and consequently affect soil properties. Existing knowledge on the effects of strobilurin fungicides has been primarily based on toxicity tests with active ingredients, while the effects of fungicide formulations remain unclear. Therefore, this work aims to provide new data on the effects of three commercial formulations of strobilurin fungicides on the soil organism Enchytraeus albidus. The tested fungicide formulations were Retengo® (pyraclostrobin-PYR), Zato WG 50® (trifloxystrobin-TRI) and Stroby WG® (kresoxim-methyl-KM). In laboratory experiments, multiple endpoints were considered at different time points. The results showed that PYR had the greatest impact on survival and reproduction (LC50 = 7.57 mga.i.kgsoil-1, EC50 = 0.98 mga.i.kgsoil-1), followed by TRI (LC50 = 72.98 mga.i.kgsoil-1, EC50 = 16.93 mga.i.kgsoil-1) and KM (LC50 = 73.12 mga.i.kgsoil-1, EC50 ≥ 30 mga.i.kgsoil-1). After 7 days of exposure, MXR activity was inhibited at the highest concentration of all fungicides tested (6 mgPYRkgsoil-1, 15 mgTRIkgsoil-1 and 30 mgKMkgsoil-1). Furthermore, oxidative stress (induction of SOD, CAT and GST) and lipid peroxidation (increase in MDA) were also observed. In addition, there was a decrease in total available energy after exposure to PYR and KM. Exposure to fungicides resulted in a shift in the proportions of carbohydrates, lipids, and proteins affecting the amount of available energy. In addition to the initial findings on the effects of strobilurin formulations on enchytraeids, the observed results suggest that multiple and long-term exposure to strobilurin formulations in the field could have negative consequences on enchytraeid populations.
Collapse
Affiliation(s)
- Marija Kovačević
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Nikolina Stjepanović
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Davorka K Hackenberger
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia.
| | - Željka Lončarić
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | | |
Collapse
|
5
|
Gomes SIL, de Boer TE, van Gestel CAM, van Straalen NM, Soares AMVM, Roelofs D, Amorim MJB. Molecular mechanisms of zinc toxicity in the potworm Enchytraeus crypticus, analysed by high-throughput gene expression profiling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153975. [PMID: 35183636 DOI: 10.1016/j.scitotenv.2022.153975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Zinc (Zn) is known to be relatively toxic to some soil-living invertebrates including the ecologically important enchytraeid worms. To reveal the molecular mechanisms of zinc toxicity we assessed the gene expression profile of Enchytraeus crypticus (Enchytraeidae), exposed to the reproduction effect concentrations EC10 and EC50, over 4 consecutive days, using a high-throughput microarray (species customized). Three main mechanisms of toxicity to Zn were observed: 1) Zn trafficking (upregulation of zinc transporters, a defence response to regulate the cellular zinc level), 2) oxidative stress (variety of defence mechanisms, triggered by Reactive Oxygen Species (ROS)), and 3) effects on the nervous system (possibly the primary lesion explaining the avoidance behaviour and also why enchytraeids are relatively susceptible to Zn). The adverse outcome at the organism level (reproduction EC50) could be predicted based on gene expression (male gonad development, oocyte maturation), with Zn at the EC50 affecting processes related to higher stress levels. The gene expression response was time-dependent and reflected the cascade of events taking place over-time. The 1 to 4 days of exposure design was a good strategy as it captured the time for sequence of events towards zinc adverse outcomes in E. crypticus.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tjalf E de Boer
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; MicroLife Solutions, Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Nico M van Straalen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Amadeu M V M Soares
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dick Roelofs
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | - Mónica J B Amorim
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Nassar SE, Said RM. Bioremediation assessment, hematological, and biochemical responses of the earthworm (Allolobophora caliginosa) in soil contaminated with crude oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54565-54574. [PMID: 34018111 DOI: 10.1007/s11356-021-13889-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Soil contamination with crude oil is a major environmental problem. The aim of this study was to assess whether the earthworm Allolobophora caliginosa could improve the degradation of petroleum hydrocarbons while enriching soils that were contaminated with crude oil. In addition, the toxic effects of crude oil on earthworms during bioremediation will be assessed. The soil samples were experimentally contaminated with two different quantities of light crude oil 5 or 7.5 ml for 60 days. Activities of A. caliginosa resulted in 33.56% and 54.98% total petroleum hydrocarbon (TPH) losses from the soil contaminated with 5 ml of crude oil after 22 and 60 days; respectively. While in 7.5 ml crude oil-contaminated soil, there was a loss of 32.24% and 71.05% of TPH over the same period of time. During the experiment, however, there were no signs of improvement in soil physicochemical properties. Earthworm tissue analyses at the end of the experiment showed significant bioaccumulation of petroleum hydrocarbons in their tissues and changes in their metabolic and hematological parameters. Earthworms exposed to crude oil showed a significant increase in protein, malondialdehyde, and glutathione but decreased in catalase levels and total antioxidant capacity compared to control earthworm after 60 days of exposure. There was a significant decrease in the Hgb, RBCS, Hct, MCV, MCH, platelet count, and WBCs. As a result, the earthworm Allolobophora caliginosa has been shown to be good bioremediator for oil-contaminated soils and also has potential as a bioindicator for contamination.
Collapse
Affiliation(s)
- Safaa Ezzat Nassar
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | - Radwa Mohamed Said
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Gomes SIL, Neves AB, Scott-Fordsmand JJ, Amorim MJB. Reactive Oxygen Species Detection Using Fluorescence in Enchytraeus crypticus-Method Implementation through Ag NM300K Case Study. TOXICS 2021; 9:232. [PMID: 34678928 PMCID: PMC8541345 DOI: 10.3390/toxics9100232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
An imbalance between reactive oxygen species (ROS) and antioxidants in a living organism results in oxidative stress. Measures of such imbalance can be used as a biomarker of stress in ecotoxicology. In this study, we implemented the ROS detection method based on the oxidant-sensing probe dichloro-dihydro-fluorescein diacetate (DCFH-DA), detected by fluorescence microscopy, in Enchytraeus crypticus adults and cocoons, i.e., also covering the embryo stage. Hydrogen peroxide (H2O2), a well-known ROS inducer, was used both to optimize the method and as positive control. Implementation was successful, and the method was used to assess ROS formation in E. crypticus cocoons and adults when exposed to the reference silver nanomaterial Ag NM300K, at two effect concentrations (EC20 and EC50) for both hatching and reproduction over 3 and 7 days. The measured ROS levels varied with time, concentration, and developmental stage, with higher levels detected in adults compared with cocoons. In cocoons, ROS levels were higher at the EC20 than the EC50, which could be explained by non-monotonic concentration-response curve for hatching and reproduction, as previously observed. The increase in ROS levels at day 3 preceded the oxidative damage, as reported to occur later (day 7) in adults. The DCFH-DA method was successfully implemented here and can be further used as a new tool to detect ROS formation in E. crypticus, especially after short-term exposure to chemicals, including nanomaterials. We recommend the use of 3 and 7 days in the exposure design for this assessment.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana B Neves
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, P.O. Box 314, DK-8600 Silkeborg, Denmark
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Li S, Li J, Li Z, Ke X, Wu L, Christie P. Toxic effects of norfloxacin in soil on fed and unfed Folsomia candida (Isotomidae: Collembola) and on gut and soil microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147793. [PMID: 34034166 DOI: 10.1016/j.scitotenv.2021.147793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Soils contaminated with antibiotics may exert effects on soil-dwelling animals. A systematic ecological toxicity assessment of norfloxacin on the soil collembolan Folsomia candida (F. candida) was therefore conducted in soil and Petri dish systems with and without feeding at the population, individual and cellular levels. The indicators survival, reproduction, antioxidant enzyme activities peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD), malondialdehyde (MDA) contents and gut microbiota were studied. The surrounding soil microbiota were also investigated because F. candida can ingest soil microbiota that may have effects on the gut microbiota. In general, the toxicity of norfloxacin to F. candida in contaminated soil without food addition was higher than in contaminated soil with food addition. Norfloxacin had little effect at population and individual levels but antioxidant enzyme activities changed significantly in treatments with longer exposure times or higher norfloxacin concentrations. CAT was more sensitive than SOD or POD. The diversity indices and composition at phylum level of the gut microbiota showed little change. However, the operational taxonomic units in the gut decreased in the presence of norfloxacin. The relative abundance of Wolbachia, the predominant bacterial genus in the gut, decreased significantly with increasing soil norfloxacin concentration. Wolbachia may therefore be a promising bioindicator in the assessment of norfloxacin pollution of soils at environmental concentrations.
