1
|
He SX, Liu YW, Zhou QY, Liu CJ, Li W, Ma LQ. Selenium increases antimony uptake in As-hyperaccumulators Pteris vittata and Pteris cretica by promoting antimonate reduction: GSH-GSSG cycle and arsenate reductases HAC1/ACR2. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135875. [PMID: 39303610 DOI: 10.1016/j.jhazmat.2024.135875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Selenium-enhanced arsenic uptake by As-hyperaccumulators Pteris vittata and Pteris cretica is known, but how it impacts antimony (Sb) uptake and associated mechanisms are unclear. Here, we investigated the effects of 2.5 μM selenate (Se2.5) on Sb uptake by two plants after growing for 10 days under hydroponics containing 10 or 50 μM antimonate (SbV) (Sb10 or Sb50). Both plants were efficient in taking up SbV, which was reduced to SbIII (17-40 %) and mainly accumulated in the roots (86-97 %). The addition of Se increased the Sb contents by 78-97 and 29-33 % to 242-1358 and 132-697 mg kg-1 in P. vittata and P. cretica roots. Compared with the Sb10 and Sb50 treatments, addition of Se increased the SbV reduction, with more increase in P. vittata than P. cretica roots (181-273 % vs. 17-29 %). Enhanced GSH-GSSG cycle mediated by glutathione peroxidase (GPX) and glutathione reductase (GR) may play an important role in SbV reduction in the roots. Compared with the Sb treatments, addition of Se increased the GPX and GR activity by 71-97 and 2-50 % in P. vittata roots, and 59-153 and 22-63 % in P. cretica roots. Besides, Se upregulated the expression of arsenate reductases PvHAC1 and PvACR2 in P. vittata roots by 1.7-3.4 folds but not in P. cretica. Se-enhanced SbV reduction in P. vittata explains why it was more effective in Sb accumulation than P. cretica. Taken together, Se is effective in increasing the Sb uptake in both plants probably by promoting SbV reduction via GSH-GSSG cycle and/or PvHAC1/PvACR2, suggesting that Se may be used to enhance phytostabilization of Sb-contaminated soils.
Collapse
Affiliation(s)
- Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yi-Wen Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qian-Yu Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Antenozio ML, Capobianco G, Allevato E, Marabottini R, Stazi SR, Bonifazi G, Serranti S, Brunetti P, Cardarelli M. New evidence of the timing of arsenic accumulation and expression of arsenic-response genes in field-grown Pteris vittata plants under different arsenic concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124873. [PMID: 39218199 DOI: 10.1016/j.envpol.2024.124873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The timing and efficiency of arsenic (As) accumulation is crucial for using the hyperaccumulator P. vittata in remediation of As-contaminated soils. In this study, through an innovative microXRF-based approach, using a new "pinna powder" sampling method, we monitored As accumulation over time in fronds of individual P. vittata plants grown in the greenhouse and in the field on two natural soils, with high (750 mg/kg) and moderate (58.4 mg/kg) As concentrations. Results, validated by multivariant statistical analysis show that the peak of As occurs on both soils at 45/60 days and at 100/120 days in greenhouse and field grown plants, respectively. Furthermore, in field trials, the timing of As accumulation in both soils was similar during the first autumn-winter and the second spring-summer phytoextraction cycle. After the two cycles, soil As content was reduced by 70.4% in the high-As soil and 26.4% in the moderate one. Moreover, candidate genes involved in As hyperaccumulation -the arsenite antiporter PvACR3, the As (V)-reductases Pv2.5-8 and the organic cation transporter PvOCT4- are expressed in response to As in field-grown plants with similar kinetics in both soils. In conclusion, we established by this innovative technique, the timing of maximum As accumulation that is linked to the intrinsic hyperaccumulation mechanism and represents a highly powerful tool to set up the duration of phytoextraction cycles.
Collapse
Affiliation(s)
- Maria Luisa Antenozio
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo (Roma), Italy; IBPM-CNR C/o Dip. di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185, Roma, Italy.
| | - Giuseppe Capobianco
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18 - 00184, Rome, Italy.
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121, Ferrara, Italy.
| | - Rosita Marabottini
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy.
| | - Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121, Ferrara, Italy.
| | - Giuseppe Bonifazi
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18 - 00184, Rome, Italy.
| | - Silvia Serranti
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18 - 00184, Rome, Italy.
| | - Patrizia Brunetti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo (Roma), Italy; IBPM-CNR C/o Dip. di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185, Roma, Italy.
| | - Maura Cardarelli
- IBPM-CNR C/o Dip. di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185, Roma, Italy.
| |
Collapse
|
3
|
Zhao F, Chen JX, Xu H, Han Y, Zhou M, Wang G, Ma LQ, Chen Y. Arsenite Antiporter PvACR3 Driven by Its Native Promoter Increases Leaf Arsenic Accumulation in Tobacco. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11534-11541. [PMID: 38865317 DOI: 10.1021/acs.est.4c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Pteris vittata is the first-reported arsenic (As) hyperaccumulator, which has been applied to phytoremediation of As-contaminated soil. PvACR3, a key arsenite (AsIII) antiporter, plays an important role in As hyperaccumulation in P. vittata. However, its functions in plants are not fully understood. In this study, the PvACR3 gene was heterologously expressed in tobacco, driven by its native promoter (ProPvACR3). After growing at 5 μM AsIII or 10 μM AsV in hydroponics for 1-5 days, PvACR3-expression enhanced the As levels in leaves by 66.4-113 and 51.8-101%, without impacting the As contents in the roots or stems. When cultivated in As-contaminated soil, PvACR3-expressed transgenic plants accumulated 47.9-85.5% greater As in the leaves than wild-type plants. In addition, PvACR3-expression increased the As resistance in transgenic tobacco, showing that enhanced leaf As levels are not detrimental to its overall As tolerance. PvACR3 was mainly expressed in tobacco leaf veins and was likely to unload AsIII from the vein xylem vessels to the mesophyll cells, thus elevating the leaf As levels. This work demonstrates that heterologously expressing PvACR3 under its native promoter specifically enhances leaf As accumulation in tobacco, which helps to reveal the As-hyperaccumulation mechanism in P. vittata and to enhance the As accumulation in plant leaves for phytoremediation.
Collapse
Affiliation(s)
- Fei Zhao
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Jun-Xiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hua Xu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yu Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Mingxi Zhou
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
4
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
5
|
Han YH, Li YX, Chen X, Zhang H, Zhang Y, Li W, Liu CJ, Chen Y, Ma LQ. Arsenic-enhanced plant growth in As-hyperaccumulator Pteris vittata: Metabolomic investigations and molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171922. [PMID: 38522532 DOI: 10.1016/j.scitotenv.2024.171922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The first-known As-hyperaccumulator Pteris vittata is efficient in As uptake and translocation, which can be used for phytoremediation of As-contaminated soils. However, the underlying mechanisms of As-enhanced plant growth are unknown. We used untargeted metabolomics to investigate the potential metabolites and associated metabolic pathways regulating As-enhanced plant growth in P. vittata. After 60 days of growth in an MS-agar medium containing 15 mg kg-1 As, P. vittata biomass was 33-34 % greater than the no-As control. Similarly, the As contents in P. vittata roots and fronds were 272 and 1300 mg kg-1, considerably greater than the no-As control. Univariate and multivariate analyses based on electrospray ionization indicate that As exposure changed the expression of 1604 and 1248 metabolites in positive and negative modes. By comparing with the no-As control, As exposure significantly changed the expression of 14 metabolites including abscisic acid, d-glucose, raffinose, stachyose, chitobiose, xylitol, gibberellic acids, castasterone, citric acid, riboflavin-5-phosphate, ubiquinone, ubiquinol, UDP-glucose, and GDP-glucose. These metabolites are involved in phytohormone synthesis, energy metabolism, and sugar metabolism and may all potentially contribute to regulating As-enhanced plant growth in P. vittata. Our data provide clues to understanding the metabolic regulations of As-enhanced plant growth in P. vittata, which helps to enhance its phytoremediation efficiency of As-contaminated soils.