Collapse
Affiliation(s)
- Simin Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhu Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xin Ke
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
9
|
Lisbôa RDM, Storck TR, Silveira ADO, Wolff D, Tiecher TL, Brunetto G, Clasen B. Ecotoxicological responses of Eisenia andrei exposed in field-contaminated soils by sanitary sewage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112049. [PMID: 33647852 DOI: 10.1016/j.ecoenv.2021.112049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 05/21/2023]
Abstract
The disposal of untreated sanitary sewage in the soil has several consequences for human health and leads to environmental risks; thus, it is necessary investigating, monitoring and remediating the affected sites. The aims of the current study are to evaluate ecotoxicological effects on Eisenia andrei earthworms exposed to soil subjected to sources of sanitary sewage discharge and to investigate whether prevention values established by the Brazilian legislation for soil quality, associated with the incidence of chemical substances in it, are satisfactory enough to assure the necessary quality for different organisms. Earthworms' behavior, reproduction, acetylcholinesterase activity, catalase, superoxide dismutase and malondialdehyde levels were evaluated. The reproduction and behavior of earthworms exposed to sanitary sewage were adversely affected. Increased superoxide dismutase and catalase activity acted as antioxidant defense mechanism. Significantly increased lipid peroxidation levels and acetylcholinesterase activity inhibition have indicated lipid peroxidation in cell membrane and neurotransmission changes, respectively. Results have confirmed that sanitary sewage induced oxidative stress in earthworms. In addition, based on biochemical data analysis, the integrated biomarker response (IBR) has evidenced different toxicity levels in earthworms between the investigated points. Finally, results have indicated that effluents released into the soil, without proper treatment, lead to contaminant accumulation due to soil saturation and it can hinder different processes and biological development taking place in the soil. In addition, the current study has shown that physical-chemical analyses alone are not enough to assess soil quality, since it is also requires adopting an ecotoxicological approach. Brazilian legislation focused on soil quality must be revised and new guiding values must be proposed.
Collapse
Affiliation(s)
- Roberta de Moura Lisbôa
- Pós-Graduate Program in Civil Engineering (PPGEC), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Tamiris Rosso Storck
- Pós-Graduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Andressa de Oliveira Silveira
- Pós-Graduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Delmira Wolff
- Pós-Graduate Program in Civil Engineering (PPGEC), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; Pós-Graduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Tadeu Luis Tiecher
- Rio Grande do Sul Federal Institute, Campus Restinga, Porto Alegre 91791-508, RS, Brazil
| | - Gustavo Brunetto
- Soil Science Department, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Barbara Clasen
- Pós-Graduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; State University of Rio Grande do Sul, Environmental Science Department, Porto Alegre 90010-191, RS, Brazil.
| |
Collapse
|
10
|
Gomes SIL, Ammendola A, Casini S, Amorim MJB. Toxicity of fungicides to terrestrial non-target fauna - Formulated products versus active ingredients (azoxystrobin, cyproconazole, prothioconazole, tebuconazole) - A case study with Enchytraeus crypticus (Oligochaeta). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142098. [PMID: 32911151 DOI: 10.1016/j.scitotenv.2020.142098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Despite the high usage of pesticides in current agricultural practices, its effects to humans and to the environment (non-target species) are a continuous concern. Soil dwelling organisms are among the first in line of exposure to pesticides, however their risks are often based on the pure active ingredient (a.i.) and not on the commercial formulated products (FPs) actually applied in the fields. In the present study, we investigated the effects of two fungicide FPs versus its a.i. (s): Amistar® XTRA and the respective a.i. (s) azoxystrobin and cyproconazole, and Prosaro® 250 EC and the respective a.i. (s) prothioconazole and tebuconazole, to the non-target soil oligochaete Enchytraeus crypticus. The standard Enchytraeid Reproduction Test was used to assess effects on survival and reproduction. Results showed that Amistar was more toxic than Prosaro, particularly for reproduction (EC50 = 161 mg Amistar/kg soil, EC50 = 350 mg Prosaro/kg soil). For both FPs, reproductive effects were mainly related to one of its a.i. (s) (azoxystrobin [EC50 = 37 mg azosxystrobin/kg soil] for Amistar, and tebuconazole [EC50 = 41 mg tebuconazole/kg soil] for Prosaro), while lethal effects were not predicted by the toxicity of its a.i. (s) (particularly in the case of Prosaro, which was more toxic than its a.i. (s)). These findings highlight the need to further explore the toxicity data of the FPs compared to the a.i. (s), aiming to predict a more realistic environmental hazard of pesticides.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Anna Ammendola
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
11
|
Li S, Jia M, Li Z, Ke X, Wu L, Christie P. Ecotoxicity of arsenic contamination toward the soil enchytraeid Enchytraeus crypticus at different biological levels: Laboratory studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111218. [PMID: 32927160 DOI: 10.1016/j.ecoenv.2020.111218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/23/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
The ecotoxicity of arsenic (As) contamination toward small soil fauna living in soil pore water such as soil enchytraeids has rarely been studied but is important in the assessment of soil pollution. Here, the endpoints of As ecotoxicity to Enchytraeus crypticus were studied at three biological levels, i.e., individual (morphology and body tissue As concentrations), population (survival, reproduction and growth) and cell biochemistry (antioxidant enzymes CAT, POD and SOD and peroxidation malondialdehyde MDA). Contact filter paper tests without soil and single species tests with OECD artificial and field soils were conducted. Arsenic contamination resulted in severe morphological pathologies in E. crypticus and the symptoms and degree of damage increased gradually with increasing As concentration and exposure time up to 48 h. The abnormal morphological effects occurred before the impairment of fecundity. The population endpoints responded to the As concentration and the EC50 values increased in the following sequence: reproduction, juvenile body weight, adult body weight, juvenile length and adult length. Changes in biochemistry parameters were induced rapidly and changed with increasing As concentration and exposure time. The activity peak values of enzymes were 3-5 times higher and the activity maximum values of MDA were 1-3 time higher than their controls. The sensitivity of enzyme activities was generally much higher than that of MDA and CAT generally showed the highest enzyme activity. The results indicate that As contamination can be very harmful to soil enchytraeids and the endpoints of the ecotoxicity tests of soil enchytraeids can be used to complement existing soil As assessment systems or may be used alone for the assessment of soil As pollution.
Collapse
Affiliation(s)
- Simin Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyun Jia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
12
|
Felipe MC, Bernegossi AC, Castro GB, Pinheiro FR, Nadai BL, Cardoso-Silva BN, Corbi JJ. The use of an Allonais inaequalis reproduction test as an ecotoxicological bioassay. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:634-638. [PMID: 32440860 DOI: 10.1007/s10646-020-02232-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2020] [Indexed: 05/21/2023]
Abstract
Ecotoxicological bioassays have been widely utilized to evaluate the toxicity of substances to organisms. However, the main challenge for researchers is finding native species to assess the effects of pollutants on aquatic biota. The tropical Oligochaeta, Allonais inaequalis, can be used as a test organism in bioassays to understand the effects of toxicants on aquatic ecosystems and their impact on native aquatic biota. In this study, we tested four methodological designs to validate the use of our "Allonais inaequalis reproduction test" as an ecotoxicological bioassay. For each sample, the assay consisted of a bottle containing 10 mg of sterilized fine sand, 60 mL of dechlorinated tap water and 6 organisms, fed at the beginning of the test and again after 5 days. The assay was first established in a controlled environment and then used to evaluate a stressed environment containing one of the following three toxicants suggested by the OECD (2008) and Corbi et al. (2015): zinc chloride, copper sulfate, or potassium chloride. Our results showed that the best experimental design for reproduction analysis was a static, long-term bioassay, which lasted 10 days without aeration and allowed for the reproduction of multiple generations (10 ± 5 new organisms). The observed inhibition reproduction by toxicants (EC50 ranging between 0.2 mg L-1 and 1.36 g L-1) validated the methods used in this paper. The use of a reproduction endpoint is a new contribution to the ecotoxicological toolbox, examining responses from a native organism to predict the effects of pollutants in an aquatic environment.
Collapse
Affiliation(s)
- M C Felipe
- Department of Hydraulic and Sanitation (SHS), Ecology of Aquatic Environments Laboratory, School of Engineering of Sao Carlos, University of Sao Paulo - USP, CEP 13566-590, Sao Carlos, SP, Brazil.
| | - A C Bernegossi
- Department of Hydraulic and Sanitation (SHS), Ecology of Aquatic Environments Laboratory, School of Engineering of Sao Carlos, University of Sao Paulo - USP, CEP 13566-590, Sao Carlos, SP, Brazil
| | - G B Castro
- Department of Hydraulic and Sanitation (SHS), Ecology of Aquatic Environments Laboratory, School of Engineering of Sao Carlos, University of Sao Paulo - USP, CEP 13566-590, Sao Carlos, SP, Brazil
| | - F R Pinheiro
- Department of Hydraulic and Sanitation (SHS), Ecology of Aquatic Environments Laboratory, School of Engineering of Sao Carlos, University of Sao Paulo - USP, CEP 13566-590, Sao Carlos, SP, Brazil
| | - B L Nadai
- Department of Hydraulic and Sanitation (SHS), Ecology of Aquatic Environments Laboratory, School of Engineering of Sao Carlos, University of Sao Paulo - USP, CEP 13566-590, Sao Carlos, SP, Brazil
| | - B N Cardoso-Silva
- Department of Hydraulic and Sanitation (SHS), Ecology of Aquatic Environments Laboratory, School of Engineering of Sao Carlos, University of Sao Paulo - USP, CEP 13566-590, Sao Carlos, SP, Brazil
| | - J J Corbi
- Department of Hydraulic and Sanitation (SHS), Ecology of Aquatic Environments Laboratory, School of Engineering of Sao Carlos, University of Sao Paulo - USP, CEP 13566-590, Sao Carlos, SP, Brazil
| |
Collapse
|
13
|
Li Y, Guo P, Liu Y, Su H, Zhang Y, Deng J, Wu Y. Effects of sulfur on the toxicity of cadmium to Folsomia candida in red earth and paddy soil in southern Fujian. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121683. [PMID: 31771886 DOI: 10.1016/j.jhazmat.2019.121683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 05/23/2023]
Abstract
Sulfur has been shown to mitigate the toxic effects of metals on soil organisms. Here we report the effects of sulfur on cadmium toxicity to the collembolan Folsomia candida in soil, including its effects on glutathione (GSH) level, catalase (CAT) activity and metallothionein (MT) content. Following sulfur treatment, catalase, glutathione and metallothionein activities were all significantly increased in cadmium-contaminated soil, and as the cadmium concentration increased, the activities decreased. In addition, because of the reducing effects of pH and organic matter on cadmium bioavailability, the bioavailable cadmium varied among soils of different pH values and organic matter contents, causing the catalase activity, glutathione content and metallothionein levels of F. candida to vary among soils. Our study suggests that sulfur can affect the toxicity of certain concentrations of cadmium and that soil properties are very important to consider. This study provides insight into the effects of sulfur application on soil animals.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Peiyong Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China.
| | - Yongjun Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Haitao Su
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Yuxuan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Jun Deng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Yanmei Wu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
14
|
Fajana HO, Gainer A, Jegede OO, Awuah KF, Princz JI, Owojori OJ, Siciliano SD. Oppia nitens C.L. Koch, 1836 (Acari: Oribatida): Current Status of Its Bionomics and Relevance as a Model Invertebrate in Soil Ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2593-2613. [PMID: 31433516 DOI: 10.1002/etc.4574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The oribatid soil mite Oppia nitens C.L. Koch, 1836, is a model microarthropod in soil ecotoxicity testing. This species has a significant role in supporting soil functions and as a suitable indicator of soil contamination. Despite its significance to the environment and to ecotoxicology, however, very little is known of its biology, ecology, and suborganismal responses to contaminants in the soil. In the present review, we present detailed and critical insights into the biology and ecology of O. nitens in relation to traits that are crucial to its adaptive responses to contaminants in soil. We used a species sensitivity distribution model to rank the species sensitivity to heavy metals (cadmium and zinc) and neonicotinoids (imidacloprid and thiacloprid) compared with other standardized soil invertebrates. Although the International Organization for Standardization and Environment and Climate Change Canada are currently standardizing a protocol for the use of O. nitens in soil toxicity testing, we believe that O. nitens is limited as a model soil invertebrate until the molecular pathways associated with its response to contaminants are better understood. These pathways can only be elucidated with information from the mites' genome or transcriptome, which is currently lacking. Despite this limitation, we propose a possible molecular pathway to metal tolerance and a putative adverse outcome pathway to heavy metal toxicity in O. nitens. Environ Toxicol Chem 2019;38:2593-2613. © 2019 SETAC.
Collapse
Affiliation(s)
- Hamzat O Fajana
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amy Gainer
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Olukayode O Jegede
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kobby F Awuah
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Juliska I Princz
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | | - Steven D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Mosolloane PM, Bredenhand E, Otomo PV. Laboratory assessment of the ecotoxic effects of sewage sludge from the Maluti-Drakensberg region on a terrestrial oligochaete species. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:86-91. [PMID: 30570699 DOI: 10.1007/s10646-018-2002-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
We used the Enchytraeid Reproduction Test to evaluate the potential ecotoxic effects of sewage sludge samples on terrestrial oligochaetes in an Afromontane area. The sludge samples were collected from two wastewater treatment plants near the towns of Phuthaditjhaba and Harrismith in the Afromontane region of the eastern Free State in South Africa. Laboratory experiments revealed that although the sludge samples were not detrimental to the survival of Enchytraeus albidus (p > 0.05); they were able to significantly hinder its reproduction (p < 0.01). Through metal analyses, the sludge samples were found to belong to the relatively "best quality" pollutant class a sludge which is deemed suitable for land disposal and use as soil amendment for agricultural purposes. Herein, we point to the fact that the current South African sewage sludge disposal guidelines may not insure the protection of beneficial soil dwelling invertebrates such as oligochaetes. Our contribution also highlights the paucity of studies with an emphasis on environmental pollution in mountain areas across Africa and should signal a need for broader environmental considerations such as environmental pollution to be taken into account in the existing mountain invertebrate conservation methodologies.
Collapse
Affiliation(s)
- Portia Mamosebetsi Mosolloane
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, South Africa
- Afromontane Research Unit, University of the Free State, QwaQwa Campus, Phuthaditjhaba, Free State, South Africa
| | - Emile Bredenhand
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, South Africa
| | - Patricks Voua Otomo
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, South Africa.