Collapse
Affiliation(s)
- Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yi-Xi Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xian Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Khoshyomn S, Heidari A, Farzam M, Shariatmadari Z, Karimian Z. Integrated approaches for heavy metal-contaminated soil remediation: harnessing the potential of Paulownia elongata S. Y. Hu, Oscillatoria sp., arbuscular mycorrhizal fungi (Glomus mosseae and Glomus intraradices), and iron nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19595-19614. [PMID: 38366318 DOI: 10.1007/s11356-024-32380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
In recent years, researchers have extensively investigated the remediation of heavy metal-contaminated soil using plants, microorganisms, and iron nanoparticles. The objective of this study was to investigate and compare the individual and simultaneous effects of Paulownia elongata S. Y. Hu, cyanobacteria (Oscillatoria sp.), arbuscular mycorrhizal fungi (AMF) including Glomus mosseae and Glomus intraradices, and zero-valent iron nanoparticles (nZVI) on the remediation of heavy metal-contaminated soil containing chromium (Cr VI and Cr III) and nickel (Ni). The study found significant variations in parameters such as pH (acidity), electrical conductivity (EC), nitrogen (N), phosphorus (P), potassium (K), and organic carbon (OC) among different treatments. The addition of cyanobacteria, AMF, and nZVI influenced these properties, resulting in both increases and decreases compared to the control treatment. The treatment involving a combination of cyanobacteria, AMF, and nZVI (CCAN25) exhibited the highest increase in growth parameters, such as total dry mass, root length, stem diameter, and leaf area, while other treatments showed varied effects on plant growth. Moreover, the CCAN25 treatment demonstrated the highest increase in chlorophyll a, chlorophyll b, and carotenoid levels, whereas other treatments displayed reductions in these pigments compared to the control. Moderate phytoaccumulation of Cr and Ni in P. elongata samples across all treatments was observed, as indicated by the bioconcentration factor and bioaccumulation coefficient values being less than 1.0 for both metals. The findings provide insights into the potential application of these treatments for soil remediation and plant growth enhancement in contaminated environments.
Collapse
Affiliation(s)
- Sara Khoshyomn
- Department of Environmental Science, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ava Heidari
- Department of Environmental Science, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Farzam
- Department of Range and Watershed Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Zahra Karimian
- Department of Ornamental Plants, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Zhao F, Han Y, Shi H, Wang G, Zhou M, Chen Y. Arsenic in the hyperaccumulator Pteris vittata: A review of benefits, toxicity, and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165232. [PMID: 37392892 DOI: 10.1016/j.scitotenv.2023.165232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Arsenic (As) is a toxic metalloid, elevated levels of which in soils are becoming a major global environmental issue that poses potential health risks to humans. Pteris vittata, the first known As hyperaccumulator, has been successfully used to remediate As-polluted soils. Understanding why and how P. vittata hyperaccumulates As is the core theoretical basis of As phytoremediation technology. In this review, we highlight the beneficial effects of As in P. vittata, including growth promotion, elemental defense, and other potential benefits. The stimulated growth of P. vittata induced by As can be defined as As hormesis, but differs from that in non-hyperaccumulators in some aspects. Furthermore, the As coping mechanisms of P. vittata, including As uptake, reduction, efflux, translocation, and sequestration/detoxification are discussed. We hypothesize that P. vittata has evolved strong As uptake and translocation capacities to obtain beneficial effects from As, which gradually leads to As accumulation. During this process, P. vittata has developed a strong As vacuolar sequestration ability to detoxify overloaded As, which enables it to accumulate extremely high As concentrations in its fronds. This review also provides insights into several important research gaps that need to be addressed to advance our understanding of As hyperaccumulation in P. vittata from the perspective of the benefits of As.
Collapse
Affiliation(s)
- Fei Zhao
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Yu Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Hongyi Shi
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Mingxi Zhou
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 Ceske Budejovice, Czech Republic.
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Cui S, Xiao H, Miao D, Yang W. Metal uptake and translocation by Chinese brake fern (Pteris vittata) and diversity of rhizosphere microbial communities under single and combined arsenic and cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85198-85209. [PMID: 37380855 DOI: 10.1007/s11356-023-28448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Chinese brake fern (Pteris vittata) can increase tolerance to arsenic (As) and cadmium (Cd) toxicity by regulating rhizosphere microbial diversity. However, effects of combined As-Cd stress on microbial diversity and plant uptake and transport remain poorly understood. Therefore, effects of different concentrations of As and Cd on Pteris vittata (P. vittata) metal uptake and translocation and rhizosphere microbial diversity were examined in a pot experiment. The results indicated that As primarily accumulated aboveground in P. vittata (bioconcentration factor (BCF) ≤ 51.3; translocation factor (TF) ≈ 4), whereas Cd primarily accumulated belowground (BCF ≤ 39.1; TF < 1). Under single As, single Cd, and As-Cd combined stress, the most dominant bacteria and fungi were Burkholderia-Caballeronia-P (6.62-27.92%) and Boeremia (4.61-30.42%), Massilia (8.07-11.51%) and Trichoderma (4.47-22.20%), and Bradyrhizobium (2.24-10.38%) and Boeremia (3.16-45.69%), respectively, and their abundance ratios had a significant impact on the efficiency of P. vittata for As and Cd accumulation. However, with increasing As and Cd concentrations, abundances of plant pathogenic bacteria such as Fusarium and Chaetomium (the highest abundances were 18.08% and 23.72%, respectively) increased, indicating that As and Cd concentrations reduced P. vittata resistance to pathogens. At high soil concentrations of As-Cd, although plant As and Cd contents increased and microbial diversity was highest, enrichment efficiency and transportability of As and Cd decreased substantially. Therefore, pollution intensity should be considered when evaluating P. vittata suitability for phytoremediation of combined As-Cd contaminated soils.
Collapse
Affiliation(s)
- Shizhan Cui
- School of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Han Xiao
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, Yunnan, China
| | - Deren Miao
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, Yunnan, China
| | - Wanqiu Yang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, Yunnan, China.
| |
Collapse
|
9
|
Li A, Lu Y, Zhen D, Guo Z, Wang G, Shi K, Liao S. Enterobacter sp. E1 increased arsenic uptake in Pteris vittata by promoting plant growth and dissolving Fe-bound arsenic. CHEMOSPHERE 2023; 329:138663. [PMID: 37044144 DOI: 10.1016/j.chemosphere.2023.138663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Microbes affect arsenic accumulation in the arsenic-hyperaccumulator Pteris vittata, but the associated molecular mechanism remains uncertain. Here, we investigated the effect of Enterobacter sp. E1 on arsenic accumulation by P. vittata. Strain E1 presented capacities of arsenate [As(V)] and Fe(III) reduction during cultivation. In the pot experiment with P. vittata, the biomass, arsenic content, and chlorophyll content of P. vittata significantly increased by 30.03%, 74.9%, and 112.1%, respectively. Strikingly, the water-soluble plus exchangeable arsenic (WE-As) significantly increased by 52.05%, while Fe-bound arsenic (Fe-As) decreased by 29.64% in the potted soil treated with strain E1. The possible role of activation of arsenic by strain E1 was subsequently investigated by exposing As(V)-absorbed ferrihydrite to the bacterial culture. Speciation analyses of As showed that strain E1 significantly increased soluble levels of As and Fe and that more As(V) was reduced to arsenite. Additionally, increased microbial diversity and soil enzymatic activities in soils indicated that strain E1 posed few ecological risks. These results indicate that strain E1 effectively increased As accumulation in P. vittata mainly by promoting plant growth and dissolving soil arsenic. Our findings suggest that As(V) and Fe(III)-reducer E1 could be used to enhance the phytoremediation of P. vittata in arsenic-contaminated soils.
Collapse
Affiliation(s)
- Aiting Li
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingying Lu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Da Zhen
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Ziheng Guo
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Shuijiao Liao
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
10
|
Jia P, Li F, Zhang S, Wu G, Wang Y, Li JT. Microbial community composition in the rhizosphere of Pteris vittata and its effects on arsenic phytoremediation under a natural arsenic contamination gradient. Front Microbiol 2022; 13:989272. [PMID: 36160214 PMCID: PMC9495445 DOI: 10.3389/fmicb.2022.989272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Arsenic contamination causes numerous health problems for humans and wildlife via bioaccumulation in the food chain. Phytoremediation of arsenic-contaminated soils with the model arsenic hyperaccumulator Pteris vittata provides a promising way to reduce the risk, in which the growth and arsenic absorption ability of plants and the biotransformation of soil arsenic may be greatly affected by rhizosphere microorganisms. However, the microbial community composition in the rhizosphere of P. vittata and its functional role in arsenic phytoremediation are still poorly understood. To bridge this knowledge gap, we carried out a field investigation and pot experiment to explore the composition and functional implications of microbial communities in the rhizosphere of four P. vittata populations with a natural arsenic contamination gradient. Arsenic pollution significantly reduced bacterial and fungal diversity in the rhizosphere of P. vittata (p < 0.05) and played an important role in shaping the microbial community structure. The suitability of soil microbes for the growth of P. vittata gradually decreased following increased soil arsenic levels, as indicated by the increased abundance of pathogenic fungi and parasitic bacteria and the decrease in symbiotic fungi. The analysis of arsenic-related functional gene abundance with AsChip revealed the gradual enrichment of the microbial genes involved in As(III) oxidation, As(V) reduction, and arsenic methylation and demethylation in the rhizosphere of P. vittata following increased arsenic levels (p < 0.05). The regulation of indigenous soil microbes through the field application of fungicide, but not bactericide, significantly reduced the remediation efficiency of P. vittata grown under an arsenic contamination gradient, indicating the important role of indigenous fungal groups in the remediation of arsenic-contaminated soil. This study has important implications for the functional role and application prospects of soil microorganisms in the phytoremediation of arsenic-polluted soil.
Collapse
Affiliation(s)
- Pu Jia
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fenglin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shengchang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guanxiong Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yutao Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
- Dongli Planting and Farming Industrial Co., Ltd., Lianzhou, China
- *Correspondence: Yutao Wang,
| | - Jin-tian Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
11
|
A Green Approach Based on Micro-X-ray Fluorescence for Arsenic, Micro- and Macronutrients Detection in Pteris vittata. WATER 2022. [DOI: 10.3390/w14142202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, benchtop micro-X-ray fluorescence spectrometry (µXRF) was evaluated as a green and cost-effective multielemental analytical technique for P. vittata. Here, we compare the arsenic (As) content values obtained from the same samples by µXRF and inductively coupled plasma-optical emissions spectrometry (ICP–OES). To obtain samples with different As concentrations, fronds at different growth time points were collected from P. vittata plants grown on two natural As-rich soils with either high or moderate As (750 and 58 mg/kg). Dried samples were evaluated using multielement-µXRF analysis and processed by PCA. The same samples were then analysed for multielement concentrations by ICP–OES. We show that As concentrations detected by ICP–OES, ranging from 0 to 3300 mg/kg, were comparable to those obtained by µXRF. Similar reliability was obtained for micro- and macronutrient concentrations. A positive correlation between As and potassium (K) contents and a negative correlation between As and iron (Fe), calcium (Ca) and manganese (Mn) contents were found at both high and moderate As. In conclusion, we demonstrate that this methodological approach based on μXRF analysis is suitable for monitoring the As and element contents in dried plant tissues without any chemical treatment of samples and that changes in most nutrient concentrations can be strictly related to the As content in plant tissue.
Collapse
|
12
|
Yan Y, Yang J, Wan X, Shi H, Yang J, Ma C, Lei M, Chen T. Temporal and spatial differentiation characteristics of soil arsenic during the remediation process of Pteris vittata L. and Citrus reticulata Blanco intercropping. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152475. [PMID: 34952060 DOI: 10.1016/j.scitotenv.2021.152475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The intercropping of hyperaccumulators and fruit trees has great application prospects owing to its environmental and economic benefits. However, the variation tendency and spatial distribution characteristics of pollutants in soil are unclear. A 19-month pot positioning experiment was conducted to clarify the spatio-temporal characteristics of arsenic (As) during Pteris vittata L.-Citrus reticulata Blanco intercropping process. The results showed that: (1) In the early stage, the solubilization of soil As by P. vittata was dominant. At 3 months, the water-soluble As in P. vittata rhizosphere soil increased by 19.4-55.4% compared with the initial state. In the later stage, the As extraction from soil by P. vittata was dominant. At 19 months, the water-soluble As in P. vittata rhizosphere soil decreased by 24.6-71.2% compared with the initial state. The water-soluble As in C. reticulata rhizosphere soil in intercropping, under the role of P. vittata, reached 1.75-2.35 times that of monoculture at 7 months, and was not significantly different from that of monoculture at 19 months. (2) The spatial distribution characteristics of soil As, affected by As-hyperaccumulation of P. vittata, showed that the As variability of intercropping and P. vittata monoculture was greater than that of C. reticulata monoculture. The area of P. vittata remediating soil was approximately 15 cm horizontally around its planting point and at least 25 cm vertically. (3) P. vittata-C. reticulata intercropping did not affect the phytoremediation efficiency and effectively reduced the risk of As pollution for C. reticulata. The As concentration in C. reticulata leaves of open intercropping decreased by 39.0-64.2% (early-maturity) and 25.6-59.1% (late-maturity) compared with that of monoculture, similar to that in clean soil. This study analyzed the As migration characteristics during P. vittata-C. reticulata intercropping through time and space and provides important theoretical support for the remediation and safe use of As-contaminated farmland.
Collapse
Affiliation(s)
- Yunxian Yan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoming Wan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huading Shi
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Mei Lei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Gupta K, Srivastava S, Saxena G, Kumar A. Evaluation of Phytoremediation Potential of Pteris vittata L. on Arsenic Contaminated Soil Using Allium cepa Bioassay. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:423-429. [PMID: 34170357 DOI: 10.1007/s00128-021-03291-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The present study assessed the utility of Allium cepa based cyto-genotoxicity bioassays in evaluating the arsenic toxicity and remediation potential of Pteris vittata on contaminated soil of Lakhimpur-Kheri district. Untreated and P. vittata treated soil extracts were used for cyto-genotoxicity tests in A. cepa. Results showed that P. vittata extracted high concentration of arsenic, which ranged from 220 to 1420 mgkg-1 in different soils. Cyto-genotoxic assessment of A. cepa showed that extract of P. vittata treated soil had lower cyto-genotoxic effects as compared to untreated soil. A higher mitotic index (10%) while lower mitotic depression (29%), relative abnormality rate (10%), chromosomal aberrations (1%) and micronuclei (2%) were detected in root meristematic cells of A. cepa exposed to remediated soil extract in comparison to untreated soil. The studies provide a simple, rapid and economic cyto-genotoxicity bioassay tool for evaluating toxicity of contaminated soils of contaminated soils as well as revealed the phytoremdiation property of P. vittata against arsenic toxicity.
Collapse
Affiliation(s)
- Kiran Gupta
- Department of Botany, Lucknow University, Lucknow, 226007, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Gauri Saxena
- Department of Botany, Lucknow University, Lucknow, 226007, India
| | - Amit Kumar
- Department of Botany, Lucknow University, Lucknow, 226007, India.
| |
Collapse
|
14
|
Yan H, Xu W, Zhang T, Feng L, Liu R, Wang L, Wu L, Zhang H, Zhang X, Li T, Peng Z, Jin C, Yu Y, Ping J, Ma M, He Z. Characterization of a novel arsenite long-distance transporter from arsenic hyperaccumulator fern Pteris vittata. THE NEW PHYTOLOGIST 2022; 233:2488-2502. [PMID: 35015902 DOI: 10.1111/nph.17962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Pteris vittata is an arsenic (As) hyperaccumulator that can accumulate several thousand mg As kg-1 DW in aboveground biomass. A key factor for its hyperaccumulation ability is its highly efficient As long-distance translocation system. However, the underlying molecular mechanisms remain unknown. We isolated PvAsE1 through the full-length cDNA over-expression library of P. vittata and characterized it through a yeast system, RNAi gametophytes and sporophytes, subcellular-location and in situ hybridization. Phylogenomic analysis was conducted to estimate the appearance time of PvAsE1. PvAsE1 was a plasma membrane-oriented arsenite (AsIII) effluxer. The silencing of PvAsE1 reduced AsIII long-distance translocation in P. vittata sporophytes. PvAsE1 was structurally similar to solute carrier (SLC)13 proteins. Its transcripts could be observed in parenchyma cells surrounding the xylem of roots. The appearance time was estimated at c. 52.7 Ma. PvAsE1 was a previously uncharacterized SLC13-like AsIII effluxer, which may contribute to AsIII long-distance translocation via xylem loading. PvAsE1 appeared late in fern evolution and might be an adaptive subject to the selection pressure at the Cretaceaou-Paleogene boundary. The identification of PvAsE1 provides clues for revealing the special As hyperaccumulation characteristics of P. vittata.
Collapse
Affiliation(s)
- Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenxiu Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tian Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ruoxi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohan Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhimei Peng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Jin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yijun Yu
- Zhejiang Station for Management of Arable Land Quality and Fertilizer, Hangzhou, 310020, China
| | - Junai Ping
- Sorghum Research Institute of Shanxi Agricultural University, Jinzhong, 030600, China
| | - Mi Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
15
|
Yang J, Yan Y, Lu N, Wan X, Yang J, Shi H, Chen T, Lei M. The key nodes and main factors influencing accumulation of soil arsenic in Pteris vittata L. under field conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150787. [PMID: 34619206 DOI: 10.1016/j.scitotenv.2021.150787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Identifying the inflection points and main influencing factors for arsenic (As) accumulation in Pteris vittata L. under field conditions is important to improve the phytoremediation efficiency. In this study, data on the entire growth cycle (270 days) of P. vittata over a year were recorded through a field trial. The results showed that the As accumulation characteristics of P. vittata were obviously different from those observed in greenhouse experiments. The aboveground biomass of P. vittata began to stabilize on day 180; the As concentration increased to a peak on day 90 and subsequently declined until day 180. The As accumulation was 318.11 g/hm2 after 120 days, reaching 96.7% of the highest value predicted by the logistic model. The results indicated that soil humidity is the key influencing factor for As accumulation by P. vittata. Increasing the soil humidity can substantially improve the As extraction efficiency. Based on the results of As accumulation in P. vittata, it could be suggested that the effect of As efflux on P. vittata was not significant. According to theoretical calculations, the total As loss caused by rainfall leaching accounted for less than 2.2% of the total As accumulation. The parameters obtained herein are significant for guiding the remediation of As-contaminated soils under similar climatic conditions.