- Afromontane Research Unit, University of the Free State, QwaQwa Campus, Phuthaditjhaba, Free State, South Africa.
| |
Collapse
|
16
|
Gomes SIL, Gonçalves MFM, Bicho RC, Roca CP, Soares AMVM, Scott-Fordsmand JJ, Amorim MJB. High-throughput gene expression in soil invertebrate embryos - Mechanisms of Cd toxicity in Enchytraeus crypticus. CHEMOSPHERE 2018; 212:87-94. [PMID: 30142569 DOI: 10.1016/j.chemosphere.2018.08.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 05/21/2023]
Abstract
Gene expression can vary with the organisms' life stage. It is known that embryos can be more sensitive to toxicant exposure, as previously demonstrated for Enchytraeus crypticus (Oligochaeta) exposed to cadmium (Cd), known to cause embryotoxicity and hatching delay. It was shown that Ca enters embryos via the L-type Ca channels in the cocoon membrane, this being affected in Cd exposed embryos (Cd-Ca competition is well-known). In the present study, the embryotoxic mechanisms of Cd were studied via high-throughput gene expression for E. crypticus. Cocoons (1-2 days old), instead of the adult organism, were exposed in Cd spiked LUFA 2.2 soil during 1 day. Results showed that Cd affected Ca homeostasis which is implicated in several other molecular processes. Several of the major modulators of Cd toxicity (e.g., impaired gene expression, cell cycle arrest, DNA and mitochondrial damage) were identified in the embryos showing its relevancy as a model in ecotoxicogenomics. The draft Adverse Outcome Pathway was improved. Previously was hypothesized that gene regulation mechanisms were activated to synthesize more Ca channel proteins - this was confirmed here. Further, novel evidences were that, besides the extracellular competition, Cd competes intracellularly which causes a reduction in Ca efflux, and potentiates Cd embryotoxicity.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | | | - Rita C Bicho
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlos P Roca
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600, Silkeborg, Denmark
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600, Silkeborg, Denmark
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Hrda K, Pouzar M, Knotek P. Study of zinc oxide nanoparticles and zinc chloride toxicity to annelid Enchytraeus crypticus in modified agar-based media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22702-22709. [PMID: 29851017 DOI: 10.1007/s11356-018-2356-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Acute toxicity of zinc oxide nanoparticle (ZnO-NP, mean particle size diameter of 10 nm) powder and water-soluble salt of zinc (ZnCl2) to annelid Enchytraeus crypticus was tested using an agar-based nutrient-enriched medium with the addition of kaolin and humic acids (HA). Adults of the E. crypticus were cultivated in pure agar and in three types of modified exposure media containing different proportions of model soil constituents. Potworms were exposed to zinc in both forms (1-1000 mg kg-1 of agar) for 96 h. In experiments with ZnCl2, toxicity of zinc was the highest in pure agar followed by agar with HA and agar with kaolin and HA and the lowest toxicity was observed in agar with kaolin. The corresponding LC50 values were 13.2, 28.8, 39.4, and 75.4 mg kg-1 respectively. In contrast, zinc in the form of ZnO-NPs was most toxic in the presence of HA followed by pure agar, agar with kaolin, and kaolin with HA. In this case, LC50 values were 15.8, 43.5, 111, and 122 mg kg-1 respectively. Scanning electron microscopy revealed that the smallest agglomerates occurred in the presence of kaolin, where ZnO-NPs were sealed in a kaolin shell. This effect reduced the bioavailability and toxicity of the NPs. In contrast, larger agglomerates were observed in the presence of HA but a larger amount of zinc was dispersed in the volume of agar.
Collapse
Affiliation(s)
- Katerina Hrda
- Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Miloslav Pouzar
- Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Square of Czechoslovak legions 565, 530 02, Pardubice, Czech Republic.
| | - Petr Knotek
- Faculty of Chemical Technology, Department of General and Inorganic Chemistry, University of Pardubice, Studentska 573, 530 02, Pardubice, Czech Republic
| |
Collapse
|
18
|
Nyoka NWK, Kanyile SN, Bredenhand E, Prinsloo GJ, Voua Otomo P. Biochar alleviates the toxicity of imidacloprid and silver nanoparticles (AgNPs) to Enchytraeus albidus (Oligochaeta). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10937-10945. [PMID: 29397515 DOI: 10.1007/s11356-018-1383-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/24/2018] [Indexed: 05/24/2023]
Abstract
The present study investigated the use of biochar for the alleviation of the toxic effects of a nanosilver colloidal dispersion and a chloronicotinyl insecticide. The survival and reproduction of the potworm Enchytraeus albidus were assessed after exposure to imidacloprid and silver nanoparticles (AgNPs). E. albidus was exposed to 0, 25, 50, 100, 200, and 400 mg imidacloprid/kg and 0, 5, 25, 125, and 625 mg Ag/kg for 21 days in 10% biochar amended and non-biochar amended OECD artificial soil. In both exposure substrates, the effects of imidacloprid on survival were significant in the two highest treatments (p < 0.01). No biochar effect was observed as survival was statistically similar in both soils after exposure to imidacloprid. In the case of AgNPs, significant mortality was only observed in the highest AgNP treatments in both the amended and non-amended soils (p < 0.05). Nevertheless, statistically greater survival occurred in the biochar-amended treatment (p < 0.05). Reproduction results showed a more pronounced biochar effect with an EC50 = 22.27 mg imidacloprid/kg in the non-amended soil and a higher EC50 = 46.23 mg imidacloprid/kg in the biochar-amended soil. This indicated a 2-fold decrease in imidacloprid toxicity due to biochar amendment. A similar observation was made in the case of AgNPs where a reproduction EC50 = 166.70 mg Ag/kg soil in the non-amended soil increased to an EC50 > 625 mg Ag/kg soil (the highest AgNP treatment) in the amended soil. This indicated at least a 3.7-fold decrease in AgNPs toxicity due to biochar amendment. Although more studies may be needed to optimize the easing effects of biochar on the toxicity of these chemicals, the present results show that biochar could be useful for the alleviation of the toxic effects of imidacloprid and silver nanoparticles in the soil.
Collapse
Affiliation(s)
- Ngitheni Winnie-Kate Nyoka
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa
| | - Sthandiwe Nomthandazo Kanyile
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa
| | - Emile Bredenhand
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa
| | - Godfried Jacob Prinsloo
- Department of Crop Protection, Agriculture Research Council-Small Grain Institute, Private Bag x29, Bethlehem, 9700, Republic of South Africa
| | - Patricks Voua Otomo
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa.
| |
Collapse
|
19
|
Buch AC, Schmelz RM, Niva CC, Correia MEF, Silva-Filho EV. Mercury critical concentrations to Enchytraeus crypticus (Annelida: Oligochaeta) under normal and extreme conditions of moisture in tropical soils - Reproduction and survival. ENVIRONMENTAL RESEARCH 2017; 155:365-372. [PMID: 28273622 DOI: 10.1016/j.envres.2017.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
Soil provides many ecosystem services that are essential to maintain its quality and healthy development of the flora, fauna and human well-being. Environmental mercury levels may harm the survival and diversity of the soil fauna. In this respect, efforts have been made to establish limit values of mercury (Hg) in soils to terrestrial fauna. Soil organisms such as earthworms and enchytraeids have intimate contact with trace metals in soil by their oral and dermal routes, reflecting the potentially adverse effects of this contaminant. The main goal of this study was to obtain Hg critical concentrations under normal and extreme conditions of moisture in tropical soils to Enchytraeus crypticus to order to assess if climate change may potentiate their acute and chronic toxicity effects. Tropical soils were sampled from of two Forest Conservation Units of the Rio de Janeiro State - Brazil, which has been contaminated by Hg atmospheric depositions. Worms were exposed to three moisture conditions, at 20%, 50% and 80% of water holding capacity, respectively, and in combination with different Hg (HgCl2) concentrations spiked in three types of tropical soil (two natural soils and one artificial soil). The tested concentrations ranged from 0 to 512mg Hg kg-1 dry weight. Results indicate that the Hg toxicity is higher under increased conditions of moisture, significantly affecting survival and reproduction rate.