Collapse
Affiliation(s)
- Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxian Yan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanjia Lu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoming Wan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huading Shi
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Khan S, Milham PJ, Eltohamy KM, Jin Y, Wang Z, Liang X. Phytate exudation by the roots of Pteris vittata can dissolve colloidal FePO 4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13142-13153. [PMID: 34570322 DOI: 10.1007/s11356-021-16534-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) is limiting nutrient in many soils, and P availability may often depend on iron (Fe) speciation. Colloidal iron phosphate (FePO4coll) is potentially present in soils, and we tested the hypothesis that phytate exudation by Pteris vittata might dissolve FePO4coll by growing the plant in nutrient solution to which FePO4coll was added. The omission of P and Fe increased phytate exudation by P. vittata from 434 to 2136 mg kg-1 as the FePO4coll concentration increased from 0 to 300 mM. The total P in P. vittata tissue increased from 2880 to 8280 mg kg-1, and the corresponding increases in the trichloroacetic acid (TCA) extractable P fractions were inorganic P (860-5100 mg kg-1), soluble organic P (250-870 mg kg-1), and insoluble organic P (160-2030 mg kg-1). That is, FePO4-solubilizing activity was positive correlated with TP, TCA P fractions in P. vittata, TP in growth media, and root exudates. This study shows that phytate exudation dissolved FePO4coll due to the chelation effect of phytic acid on Fe; however, the wider question of whether phytic acid excretion was prompted by deprivation of P, Fe, or both remains to be answered.
Collapse
Affiliation(s)
- Sangar Khan
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Paul J Milham
- Hawkesbury Institute for the Environment, University of Western Sydney, LB 1797, Penrith, New South Wales, 2751, Australia
| | - Kamel Mohamed Eltohamy
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Water Relations and Field Irrigation Department, Agricultural and Biological Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Yingbing Jin
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ziwan Wang
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinqiang Liang
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Zeng W, Wan X, Lei M, Gu G, Chen T. Influencing factors and prediction of arsenic concentration in Pteris vittata: A combination of geodetector and empirical models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118240. [PMID: 34619180 DOI: 10.1016/j.envpol.2021.118240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/22/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Phytoextraction using hyperaccumulator, Pteris vittata, to extract arsenic (As) from soil has been applied to large areas to achieve an As removal rate of 18% per year. However, remarkable difference among different studies and field practices has led to difficulties in the standardization of phytoextraction technology. In this study, data on As concentration in P. vittata and related environmental conditions were collected through literature search. A conceptual framework was proposed to guide the improvement of phytoextraction efficiency in the field. The following influencing factors of As concentration in this hyperaccumulator were identified: total As concentration in soil, soil available As, organic matter in soil, total potassium (K) concentration in soil, and annual rainfall. The geodetection results show that the main factors that affect As concentration in P. vittata include soil organic matter (q = 0.75), soil available As (q = 0.67), total K (q = 0.54), and rainfall (q = 0.42). The predictive models of As concentration in P. vittata were established separately for greenhouse and field conditions through multivariate linear stepwise regression method. Under greenhouse condition, soil available As was the most important influencing factor and could explain 41.4% of As concentration in P. vittata. Two dominant factors were detected in the field: soil available As concentration and average annual rainfall. The combination of these two factors gave better prediction results with R2 = 0.762. The establishment of the model might help predict phytoextraction efficiency and contribute to technological standardization. The strategies that were used to promote As removal from soil by P. vittata were summarized and analyzed. Intercropping with suitable plants or a combination of different measures (e.g., phosphate fertilizer and water retention) was recommended in practice to increase As concentration in P. vittata.
Collapse
Affiliation(s)
- Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100089, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100089, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100089, China
| | - Gaoquan Gu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100089, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100089, China
| |
Collapse
|
18
|
Sun L, Zhu G, Liao X. Rhizosphere interactions between PAH-degrading bacteria and Pteris vittata L. on arsenic and phenanthrene dynamics and transformation. CHEMOSPHERE 2021; 285:131415. [PMID: 34265710 DOI: 10.1016/j.chemosphere.2021.131415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The pot experiment was conducted to monitor the dynamics in soil solution chemistry in order to determine the main rhizosphere processes determining As and PAH bioavailability when utilizing P. vittata and PAH-degrading bacteria to remediate co-contaminated soils. The result showed that P. vittata was capable of depleting soil solution As and increasing phenanthrene solubilization, and thus facilitating plant As uptake and phenanthrene dissipation. Bacterial inoculation enhanced soil phenanthrene dissipation and concurrently modified As bioavailability though increasing soil pH, facilitating Fe and Ca minerals solubilization, and accelerating organic matter decomposition. However, the main factors that determine As bioavailability in the rhizosphere considerably varied with plant genotypes. Upon bacterial inoculation, P and Fe strongly influenced As(V) availability and its uptake by the Guangxi accession, and DOC, Fe, and pH were the main parameters correlated with As(V) availability in the rhizosphere of the Hunan accession. Bacterial inoculation tended to stimulate As(V) reduction in the rhizosphere of P. vittata. Microbial-induced changes in Ca, S, and C cycling and pH were indicators of As(V) reduction. Although bacterial inoculation increased soil As and phenanthrene availability, striking differences in As and nutrients uptake and phenanthrene dissipation were observed between P. vittata genotypes. It is suggested that apart from the microbial transformation, plant genotypes and bacterial mediated plant nutrition are also the critical factors in controlling the fates of As and phenanthrene. Our results uncovered the interactions between P. vittata and PAH-degrading bacteria on rhizosphere properties and nutrients cycling regulating As and PAH availability and remediation efficiency.
Collapse
Affiliation(s)
- Lu Sun
- China Geological Environmental Monitoring Institute, Beijing, 100081, PR China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, PR China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Xiaoyong Liao
- Land Contamination Assessment and Remediation Laboratory, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
19
|
Drozdova M, Pozdnyakova A, Osintseva M, Burova N, Minina V. The microorganism-plant system for remediation of soil exposed to coal mining. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-406-418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction. Coal mining causes a radical transformation of the soil cover. Research is required into modern methods and complementary technologies for monitoring technogenic landscapes and their remediation. Our study aimed to assess soil and rhizosphere microorganisms and their potential uses for the remediation of technogenic soils in Russian coal regions.
Study objects and methods. We reviewed scientific articles published over the past five years, as well as those cited in Scopus and Web of Science.
Results and discussion. Areas lying in the vicinity of coal mines and coal transportation lines are exposed to heavy metal contamination. We studied the application of soil remediation technologies that use sorbents from environmentally friendly natural materials as immobilizers of toxic elements and compounds. Mycorrhizal symbionts are used for soil decontamination, such as arbuscular mycorrhiza with characteristic morphological structures in root cortex cells and some mycotallia in the form of arbuscules or vesicles. Highly important are Gram-negative proteobacteria (Agrobacterium, Azospirillum, Azotobacter, Burkholderia, Bradyrizobium, Enterobacter, Pseudomonas, Klebsiella, Rizobium), Gram-positive bacteria (Bacillus, Brevibacillus, Paenibacillus), and Grampositive actinomycetes (Rhodococcus, Streptomyces, Arhtrobacter). They produce phytohormones, vitamins, and bioactive substances, stimulating plant growth. Also, they reduce the phytopathogenicity of dangerous diseases and harmfulness of insects. Finally, they increase the soil’s tolerance to salinity, drought, and oxidative stress. Mycorrhizal chains enable the transport and exchange of various substances, including mineral forms of nitrogen, phosphorus, and organic forms of C3 and C4 plants. Microorganisms contribute to the removal of toxic elements by absorbing, precipitating or accumulating them both inside the cells and in the extracellular space.
Conclusion. Our review of scientific literature identified the sources of pollution of natural, agrogenic, and technogenic landscapes. We revealed the effects of toxic pollutants on the state and functioning of living systems: plants, animals, and microorganisms. Finally, we gave examples of modern methods used to remediate degraded landscapes and reclaim disturbed lands, including the latest technologies based on the integration of plants and microorganisms.