Collapse
Affiliation(s)
- Andressa Cristhy Buch
- Department of Environmental Geochemistry, Fluminense Federal University, Outeiro São João Baptista, s/n., Centro, 24020-007 Niterói, RJ, Brazil.
| | - Rüdiger M Schmelz
- ECT Oekotoxikologie GmbH, Boettgerstr. 2-14, D-65439 Flörsheim/Main, Germany
| | - Cintia Carla Niva
- Embrapa Cerrados, BR 020 km. 18, Rodovia Brasília/Fortaleza, 73310-970 Planaltina, DF, Brazil
| | | | - Emmanoel Vieira Silva-Filho
- Department of Environmental Geochemistry, Fluminense Federal University, Outeiro São João Baptista, s/n., Centro, 24020-007 Niterói, RJ, Brazil
| |
Collapse
|
20
|
Pedrosa J, Gravato C, Campos D, Cardoso P, Figueira E, Nowak C, Soares AMVM, Barata C, Pestana JLT. Investigating heritability of cadmium tolerance in Chironomus riparius natural populations: A physiological approach. CHEMOSPHERE 2017; 170:83-94. [PMID: 28006760 DOI: 10.1016/j.chemosphere.2016.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/06/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Physiological responses allow populations to cope with metal contamination and can be involved in the evolution of tolerance under historical metal contamination scenarios. Here we investigate physiological aspects that might be underlying the heritable high tolerance to cadmium (Cd) in two Chironomus riparius populations collected from historically metal contaminated sites in comparison to two populations from reference sites. To evaluate differences in the physiological response to short-term Cd exposure, protein expression profiles, metallothioneins [MTs] and several antioxidant defences such as total glutathione (GSHt), catalase (CAT) and glutathione-S-transferases [GSTs], were measured in all four populations reared for at least 8 generations under laboratory clean conditions. Cd-induced oxidative damage in lipids and energy related parameters (energy consumption and energy reserves) were also assessed. Results showed two major gradients of protein profiles according to Cd concentration and population tolerance. Furthermore, Cd-tolerant populations showed higher baseline levels of MTs and GSHt while Cd-sensitive populations, collected from reference sites, showed significant induction of GSHt levels with Cd exposure that were nonetheless insufficient to avoid increased oxidative damage to lipids. Cd exposure had no clear effects on the antioxidant enzymes or energy reserves but triggered a general increase in energy consumption. Finally, energy consumption was higher in Cd-tolerant populations across experimental conditions. Altogether, results demonstrate that inherited Cd-tolerance in these midge populations is related, at least in part, with different constitutive levels and plasticity of different defence mechanisms confirming the validity of using multiple physiological traits when studying evolution of tolerance.
Collapse
Affiliation(s)
- João Pedrosa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany.
| | - Carlos Gravato
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
21
|
Oropesa AL, Novais SC, Lemos MFL, Espejo A, Gravato C, Beltrán F. Oxidative stress responses of Daphnia magna exposed to effluents spiked with emerging contaminants under ozonation and advanced oxidation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1735-1747. [PMID: 27796982 DOI: 10.1007/s11356-016-7881-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Integration of conventional wastewater treatments with advanced oxidation processes (AOPs) has become of great interest to remove pharmaceuticals and their metabolites from wastewater. However, application of these technologies generates reactive oxygen species (ROS) that may reach superficial waters through effluents from sewage treatment plants. The main objective of the present study was to elucidate if ROS present in real effluents after biological and then chemical (single ozonation, solar photolytic ozonation, solar photocatalytic ozonation (TiO2, Fe3O4) and solar photocatalytic oxidation (TiO2)) treatments induce oxidative stress in Daphnia magna. For this, the activity of two antioxidant enzymes (superoxide dismutase and catalase) and the level of lipid peroxidation were determined in Daphnia. The results of oxidative stress biomarkers studied suggest that D. magna is able to cope with the superoxide ion radical (O2·-) present in the treated effluent due to single ozonation by mainly inducing the antioxidant activity superoxide dismutase, thus preventing lipid peroxidation. Lethal effects (measured in terms of immobility) were not observed in these organisms after exposure to any solution. Therefore, in order to probe the ecological efficiency of urban wastewater treatments, studies on lethal and sublethal effects in D. magna would be advisable.
Collapse
Affiliation(s)
- Ana Lourdes Oropesa
- Unidad de Toxicología, Departamento de Sanidad Animal, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
- INBIO G+C - Instituto Universitario de Investigación en Biotecnología Ganadera y Cinegética, Universidad de Extremadura, 10003, Cáceres, Spain.
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Azahara Espejo
- Departamento de Ingeniería Química y Química Física, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - Carlos Gravato
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando Beltrán
- Departamento de Ingeniería Química y Química Física, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
- IACYS - Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad, Universidad de Extremadura, 06071, Badajoz, Spain
| |
Collapse
|
22
|
Gomes SIL, Soares AMVM, Amorim MJB. Effect of Cu and Ni on cellular energy allocation in Enchytraeus albidus. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1523-1530. [PMID: 27582176 DOI: 10.1007/s10646-016-1706-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
Effects of nickel and copper on Enchytraeus albidus (Oligochaeta) were investigated using the cellular energy allocation approach. This methodology is used to evaluate the energetic status of an organism and is indicative of its overall condition. Enchytraeids were exposed to the reproduction Effect Concentrations (EC50 and EC90), and the parameters measured were the total energy reserves available (protein, carbohydrate and lipid budgets) and the energy consumption [based on electron transport system activity] which were further integrated to obtain the cellular energy allocation over different periods of exposure (0-2, 2-4 and 4-8 days). Carbohydrates (in comparison to lipids and proteins) were the only energy source mobilized in the case of nickel within 8 days of exposure. For copper exposure, protein budgets were also strongly reduced. Energy consumption increased in a time and dose-dependent way for copper and in the longer exposure period (4-8 days) at the EC90 for Ni exposure, indicating that this is a good biomarker for effects of short-time metal exposure, while cellular energy allocation was only significantly reduced for the EC90 of copper (4-8 days) and EC50 of nickel (2-4 days). The effects of nickel at concentrations causing 50 and 90 % decrease in reproduction were likely not due to the changes in cellular energy allocation within 8 days of exposure.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal.
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
23
|
Tiwari RK, Singh S, Pandey RS, Sharma B. Enzymes of Earthworm as Indicators of Pesticide Pollution in Soil. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aer.2016.44011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Silva ALP, Amorim MJB, Holmstrup M. Salinity changes impact of hazardous chemicals in Enchytraeus albidus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2159-2166. [PMID: 25943329 DOI: 10.1002/etc.3058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/19/2014] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Supralittoral ecosystems are among the most challenging environments for soil organisms, particularly when salinity fluctuations are involved, frequently combined with the presence of contaminants as a result of intense anthropogenic activities. Knowledge of how salinity influences the effect of contaminants in supralittoral species is crucial for determining the safety factors required when extrapolating results from optimal laboratory conditions to these natural ecosystems. The present study therefore evaluated the effects of 2 metals (copper and cadmium) and 2 organic compounds (carbendazim and 4-nonylphenol) in the absence or presence of 15‰ NaCl in the potworm Enchytraeus albidus, a model organism for ecotoxicology studies commonly found in supralittoral ecosystems, The potworms had a higher reproduction in saline soil than in control soil. Moreover, the effects of copper and carbendazim on reproduction were smaller than when they were tested in nonsaline soil. Potworms exposed to nonsaline soils also had significantly higher tissue concentrations of metals, which partly explains the effects on reproduction. The influence of salinity on effects of 4-nonylphenol was, however, less clear; effects on survival decreased in saline soil, but effects on reproduction were highest in saline soil. The latter slightly correlated with tissue concentrations of the chemical. The present study provides the first evidence that soil salinity has a significant influence on the impact of contaminants evaluated with the enchytraeid reproduction test.