Collapse
|
20
|
Jin Z, Lv J. Evaluating source-oriented human health risk of potentially toxic elements: A new exploration of multiple age groups division. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147502. [PMID: 33991919 DOI: 10.1016/j.scitotenv.2021.147502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Effective source-oriented human health risk assessment (HHRA) for people in different life stages will guide pollution control and risk prevention. This work integrated three receptor models of positive matrix factorization, Unmix, and factor analysis with nonnegative constraints for accurate source-oriented HHRA of potentially toxic elements in 6 age groups of populations (0-<1 year, 1-<6 years, 6-<12 years, 12-<18 years, 18-<44 years, and 44+ years). Four sources were identified. Natural source controlled As, Cr, and Ni in dust and soil as well as Pb and Zn in soil. Industrial-traffic emissions contributed most of Cd in dust and soil as well as Pb and Zn in dust. Hg in both dust and soil originated from coal combustion. Construction works contributed more to PTEs in soil than in dust. Noncarcinogenic and carcinogenic risk for both dust and soil changed in similar trends by age. The noncancer risk reduced with increasing age for people below 44 years. Carcinogenic risk of females over 44 years were the highest, while children from 0 to 1 year faced the lowest carcinogenic risk. Among the four origins of PTEs, natural sources contributed most to health risk of PTEs, followed by industrial-traffic sources, construction works, and coal combustion. Based on sequential Gaussian simulation (SGS), the susceptible population and risk areas were identified. Children from 0 to 6 years were identified as susceptible population. The areas with noncancer risk in dust were 19.15 km2 for 0-<1 year and 3.14 km2 for children from 1 to <6 years, and noncancer risk areas in soil were 30.26 km2 for 0-<1 year and 0.85 km2 for 1-<6 years. Relevant control and management works were demanded on children from 0 to 6 years and noncancer risk areas.
Collapse
Affiliation(s)
- Zhao Jin
- College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China
| | - Jianshu Lv
- College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China.
| |
Collapse
|
21
|
New evidence of arsenic translocation and accumulation in Pteris vittata from real-time imaging using positron-emitting 74As tracer. Sci Rep 2021; 11:12149. [PMID: 34234174 PMCID: PMC8263723 DOI: 10.1038/s41598-021-91374-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/21/2021] [Indexed: 11/09/2022] Open
Abstract
Pteris vittata is an arsenic (As) hyperaccumulator plant that accumulates a large amount of As into fronds and rhizomes (around 16,000 mg/kg in both after 16 weeks hydroponic cultivation with 30 mg/L arsenate). However, the sequence of long-distance transport of As in this hyperaccumulator plant is unclear. In this study, we used a positron-emitting tracer imaging system (PETIS) for the first time to obtain noninvasive serial images of As behavior in living plants with positron-emitting 74As-labeled tracer. We found that As kept accumulating in rhizomes as in fronds of P. vittata, whereas As was retained in roots of a non-accumulator plant Arabidopsis thaliana. Autoradiograph results of As distribution in P. vittata showed that with low As exposure, As was predominantly accumulated in young fronds and the midrib and rachis of mature fronds. Under high As exposure, As accumulation shifted from young fronds to mature fronds, especially in the margin of pinna, which resulted in necrotic symptoms, turning the marginal color to gray and then brown. Our results indicated that the function of rhizomes in P. vittata was As accumulation and the regulation of As translocation to the mature fronds to protect the young fronds under high As exposure.
Collapse
|
22
|
Wang L, Zhang Q, Liao X, Li X, Zheng S, Zhao F. Phytoexclusion of heavy metals using low heavy metal accumulating cultivars: A green technology. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125427. [PMID: 33609878 DOI: 10.1016/j.jhazmat.2021.125427] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal (HM) pollution of farmland is a serious problem worldwide and consumption of HM-contaminated food products poses significant public health risks. Phytoexclusion using low HM accumulating cultivars (LACs) is a promising and practical technology to mitigate the risk of HM contamination of agricultural products grown in polluted soils, and does not alter cultivation practices, is easy to apply, and is economical. This review provides an overview of the major scientific advances accomplished in the field of LACs worldwide. The LACs concept and identification criteria are presented, and the known LACs among currently cultivated grain crops and vegetables are re-evaluated. The low HM accumulation by LACs is affected by crop ecophysiological features and soil physicochemical characteristics. Taking low Cd accumulating cultivars as an example, it is known that they can efficiently exclude Cd from entering their edible parts in three ways: 1) decrease in root Cd uptake by reducing organic acids secretion in the rhizosphere and transport protein production; 2) restriction of Cd translocation from roots to shoots via enhanced Cd retention in the cell wall and Cd sequestration in vacuoles; and 3) reduction in Cd translocation from shoots to grains by limiting Cd redirection and remobilization mediated through nodes. We propose an LAC application strategy focused on LACs and optimized to work with other agronomic measures according to the classification of HM risk level for LACs, providing a cost-effective and practical solution for safe utilization of large areas of farmland polluted with low to moderate levels of HMs.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Qingying Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| | - Xiaohua Li
- Rural Energy & Environment Agency, Ministry of Agriculture, Beijing 100125, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, Ministry of Agriculture, Beijing 100125, China
| | - Fenghua Zhao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
23
|
Popov M, Zemanová V, Sácký J, Pavlík M, Leonhardt T, Matoušek T, Kaňa A, Pavlíková D, Kotrba P. Arsenic accumulation and speciation in two cultivars of Pteris cretica L. and characterization of arsenate reductase PcACR2 and arsenite transporter PcACR3 genes in the hyperaccumulating cv. Albo-lineata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112196. [PMID: 33848737 DOI: 10.1016/j.ecoenv.2021.112196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Pollution and poisoning with carcinogenic arsenic (As) is of major concern globally. Interestingly, there are ferns that can naturally tolerate remarkably high As concentrations in soils while hyperaccumulating this metalloid in their fronds. Besides Pteris vittata in which As-related traits and molecular determinants have been studied in detail, the As hyperaccumulation status has been attributed also to Pteris cretica. We thus inspected two P. cretica cultivars, Parkerii and Albo-lineata, for As hyperaccumulation traits. The cultivars were grown in soils supplemented with 20, 100, and 250 mg kg-1 of inorganic arsenate (iAsV). Unlike Parkerii, Albo-lineata was confirmed to be As tolerant and hyperaccumulating, with up to 1.3 and 6.4 g As kg-1 dry weight in roots and fronds, respectively, from soils amended with 250 mg iAsV kg-1. As speciation analyses rejected that organoarsenical species and binding with phytochelatins and other proteinaceous ligands would play any significant role in the biology of As in either cultivar. While in Parkerii, the dominating As species, particularly in roots, occurred as iAsV, in Albo-lineata the majority of the root and frond As was apparently converted to iAsIII. Parkerii markedly accumulated iAsIII in its fronds when grown on As spiked soils. Considering the roles iAsV reductase ACR2 and iAsIII transporter ACR3 may have in the handling of iAs, we isolated Albo-lineata PcACR2 and PcACR3 genes closely related to P. vittata PvACR2 and PvACR3. The gene expression analysis in Albo-lineata fronds revealed that the transcription of PcACR2 and PcACR3 was clearly As responsive (up to 6.5- and 45-times increase in transcript levels compared to control soil conditions, respectively). The tolerance and uptake assays in yeasts showed that PcACRs can complement corresponding As-sensitive mutations, indicating that PcACR2 and PcACR3 encode functional proteins that can perform, respectively, iAsV reduction and membrane iAsIII transport tasks in As-hyperaccumulating Albo-lineata.
Collapse
Affiliation(s)
- Marek Popov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic; Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Veronika Zemanová
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Milan Pavlík
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Tomáš Matoušek
- Institute of Analytical Chemistry, The Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Antonín Kaňa
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
24
|
Qin G, Niu Z, Yu J, Li Z, Ma J, Xiang P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. CHEMOSPHERE 2021; 267:129205. [PMID: 33338709 DOI: 10.1016/j.chemosphere.2020.129205] [Citation(s) in RCA: 374] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Soil plays a fundamental role in food safety and the adverse effects of contaminants like heavy metal (loid)s on crop quality have threatened human health. Therefore, it is important to focus on the food safety and agricultural soil pollution by heavy metals, especially for China where the demand for food production is increasing. This review comprehensively introduced the current status of agricultural soil pollution by heavy metals in China, analyzed the main sources of contaminants, including the applications of pesticides and fertilizers, atmospheric deposition related to vehicle emissions and coal combustion, sewage irrigation and mining. Food safety and agricultural soil pollution by heavy metals, the removal technologies for soil remediation such as soil amendments, phytoremediation and foliar sprays were also introduced. The review can provide significant insights for policymakers, environmental engineers, and agro-technicians regarding soil contamination control and management strategies and technologies.
Collapse
Affiliation(s)
- Guowei Qin
- Faculty of Management and Economics, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Zhaodong Niu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jiangdong Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China; Development Research Center of Yunnan Provincial People's Government, Kunming, 650021, PR China.
| | - Zhuohan Li
- Development Research Center of Yunnan Provincial People's Government, Kunming, 650021, PR China
| | - Jiaoyang Ma
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, PR China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
25
|
Wang Y, Bi Y, Wang R, Wang L, Qu H, Zheng L. DNA-Gated Graphene Field-Effect Transistors for Specific Detection of Arsenic(III) in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1398-1404. [PMID: 33433214 DOI: 10.1021/acs.jafc.0c07052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As one of the most toxic forms of arsenic, inorganic As(III) is easy to accumulate in rice, leading to severe public health problems. Effective control of As(III) requires the development of fast analytical methods for its detection with high sensitivity and specificity. Toward this end, in this work, we report the fabrication of an As(III) electrochemical sensor based on a solution-gated graphene transistor (SGGT) platform with a novel sensing mechanism. The gold gate electrode of the SGGT was modified with DNA probes and then blocked with bovine serum albumin (BSA). The specific interaction between As(III) and gold disrupted the adsorption states of DNA probes, redistributing surface charges on the gate electrode, further leading to potential drop changes at the interfaces of the gate electrode and graphene active layer. This new mechanism based on DNA-charge-redistribution-induced SGGT current responses (denoted as "DNA-SGGT") was found to greatly improve the selectivity of the sensor: the response of DNA-SGGT to As(III) was effectively enhanced fourfold, while to other interfering cations, it was significantly reduced. The optimized sensor showed a detection limit as low as 5 nM with superior selectivity to As(III). The as-prepared DNA-SGGT-based sensor has also been successfully applied to the detection of As(III) in practical rice samples with a high recovery rate, showing great potential for heavy metal detection in many types of food samples.
Collapse
Affiliation(s)
- Yuhong Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yulong Bi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rongrong Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
26
|
Amna S, Qamar S, Turab Naqvi AA, Al-Huqail AA, Qureshi MI. Role of sulfur in combating arsenic stress through upregulation of important proteins, and in-silico analysis to study the interaction between phosphate transporter (PHO1), arsenic and phosphate in spinach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:348-358. [PMID: 33189055 DOI: 10.1016/j.plaphy.2020.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
An adequate amount of Sulfur (S) is essential for proper plant growth and defence against abiotic stresses including metals and metalloids. Arsenic (As) contamination is increasing in agricultural soils rapidly due to anthropogenic activities. Sulfur deficiency and arsenic stress could be more harmful than these individual stresses alone. To understand the impact of S-deficiency and arsenic (31 ppm Na3AsO4 of soil) on ecophysiology, growth, inorganic phosphate level, and proteomic profile of spinach, the present study was conducted. Interaction of arsenic with phosphate transporters, phytochelatins, and glutathione was also analyzed in silico. Comparative 2D MS/MS proteomics helped in the identification of important proteins which might be the key players under S-deficiency and As stress. Upregulation and downregulation of 36 and 21 proteins under As stress; 19 and 36 proteins under S-deficiency; 38 and 31 proteins under combined stress, respectively was observed. A total, 87 proteins subjected to identification via MS/MS ion search were found to be associated with important plant functions. PHO1 abundance was highly influenced by As stress; hence an in-silico homology modeling based molecular docking was performed which indicated high interaction between PHO1 and As/phosphate. Varied proximity of arsenic with phosphate transporters, phytochelatin, and glutathione revealed these components as a potential target of As toxicity/detoxification in Spinach, reflecting sulfur as an important criterion for arsenic tolerance.
Collapse
Affiliation(s)
- Syeda Amna
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| | - Sadia Qamar
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| | - Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Delhi, India.
| | - Asma A Al-Huqail
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia.
| | - M Irfan Qureshi
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| |
Collapse
|
27
|
Li X, Sun D, Feng H, Chen J, Chen Y, Li H, Cao Y, Ma LQ. Efficient arsenate reduction in As-hyperaccumulator Pteris vittata are mediated by novel arsenate reductases PvHAC1 and PvHAC2. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122895. [PMID: 32937698 DOI: 10.1016/j.jhazmat.2020.122895] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in As absorption, reduction, and translocation. But the molecular mechanisms and locations of arsenate (AsV) reduction in P. vittata are still unclear. Here, we identified two new arsenate reductase genes from P. vittata, PvHAC1 and PvHAC2. Two PvHAC genes encoded a rhodanase-like protein, which were localized in the cytoplasm and nucleus. Both recombinant Escherichia coli strains and transgenic Arabidopsis thaliana lines showed arsenate reductase ability after expressing PvHAC genes. Further, expressing PvHAC2 enhanced As tolerance and reduced As accumulation in A. thaliana shoots under AsV exposure. Based on expression pattern analysis, PvHAC1 and PvHAC2 were predominantly expressed in the rhizomes and fronds of P. vittata. Different from those of HAC homologous genes in non-hyperaccumulators, little PvHAC was expressed in the roots. Besides, PvHAC1 expression was strongly upregulated under AsV exposure but not AsIII. The data suggest that arsenate reductase PvHAC1 in the rhizomes coupled with arsenate reductase PvHAC2 in the fronds of P. vittata played a critical role in As-hyperaccumulation by P. vittata, which helps to further improve its utility in phytoremediation of As-contaminated soils.
Collapse
Affiliation(s)
- Xinyuan Li
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Dan Sun
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Huayuan Feng
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Junxiu Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Yanshan Chen
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Hongbo Li
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China; School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Wagner S, Hoefer C, Puschenreiter M, Wenzel WW, Oburger E, Hann S, Robinson B, Kretzschmar R, Santner J. Arsenic redox transformations and cycling in the rhizosphere of Pteris vittata and Pteris quadriaurita. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2020; 177:104122. [PMID: 34103771 PMCID: PMC7610922 DOI: 10.1016/j.envexpbot.2020.104122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Pteris vittata (PV) and Pteris quadriaurita (PQ) are reported to hyperaccumulate arsenic (As) when grown in Asrich soil. Yet, little is known about the impact of their unique As accumulation mechanisms on As transformations and cycling at the soil-root interface. Using a combined approach of two-dimensional (2D), sub-mm scale solute imaging of arsenite (AsIII), arsenate (AsV), phosphorus (P), manganese (Mn), iron (Fe) and oxygen (O2), we found localized patterns of AsIII/AsV redox transformations in the PV rhizosphere (AsIII/AsV ratio of 0.57) compared to bulk soil (AsIII/AsV ratio of ≤0.04). Our data indicate that the high As root uptake, translocation and accumulation from the As-rich experimental soil (2080 mg kg-1) to PV fronds (6986 mg kg-1) induced As detoxification via AsV reduction and AsIII root efflux, leading to AsIII accumulation and re-oxidation to AsV in the rhizosphere porewater. This As cycling mechanism is linked to the reduction of O2 and MnIII/IV (oxyhydr)oxides resulting in decreased O2 levels and increased Mn solubilization along roots. Compared to PV, we found 4-fold lower As translocation to PQ fronds (1611 mg kg-1), 2-fold lower AsV depletion in the PQ rhizosphere, and no AsIII efflux from PQ roots, suggesting that PQ efficiently controls As uptake to avoid toxic As levels in roots. Analysis of root exudates obtained from soil-grown PV showed that As acquisition by PV roots was not associated with phytic acid release. Our study demonstrates that two closely-related As-accumulating ferns have distinct mechanisms for As uptake modulating As cycling in As-rich environments.
Collapse
Affiliation(s)
- Stefan Wagner
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
- Department General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700, Leoben, Austria
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Christoph Hoefer
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Soil Chemistry Group, ETH Zürich, Universitätstrasse 16, CHN, 8092, Zürich, Switzerland
| | - Markus Puschenreiter
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Walter W. Wenzel
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, 20 Kirkwood Ave, Ilam, Christchurch, 8041, New Zealand
| | - Ruben Kretzschmar
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Soil Chemistry Group, ETH Zürich, Universitätstrasse 16, CHN, 8092, Zürich, Switzerland
| | - Jakob Santner
- Department General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700, Leoben, Austria
- Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
- Corresponding author. (J. Santner)
| |
Collapse
|
29
|
Han YH, Jia MR, Wang SS, Deng JC, Shi XX, Chen DL, Chen Y, Ma LQ. Arsenic accumulation and distribution in Pteris vittata fronds of different maturity: Impacts of soil As concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:135298. [PMID: 31859061 DOI: 10.1016/j.scitotenv.2019.135298] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) hyperaccumulator Pteris vittata is efficient in As uptake, translocation and accumulation, but the impacts of soil As concentrations on As accumulation and distribution in P. vittata are still unclear. The impacts of soil As (7.3, 63 and 228 mg kg-1) on plant growth and As accumulation in P. vittata after 6 months of growth were evaluated. Arsenic concentrations in the roots, midribs and pinna margin of P. vittata fronds of different maturity were determined by inductively coupled plasma mass spectrometry (ICP-MS) and scanning electron microscopy coupled with an energy dispersive spectrometer (SEM-EDS). While moderate As level at As63 didn't impact P. vittata growth, higher As at As228 decreased plant biomass by 38%. Under As stress, more As was accumulated in the senescing fronds (47%) and mature fronds (11%) than the young fronds. In senescing fronds, As concentrations in pinna margin were 2.3 times that of the midribs, consistent with As-induced necrotic symptom. Arsenic distribution based on SEM-EDS analysis revealed good correlation between Si and As in the pinnae (r = 0.49). Our data showed that As accumulation in pinna margin caused necrosis and Si may have a potential role in As detoxification in P. vittata.