Collapse
Affiliation(s)
- Ana L Patrício Silva
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Mónica J B Amorim
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Martin Holmstrup
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Arctic Research Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Sivakumar S. Effects of metals on earthworm life cycles: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:530. [PMID: 26215824 DOI: 10.1007/s10661-015-4742-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/14/2015] [Indexed: 05/21/2023]
Abstract
Earthworms are abundant and ecologically very important organisms in the soil ecosystem. Impacts by pollutants on earthworm communities greatly influence the fertility of the terrestrial environment. In ecotoxicology, earthworms are good indicators of metal pollution. The observed median lethal concentrations (LC50) and the effective concentrations that cause 50% reduction of earthworm growth and reproduction (EC50) are referred to as toxicity concentrations or endpoints. In addition, the 'no observed effective concentration' (NOEC) is the estimation of the toxicity of metals on earthworms expressed as the highest concentration tested that does not show effects on growth and reproduction compared to controls. This article reviews the ecotoxicological parameters of LC50, EC50 and NOEC of a set of worms exposed to a number of metals in various tested media. In addition, this article reviews metal accumulation and the influences of soil characteristics on metal accumulation in earthworms. Morphological and behavioural responses are often used in earthworm toxicity studies. Therefore, earthworm responses due to metal toxicity are also discussed in this article.
Collapse
Affiliation(s)
- S Sivakumar
- Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do, 627-706, South Korea,
| |
Collapse
|
26
|
Quintaneiro C, Ranville J, Nogueira AJA. Effects of the essential metals copper and zinc in two freshwater detritivores species: Biochemical approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 118:37-46. [PMID: 25899672 DOI: 10.1016/j.ecoenv.2015.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
The input of metals into freshwater ecosystems from natural and anthropogenic sources impairs water quality and can lead to biological alterations in organisms and plants, compromising the structure and the function of these ecosystems. Biochemical biomarkers may provide early detection of exposure to contaminants and indicate potential effects at higher levels of biological organisation. The effects of 48h exposures to copper and zinc on Atyaephyra desmarestii and Echinogammarus meridionalis were evaluated with a battery of biomarkers of oxidative stress and the determination of ingestion rates. The results showed different responses of biomarkers between species and each metal. Copper inhibited the enzymatic defence system of both species without signs of oxidative damage. Zinc induced the defence system in E. meriodionalis with no evidence of oxidative damage. However, in A. desmarestii exposed to zinc was observed oxidative damage. In addition, only zinc had significantly reduced the ingestion rate and just for E. meridionalis. The value of the integrated biomarkers response increased with concentration of both metals, which indicates that might be a valuable tool to interpretation of data as a whole, as different parameters have different weight according to type of exposure.
Collapse
Affiliation(s)
- C Quintaneiro
- CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-191 Aveiro, Portugal.
| | - J Ranville
- Department of Chemistry and Geochemistry, Colorado School of Mines,1012 14th Street, Golden, CO 80401, USA
| | - A J A Nogueira
- CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-191 Aveiro, Portugal
| |
Collapse
|
27
|
Gomes SIL, Hansen D, Scott-Fordsmand JJ, Amorim MJB. Effects of silver nanoparticles to soil invertebrates: oxidative stress biomarkers in Eisenia fetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:49-55. [PMID: 25618366 DOI: 10.1016/j.envpol.2015.01.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/26/2014] [Accepted: 01/06/2015] [Indexed: 05/23/2023]
Abstract
Silver nanoparticles (Ag-NPs) are among the most produced NPs worldwide having several applications in consumer products. Ag-NPs are known to cause oxidative stress in several organisms and cell lines, however comparatively less information is available regarding their effects on soil living invertebrates. The purpose of this study was to investigate if Ag-NPs cause oxidative stress on soil invertebrates. The model soil species Eisenia fetida was used. Our results showed that total glutathione (TG) is the first mechanism triggered by Ag-NPs, followed by glutathione peroxidase (GPx) and glutathione reductase (GR), however oxidative damage was observed for higher doses and exposure time (increased lipid peroxidation, LPO). AgNO3 exposure caused impairment in GPx and glutathione-S-transferase (GST), probably as result of the higher bioavailability of Ag in the salt-form. The current results indicate that effects are partly caused by Ag ions released from Ag-NPs, but specific particle effects cannot be excluded.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ditte Hansen
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg, Denmark
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg, Denmark
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
28
|
Kim WK, Lee SK, Park JW, Choi K, Cargo J, Schlenk D, Jung J. Integration of multi-level biomarker responses to cadmium and benzo[k]fluoranthene in the pale chub (Zacco platypus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:121-128. [PMID: 25217733 DOI: 10.1016/j.ecoenv.2014.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
The Cd exposure for 14 days significantly increased both the molecular (DNA single-strand breaks) and biochemical (metallothionein concentrations) biomarkers in the freshwater pale chub, Zacco platypus, whereas changes in the histological and physiological biomarker responses were negligible. The BkF exposure for 14 days led to significant increases in the mRNA expression of catalase and superoxide dismutase, 7-ethoxyresorufin-O-deethylase enzymatic activity and DNA single-strand breakage at the molecular and biochemical levels. In addition, exposure to 50μg/L of BkF induced histological alteration in the liver, with significant changes to the liver somatic index and condition factor at the physiological level. The integration of multi-level biomarker responses at the molecular, biochemical and physiological levels was highly correlated with the concentrations of Cd and BkF.
Collapse
Affiliation(s)
- Woo-Keun Kim
- Future Environmental Research Center, Korea Institute of Toxicology, Jinju 660-844, Korea
| | - Sung-Kyu Lee
- Future Environmental Research Center, Korea Institute of Toxicology, Jinju 660-844, Korea
| | - June-Woo Park
- Future Environmental Research Center, Korea Institute of Toxicology, Jinju 660-844, Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 151-742, Korea
| | - Jordan Cargo
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | - Daniel Schlenk
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-713, Korea.
| |
Collapse
|
29
|
Novais SC, Gomes NC, Soares AMVM, Amorim MJB. Antioxidant and neurotoxicity markers in the model organism Enchytraeus albidus (Oligochaeta): mechanisms of response to atrazine, dimethoate and carbendazim. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1220-1233. [PMID: 24912478 DOI: 10.1007/s10646-014-1265-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The present study aimed to investigate the effects of dimethoate, atrazine and carbendazim on the antioxidant defences and neuronal function of the soil organism Enchytraeus albidus. Effects were studied at concentrations known to affect their reproduction (EC20, EC50 and EC90) and along time (2, 4, 8, 14 and 21 days). In general, responses were more pronounced at periods of exposure longer than 8 days and at the highest concentrations. Multivariate statistics (RDA-PRC) clearly displayed that exposure duration had an effect itself, biomarkers' responses showed interaction for all pesticides and catalase scored consistently high, indicating its relevancy in the group of measured markers. Univariate analysis indicated oxidative stress for all pesticides and atrazine induced oxidative damage in lipids. Atrazine seems to be effectively metabolized by GST of the biotransformation system, as its activity significantly increased after exposure to this pesticide. Dimethoate caused ChE inhibition, indicating an impairment of the neuronal function. Carbendazim impaired the antioxidant system, but no oxidative damage was observed, along with any effects on the ChE activity. The integrated biomarker response analysis was performed but we suggest modifications due to limiting artefacts.