Collapse
Affiliation(s)
- Yong-He Han
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou 362801, China; College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350007, China; Fujian Provincial Key Lab of Coastal Basin Environment, Fuqing Branch of Fujian Normal University, Fuqing 350300, China
| | - Meng-Ru Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shan-Shan Wang
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou 362801, China
| | - Jia-Cong Deng
- Fujian Provincial Key Lab of Coastal Basin Environment, Fuqing Branch of Fujian Normal University, Fuqing 350300, China
| | - Xiao-Xia Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Deng-Long Chen
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou 362801, China; The Innovative Center for Eco-Friendly Polymeric Materials of Fujian Province, Quanzhou 362801, China
| | - Yanshan Chen
- School of the Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Lena Q Ma
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
30
|
Hua CY, Chen JX, Cao Y, Li HB, Chen Y, Ma LQ. Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil. CHEMOSPHERE 2020; 247:125916. [PMID: 32069716 DOI: 10.1016/j.chemosphere.2020.125916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) and cadmium (Cd) are ubiquitous in the environment and they are both toxic to humans. When present in soils, they can enter food chain, thereby threatening human health. Water spinach (Ipomoea aquatica) is an important leafy vegetable, which is widely consumed in Asian countries. However, it is efficient in taking up As and Cd from soils and accumulating them in the edible parts. Therefore, it is of significance to reduce its As and Cd content, especially in contaminated soil. In this study, pot experiments were conducted to investigate the ability of As-hyperaccumulator Pteris vittata in reducing As and Cd uptake by water spinach under different phosphorus treatments. P. vittata was grown for 60 d in a contaminated-soil amended with P fertilizer (+P) or phosphate rock (+PR), followed by water spinach cultivation for another 30 d. Plant biomass, As and Cd contents in plants and soils, and soil pH were analyzed. We found that, P. vittata coupled with PR decreased the As concentration in water spinach shoots by 42%, probably due to As uptake by P. vittata. Moreover, P. vittata decreased the Cd accumulation in water spinach by 24-44%, probably due to pH increase of 0.47-0.61 after P. vittata cultivation. Taking together, the results showed that P. vittata coupled with PR decreased the As and Cd content in water spinach, which is of significance for improving food safety and protecting human health.
Collapse
Affiliation(s)
- Chen-Yu Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Jiangsu, 210023, China
| | - Jun-Xiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Jiangsu, 210023, China
| | - Yue Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Jiangsu, 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Jiangsu, 210023, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Jiangsu, 210023, China; School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Xu M, Barbosa da Silva E, Gao P, Liao R, Wu J, Ma J, Yang G, Zhang X, Xiao Y, Long L. Biochar impact on chromium accumulation by rice through Fe microbial-induced redox transformation. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121807. [PMID: 31831288 DOI: 10.1016/j.jhazmat.2019.121807] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/20/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Iron (Fe) dissimilatory reduction might impact chromium (Cr) mobility in the rice rhizosphere, but it is poorly understood. We assessed rhizosphere microbes' role in Cr immobilization and bioavailability by conducting the pot experiment to test different biochar sources (PMB - pig manure and PSB - pine sawdust) and phosphorus (P) levels impact on Cr mobility. Results showed that PMB application increased root biomass (23-65 %) and decreased root Cr concentration (46-74 %) regardless P treatment. However, P addition reduced root and shoot biomass in control and PMB treatments by 33-43 % and 25-26 %. Therefore, low P input is recommended in Cr-contaminated soil. Moreover, Geobacter was the key microbial groups which may be involved in promoting Cr release by increasing Fe dissolution. Finally, Geobacter and Fe dissimilatory reduction play a central role in Cr translocation and they should be considered in strategies to reduce rice Cr uptake by biochar application.
Collapse
Affiliation(s)
- Min Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Evandro Barbosa da Silva
- Research Center for Soil Contamination & Environment Remediation, Southwest Forestry University, Yunnan 650224, China; Innovative Technical Solutions, Gainesville, FL 32607, USA
| | - Peng Gao
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Ruiting Liao
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Wu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Ma
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Gang Yang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaohong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinlong Xiao
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Lulu Long
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
32
|
Yang C, Ho YN, Makita R, Inoue C, Chien MF. A multifunctional rhizobacterial strain with wide application in different ferns facilitates arsenic phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:134504. [PMID: 31831229 DOI: 10.1016/j.scitotenv.2019.134504] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Pteris vittata and Pteris multifida are widely studied As hyperaccumulators that absorb As mainly via roots. Hence, rhizobacteria exhibit promising potential in phytoextraction owing to their immense microbial diversity and interactions with plants. Pseudomonas vancouverensis strain m318 that contains aioA-like genes was screened from P. multifida's rhizosphere through the high As resistance (minimum inhibitory concentrations (MICs) against As(III): 16 mM; MICs against As(V): 320 mM), rapid As oxidation (98% oxidation by bacterial cultures (OD600nm = 1) from 200 μL of 0.1 mM As(III) within 24 h), predominant secretion of IAA (12.45 mg L-1) and siderophores (siderophore unit: 88%). Strain m318 showed significant chemotactic response and high colonization efficiency to P. vittata roots, which suggested its wide host affinity. Interestingly, inoculation with strain m318 enhanced the proportion of aioA-like genes in the rhizosphere. And in field trials, inoculation with strain m318 increased As accumulation in P. vittata by 48-146% and in P. multifida by 42-233%. Post-transplantation inoculations also increased As accumulation in both ferns. The abilities of the isolated multifunctional strain m318 and the increase in the rhizosphere microbial aioA-like genes are thus speculated to be involved in As transformation in the rhizospheres and roots of P. vittata and P. multifida.
Collapse
Affiliation(s)
- Chongyang Yang
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan
| | - Ying-Ning Ho
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan; Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan
| | - Ryota Makita
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan.
| |
Collapse
|
33
|
Tao Q, Zhao J, Li J, Liu Y, Luo J, Yuan S, Li B, Li Q, Xu Q, Yu X, Huang H, Li T, Wang C. Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in Cd-hyperaccumulator Sedum alfredii. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121177. [PMID: 31648122 DOI: 10.1016/j.jhazmat.2019.121177] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Low molecular weight organic acids (LMWOA) involved in heavy metal tolerance, translocation, and accumulation in plants. However, underlying mechanism of LMWOA secretion in metal mobilization and uptake in hyperaccumulator still need to be identified. In this study, a 13C labeling rhizobox was designed to investigate the composition and distribution of LMWOA in the rhizosphere of S. alfredii. The result showed that about 2.30%, 2.25% and 2.35% of the assimilated 13C was incorporated into oxalic acid, malic acid, and tartaric acid in rhizosphere of S. alfredii after 13CO2 assimilation, respectively. Oxalic acid, malic acid, and tartaric acid were the predominant LMWOA in rhizosphere soil solution of hyperaccumulating ecotype (HE) S. alfredii, however, almost no tartaric acid was detected for non-hyperaccumulating ecotype (NHE). Tartaric acid was identified as the unique root exudate from HE S. alfredii which was mainly distributed within the range of rhizosphere 0-6 mm. Tartaric acid significantly increased the solubility of four Cd minerals. HE S. alfredii treated with tartrate + CdCO3 had higher Cd contents and larger biomass than CdCO3 treatment. Cadmium accumulation in HE S. alfredii was promoted by the exudation of tartaric acid, which was highly efficient in Cd solubilization due to the formation of soluble Cd-tartrate complexes.
Collapse
Affiliation(s)
- Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Junwen Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China.