Collapse
Affiliation(s)
- Sara C Novais
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | |
Collapse
|
30
|
Maria VL, Ribeiro MJ, Amorim MJB. Oxidative stress biomarkers and metallothionein in Folsomia candida--responses to Cu and Cd. ENVIRONMENTAL RESEARCH 2014; 133:164-169. [PMID: 24949815 DOI: 10.1016/j.envres.2014.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/19/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Folsomia candida (Collembola) is a standard soil ecotoxicological species; effect assessment includes survival and reproduction as endpoints. In the present study, and for the first time, a range of oxidative stress biomarkers measurement was optimized and validated. The antioxidant capacity was measured by the activities of catalase (CAT), glutathione reductase (GR), glutathione-s-transferase (GST) and content of total glutathione (TG). The oxidative damage in the lipid membranes was estimated by lipid peroxidation (LPO) and metallothionein (MT) levels. The exposure included the essential and non-essential metals Cu and Cd, in LUFA 2.2 natural standard soil, using a series of sampling times along a 10 days period (0, 2, 4, 6 and 10 days). Exposure concentrations were selected based on their reproduction EC50 values, 60 and 1000 mg/kg soil DW, for Cd and Cu respectively. The protocols were optimized and results show that oxidative stress biomarkers can be successfully used in F. candida, this being highly relevant as complementary information to the mechanistic level. The selected sampling times gave a good indication of the markers dynamic and can be reduced/adapted in future testing. Results showed that both metals caused an increase in the MT levels after 6 days but Cd acted as a stronger oxidant agent compared to Cu, i.e. causing higher damage. In sum, Cd mobilized/activated more antioxidant enzymes, but the increased activities were not enough to prevent LPO. This study confirms that the oxidative stress caused by Cd is higher despite the use of same reproduction EC50 indicating that toxicity seems more reversible for Cu than for Cd. Among others, GST and MT would be a good selection of biomarkers for Cd effect.
Collapse
Affiliation(s)
- Vera L Maria
- Biology Department & CESAM, University of Aveiro, Campus de Santiago,3810-193 Aveiro, Portugal.
| | - Maria João Ribeiro
- Biology Department & CESAM, University of Aveiro, Campus de Santiago,3810-193 Aveiro, Portugal
| | - Mónica J B Amorim
- Biology Department & CESAM, University of Aveiro, Campus de Santiago,3810-193 Aveiro, Portugal
| |
Collapse
|
31
|
Gomes SIL, Scott-Fordsmand JJ, Amorim MJB. Profiling transcriptomic response of Enchytraeus albidus to Cu and Ni: comparison with Cd and Zn. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 186:75-82. [PMID: 24361568 DOI: 10.1016/j.envpol.2013.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/01/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
Metals are among the most common contaminants in soils in Europe. Although their effects are relatively well known regarding survival and reproduction to soil invertebrates, their mode of action is poorly understood. Enchytraeus albidus is a model organism in ecotoxicology and with the development of a gene library for this species, transcriptomic studies are now possible. The main aim of this study is to understand the Cu and Ni mechanisms of response in E. albidus, in comparison with Cd and Zn (already studied). E. albidus were exposed to Cu and Ni for 4 days to the reproduction effect concentrations EC50 and EC90. Results indicate that Cu and Ni have similar mechanisms of toxicity. When comparing four elements (hierarchical clustering) it was possible to observe a clear separation of Cd from all other metals. This separation correlates with the available information from other species regarding the toxicokinetics of the tested elements.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg, Denmark.
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Silva AP, Holmstrup M, Amorim M. Worms from the Arctic are better adapted to freezing and high salinity than worms from temperate regions: Oxidative stress responses in Enchytraeus albidus. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:582-9. [DOI: 10.1016/j.cbpa.2013.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 01/23/2023]
|
33
|
Zheng K, Liu Z, Li Y, Cui Y, Li M. Toxicological responses of earthworm (Eisenia fetida) exposed to metal-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8382-8390. [PMID: 23589267 DOI: 10.1007/s11356-013-1689-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to evaluate the toxicological responses of earthworm (Eisenia fetida) induced by field-contaminated, metal-polluted soils. Biochemical responses and DNA damage of earthworm exposed to two multi-metal-contaminated soils in a steel industry park and a natural reference soil in Zijin Mountain for 2, 7, 14, and 28 days were studied. Results showed that three enzyme activities, including superoxide dismutase (SOD), acetylcholinesterase (AChE), and cellulase, in earthworm in metal-contaminated soils were significantly different from those of the reference soil. Cellulase and AChE were more sensitive than SOD to soil contamination. The Olive tail moment of the comet assay after 2-day exposure increased 56.5 and 552.0 % in two contaminated soils, respectively, compared to the reference soil. Our findings show that cellulase and DNA damage levels can be used as potential biomarkers for exposure of earthworm to metal-polluted soils.
Collapse
Affiliation(s)
- Kai Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu Province, People's Republic of China
| | | | | | | | | |
Collapse
|
34
|
Environmental- and growth stage-related differences in the susceptibility of terrestrial isopods to UV radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 126:60-71. [DOI: 10.1016/j.jphotobiol.2013.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/19/2013] [Accepted: 07/02/2013] [Indexed: 01/03/2023]
|
35
|
Novais SC, Soares AMVM, De Coen W, Amorim MJB. Exposure of Enchytraeus albidus to Cd and Zn - changes in cellular energy allocation (CEA) and linkage to transcriptional, enzymatic and reproductive effects. CHEMOSPHERE 2013; 90:1305-1309. [PMID: 23062832 DOI: 10.1016/j.chemosphere.2012.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/04/2012] [Accepted: 09/08/2012] [Indexed: 06/01/2023]
Abstract
Cellular energy allocation (CEA) is a measure of the energy status of an organism. The effects of Cd and Zn (reproduction EC(50)s and EC(90)s) on the total energy budget of Enchytraeus albidus (Oligochaeta) were assessed through CEA determination, over periods of time from 0 to 8 d. Results showed reduction on the energy reserves for both metals after 2 d exposure. Lipids were the first reserves to be used and carbohydrates were reduced exclusively after Cd exposure. Electron transport system (ETS) activities were enhanced, suggesting increased metabolism and higher energy requirements for metal detoxification. This was supported by previous results at transcription level, where an up-regulation of genes involved in the mitochondrial oxidative phosphorylation was verified. Additionally, the reduction of CEA may be related with the decrease on the reproductive output. These results showed the relevance of integrating various endpoints, which enabled an overview of various processes and to unravel mechanisms of action of chemicals.
Collapse
Affiliation(s)
- Sara C Novais
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
36
|
Novais SC, De Coen W, Amorim MJB. Transcriptional responses in Enchytraeus albidus (Oligochaeta): comparison between cadmium and zinc exposure and linkage to reproduction effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2289-2299. [PMID: 22821857 DOI: 10.1002/etc.1946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/11/2012] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
Metal ecotoxicity to soil organisms (for example, in enchytraeids) has been addressed mainly by assessing effects on survival and reproduction, but very little is known about the underlying molecular mechanisms of responses. The main purpose of the present study was to assess and compare the transcriptional responses of Enchytraeus albidus to an essential (Zn) and a nonessential (Cd) metal. Exposure was performed with two concentrations with a known effect on reproduction (effective concentration for 50% [EC50] and 90% [EC90]) at three time points (2, 4, and 8 d). Results showed that transcriptional responses were influenced by exposure duration but, independently of that, the mechanisms of response to Cd and Zn were consistently different. Both metals affected pathways related to the regulation of gene expression, calcium homeostasis, and cellular respiration. Mechanisms of toxicity that were exclusively associated with Cd exposures were the inhibition of DNA repair and the impairment of ubiquitin-mediated proteolysis. The microarray for E. albidus was a useful tool for detecting molecular pathways affected by metal exposures. Transcriptional responses strongly correlated with known mechanisms of Cd and Zn responses in other organisms, suggesting cross-species conserved mechanisms of action. It should be highlighted not only that the authors could retrieve mechanistic information but also that genes responded within 2 to 8 d of exposure. This represents an additional advantage of using such molecular endpoints as a complement to the traditional, more time-consuming endpoints.
Collapse
Affiliation(s)
- Sara C Novais
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal.
| | | | | |
Collapse
|
37
|
Castro-Ferreira MP, Roelofs D, van Gestel CAM, Verweij RA, Soares AMVM, Amorim MJB. Enchytraeus crypticus as model species in soil ecotoxicology. CHEMOSPHERE 2012; 87:1222-1227. [PMID: 22365279 DOI: 10.1016/j.chemosphere.2012.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/23/2011] [Accepted: 01/13/2012] [Indexed: 05/31/2023]
Abstract
Enchytraeids are ecologically relevant soil organisms, due to their activity in decomposition and bioturbation in many soil types worldwide. The enchytraeid reproduction test (ERT) guidelines ISO 16387 and OECD 220 are exclusive to the genus Enchytraeus and recommend using the species E. albidus with a 6-week test period. The suggested alternative, E. crypticus has a shorter generation time which may enable the ERT to be twice as fast. To confirm the suitability of a 3-week test period for E. crypticus, the toxicity of five chemicals, with distinct properties and modes of action, was assessed in LUFA 2.2 soil. In all controls the validity criteria were met, as survival of E. crypticus was above 92% and more than 772 juveniles were produced. The good performance supports its appropriateness as model species. Reproduction was more sensitive than survival, with only cadmium and 3,5-dichloroaniline causing significant lethal effects in the tested concentration ranges. The effect concentration causing 50% reduction in the number of juveniles (EC50) was 35 mg kg(-1) for cadmium, <1.0 mg kg(-1) for carbendazim, 145 mg kg(-1) for phenanthrene, 275 mg kg(-1) for pentachloroaniline and 102 mg kg(-1) for 3,5-dichloroaniline. To evaluate the sensitivity of E. crypticus, the present results were compared to literature data for E. albidus. In conclusion, E. crypticus is a suitable model species in soil ecotoxicology, with advantages such as good control performance and speed, leading to a reliable and faster ERT.
Collapse
Affiliation(s)
- Marta P Castro-Ferreira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
38
|
Novais SC, Arrais J, Lopes P, Vandenbrouck T, De Coen W, Roelofs D, Soares AMVM, Amorim MJB. Enchytraeus albidus microarray: enrichment, design, annotation and database (EnchyBASE). PLoS One 2012; 7:e34266. [PMID: 22558086 PMCID: PMC3338728 DOI: 10.1371/journal.pone.0034266] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/24/2012] [Indexed: 12/27/2022] Open
Abstract
Enchytraeus albidus (Oligochaeta) is an ecologically relevant species used as standard test organisms for risk assessment. Effects of stressors in this species are commonly determined at the population level using reproduction and survival as endpoints. The assessment of transcriptomic responses can be very useful e.g. to understand underlying mechanisms of toxicity with gene expression fingerprinting. In the present paper the following is being addressed: 1) development of suppressive subtractive hybridization (SSH) libraries enriched for differentially expressed genes after metal and pesticide exposures; 2) sequencing and characterization of all generated cDNA inserts; 3) development of a publicly available genomic database on E. albidus. A total of 2100 Expressed Sequence Tags (ESTs) were isolated, sequenced and assembled into 1124 clusters (947 singletons and 177 contigs). From these sequences, 41% matched known proteins in GenBank (BLASTX, e-value ≤ 10(-5)) and 37% had at least one Gene Ontology (GO) term assigned. In total, 5.5% of the sequences were assigned to a metabolic pathway, based on KEGG. With this new sequencing information, an Agilent custom oligonucleotide microarray was designed, representing a potential tool for transcriptomic studies. EnchyBASE (http://bioinformatics.ua.pt/enchybase/) was developed as a web freely available database containing genomic information on E. albidus and will be further extended in the near future for other enchytraeid species. The database so far includes all ESTs generated for E. albidus from three cDNA libraries. This information can be downloaded and applied in functional genomics and transcription studies.
Collapse
Affiliation(s)
- Sara C. Novais
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
- * E-mail:
| | - Joel Arrais
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Telematics Engineering of Aveiro (IEETA), University of Aveiro, Aveiro, Portugal
| | - Pedro Lopes
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Telematics Engineering of Aveiro (IEETA), University of Aveiro, Aveiro, Portugal
| | - Tine Vandenbrouck
- University of Antwerp, Department of Biology - E.B.T., Groenenborgerlaan, Antwerp, Belgium
| | - Wim De Coen
- University of Antwerp, Department of Biology - E.B.T., Groenenborgerlaan, Antwerp, Belgium
| | - Dick Roelofs
- VU University Amsterdam, Institute of Ecological Sciences, De Boelelaan, The Netherlands
| | | | | |
Collapse
|
39
|
Oztetik E, Cicek A, Arslan N. Early antioxidative defence responses in the aquatic worms (Limnodrilus sp.) in Porsuk Creek in Eskisehir (Turkey). Toxicol Ind Health 2012; 29:541-54. [PMID: 22514119 DOI: 10.1177/0748233712442734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Certain oligochaeta specimens have been universally applied as bioindicators to reflect the organic and inorganic pollution in rivers and play a major role in the decomposition of pollutants. The aim of this study was to investigate the water quality in Porsuk Creek in Eskisehir (Turkey) through the specimens from two different species that belong to Limnodrilus genus, using their biomonitoring compatibilities for the accumulated trace element concentrations and to describe the applicability of antioxidative systems as biomarkers of pollution in Tubificinae. Therefore, some parameters that serve as biomarkers for antioxidative defence, total protein, glutathione (GSH) contents and glutathione S-transferase (GST) activities, were determined in Limnodrilus hoffmeisteri and Limnodrilus udekemianus. The study was completed with the chemical analysis of the trace elements from these specimens and also from the water samples. As a conclusion, the observed elevation in GSH levels and GST activities reflect the contribution of oxidative stress in toxicity mechanisms due to the accumulation of trace elements, and the study also suggests a general induction of detoxification metabolisms in the presence of several pollutants in benthic sediment-dwelling worms. According to the average value, the trace element levels for two species are as follows: Fe > Al > Zn > Mn > Pb > Cu > Ni > B > Cd = Cr = Hg. As Porsuk Creek is used for many purposes, such as irrigation, drinking water and fish production, discharges of all types of wastes should be under stringent control to avoid the unwanted health effects to its habitants and to humans.
Collapse
Affiliation(s)
- Elif Oztetik
- Department of Biology, Anadolu University, Eskisehir, Turkey.
| | | | | |
Collapse
|
40
|
Novais SC, Howcroft CF, Carreto L, Pereira PM, Santos MAS, De Coen W, Soares AMVM, Amorim MJB. Differential gene expression analysis in Enchytraeus albidus exposed to natural and chemical stressors at different exposure periods. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:213-224. [PMID: 21892792 DOI: 10.1007/s10646-011-0780-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2011] [Indexed: 05/31/2023]
Abstract
The soil oligochaete Enchytraeus albidus is a standard test organism used in biological testing for Environmental Risk Assessment (ERA). Although effects are known at acute and chronic level through survival, reproduction and avoidance behaviour endpoints, very little is known at the sub-cellular and molecular levels. In this study, the effects of soil properties (clay, organic matter and pH) and of the chemicals copper and phenmedipham were studied on E. albidus gene expression, during exposure periods of 2, 4 and 21 days, using DNA microarrays based on a normalised cDNA library for this test species (Amorim et al. 2011). The main objectives of this study were: (1) to assess changes in gene expression of E. albidus over time, and (2) to identify molecular markers for natural and chemical exposures. Results showed an influence of exposure time on gene expression. Transcriptional responses to phenmedipham were seen at 2 days while the responses to copper and the different soils were more pronounced at 4 days of exposure. Some genes were differentially expressed in a stress specific manner and, in general, the responses were related with effects in the energy metabolism and cell growth.
Collapse
Affiliation(s)
- Sara C Novais
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hirano T, Tamae K. Earthworms and soil pollutants. SENSORS (BASEL, SWITZERLAND) 2011; 11:11157-67. [PMID: 22247659 PMCID: PMC3251976 DOI: 10.3390/s111211157] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/01/2011] [Accepted: 11/18/2011] [Indexed: 12/06/2022]
Abstract
Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution.
Collapse
Affiliation(s)
- Takeshi Hirano
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, University of Kitakyushu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Kazuyoshi Tamae
- Division of Teacher Training, Faculty of Education and Culture, University of Miyazaki, Miyazaki, 889-2192, Japan; E-Mail:
| |
Collapse
|