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
34
|
Yang S, He M, Zhi Y, Chang SX, Gu B, Liu X, Xu J. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities. ENVIRONMENT INTERNATIONAL 2019; 133:105239. [PMID: 31639603 DOI: 10.1016/j.envint.2019.105239] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 05/22/2023]
Abstract
Conducting integrated analysis of the source, exposure and health risk of heavy metals is critical for developing mitigation strategies of soil contamination. Taking the former electronic waste (e-waste) dismantling center in China as an example this study quantitatively apportioned source contribution of soil heavy metals in this area by statistical analysis and positive matrix factorization (PMF) model. Furthermore, the human health risk of identified sources were quantified by combining source profiles and exposure risk assessment. The seven heavy metals investigated were arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb) and Zinc (Zn). Results indicated that agricultural soils were mainly contaminated with Cd and Cu. Parent material and pesticide, fertilizer application, industrial discharge, and vehicle emission accounted for 46.6, 22.2, and 31.2%, respectively, of the accumulation of metals in the soil. Moreover, these sources contributed 52.9, 19.0, and 28.1%, respectively of the total non-cancer risk. For the total cancer risk, the contribution of these three sources was 39.2, 45.3, and 15.5%, respectively. Despite that industrial discharge contributed the least to the accumulation of metals (22.2%), it contributed the most to the total cancer risk (45.3%). Reducing industrial emission was crucial for minimizing the heavy metal input to agricultural soils and preventing potential health hazard. These findings could provide support for environmental protection authority to improve the management and risk prevention of contaminated farmland.
Collapse
Affiliation(s)
- Shiyan Yang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Mingjiang He
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yuyou Zhi
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Baojing Gu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xingmei Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Naila A, Meerdink G, Jayasena V, Sulaiman AZ, Ajit AB, Berta G. A review on global metal accumulators-mechanism, enhancement, commercial application, and research trend. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26449-26471. [PMID: 31363977 DOI: 10.1007/s11356-019-05992-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/16/2019] [Indexed: 05/07/2023]
Abstract
The biosphere is polluted with metals due to burning of fossil fuels, pesticides, fertilizers, and mining. The metals interfere with soil conservations such as contaminating aqueous waste streams and groundwater, and the evidence of this has been recorded since 1900. Heavy metals also impact human health; therefore, the emancipation of the environment from these environmental pollutants is critical. Traditionally, techniques to remove these metals include soil washing, removal, and excavation. Metal-accumulating plants could be utilized to remove these metal pollutants which would be an alternative option that would simultaneously benefit commercially and at the same time clean the environment from these pollutants. Commercial application of pollutant metals includes biofortification, phytomining, phytoremediation, and intercropping. This review discusses about the metal-accumulating plants, mechanism of metal accumulation, enhancement of metal accumulation, potential commercial applications, research trends, and research progress to enhance the metal accumulation, benefits, and limitations of metal accumulators. The review identified that the metal accumulator plants only survive in low or medium polluted environments with heavy metals. Also, more research is required about metal accumulators in terms of genetics, breeding potential, agronomics, and the disease spectrum. Moreover, metal accumulators' ability to uptake metals need to be optimized by enhancing metal transportation, transformation, tolerance to toxicity, and volatilization in the plant. This review would benefit the industries and environment management authorities as it provides up-to-date research information about the metal accumulators, limitation of the technology, and what could be done to improve the metal enhancement in the future.
Collapse
Affiliation(s)
- Aishath Naila
- Research Centre, Central Administration, The Maldives National University (MNU), Rahdhebai Hingun, Machangoalhi, 20371, Male, Maldives
| | - Gerrit Meerdink
- Food Science and Technology Unit, Department of Chemical Engineering, University of the West Indies, - St. Augustine Campus, St. Augustine, Trinidad & Tobago
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, Sydney, Australia
| | - Ahmad Z Sulaiman
- Faculty of Bio-Engineering and Technology, Universiti Malaysia Kelantan (UMK), Campus Jeli, Beg Berkunci No. 100, 17600, Kelantan Darul Naim, Jeli, Malaysia
| | - Azilah B Ajit
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia.
| | - Graziella Berta
- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
36
|
Yang S, Zhao J, Chang SX, Collins C, Xu J, Liu X. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. ENVIRONMENT INTERNATIONAL 2019; 128:165-174. [PMID: 31055203 DOI: 10.1016/j.envint.2019.04.044] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Heavy metal accumulation in agriculture soils is of particular concern in China, while the status and probabilistic health risks of metal contamination in Chinese agriculture soils have been rarely studied at the national scale. In this study, we compiled a database of heavy metal concentrations in Chinese agriculture soils and selected six heavy metals for pollution assessment and risk screening: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb) and Zinc (Zn). Monte Carlo simulation was employed to assess the probabilistic health risks, the associated uncertainties, as well as variations in toxicity parameters, ingestion rate and body weight. Results indicated that the concentrations of Cd were elevated above their reference standard and Cd had the highest mean geo-accumulation index (Igeo) of 1.79. Moreover, the mean hazard index (HI) through exposure to six heavy metals was 1.85E-01 and 2.87E-02 for children and adults, respectively, with 2.2% of non-cancer risks for children that exceeded the guideline value of 1. In contrast, 95.0% and 90.0% of the total cancer risks (TCR) through exposure to six heavy metals for children and adults, respectively, exceeded the guideline value of 1E-06. Six metals were ranked based on their percent of risk outputs exceeding the guideline values. Arsenic had the high exceedance of both cancer and non-cancer risks, while both Cr and Cd were metals with high concern that had high exceedance of cancer risk. Sensitivity analyses indicated that metal concentrations and ingestion rate of soil were the predominant contributors to total risk variance. Overall, the adverse health risks induced by exposure to heavy metals contaminated farmland were elevated. Results from this study may provide valuable implications for public health professionals and policy-makers to design effective strategy to manage nation-wide farmland and reduce heavy metal exposure.
Collapse
Affiliation(s)
- Shiyan Yang
- College of Environmental Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jian Zhao
- College of Environmental Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Chris Collins
- Department of Geography and Environmental Science, University of Reading, Whiteknights Campus, Reading RG6 6DW, UK
| | - Jianming Xu
- College of Environmental Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xingmei Liu
- College of Environmental Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Jia MR, Tang N, Cao Y, Chen Y, Han YH, Ma LQ. Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis. CHEMOSPHERE 2019; 218:1061-1070. [PMID: 30609485 DOI: 10.1016/j.chemosphere.2018.11.145] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Arsenate (AsV) reduction in bacteria is essential to alleviate their arsenic (As) toxicity. We isolated a Bacillus strain PVR-YHB1-1 from the roots of As-hyperaccumulator Pteris vittata. The strain was efficient in reducing AsV to arsenite (AsIII), but the associated mechanisms were unclear. Here, we investigated its As resistance and reduction behaviors and associated genes at genome level. Results showed that the strain tolerated up to 20 mM AsV. When grown in 1 mM AsV, 96% AsV was reduced to AsIII in 48 h, with its AsV reduction ability being positively correlated to bacterial biomass. Two ars operons arsRacr3arsCDA and arsRKacr3arsC for As metabolisms were identified based on draft genome sequencing and gene annotations. Our data suggested that both operons might have attributed to efficient As resistance and AsV reduction in PVR-YHB1-1, providing clues to better understand As transformation in bacteria and their roles in As transformation in the environment.
Collapse
Affiliation(s)
- Meng-Ru Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ni Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yue Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, 362801, China; College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States.
| |
Collapse
|
38
|
Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S. Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. CHEMOSPHERE 2018; 211:397-406. [PMID: 30077936 DOI: 10.1016/j.chemosphere.2018.07.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 05/24/2023]
Abstract
The rapid pace of industrial, agricultural and anthropogenic activities in the 20th century has resulted in contamination of heavy metals across the globe. Arsenic (As) is a ubiquitous, naturally occurring toxic metalloid, contaminating the soil and water and affecting human health in several countries. Several physicochemical methods exist for the cleanup of As contamination but these are expensive and disastrous to microbes and soil. Plant based remediation approaches are low cost and environmentally safe. Hence, extensive biochemical, molecular and genetic experiments have been conducted to understand plants' responses to As stress and have led to the identification of potential genes. The available knowledge needs to be utilized to either reduce As accumulation in crop plants (rice) or to enhance As levels in shoots of hyperaccumulators (Pteris vittata). Gene manipulation using biotechnological tools can be an effective approach to exploit the potential genes (plasmamembrane and vacuolar transporters, glutathione and phytochelatin biosynthetic enzymes, etc.) playing pivotal roles in uptake, translocation, transformation, complexation, and compartmentalization of As in plants. The transgenic plants with increased tolerance to As and altered (increased/decreased) As accumulation have been developed. The need, however, exists to design plants with altered expression of two or more genes for harmonizing various events (like arsenate reduction, arsenite complexation, sequestration and translocation) so as to achieve desirable reduction (crop plants) or increase (phytoremediator plants) in As content. This review sheds light on transgenic approaches adopted to modulate As levels in plants and proposes future directions to achieve desirable results.
Collapse
Affiliation(s)
- Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India.
| | - Anshu Rastogi
- Department of Meteorology, Poznan University of Life Sciences, Poznan, Poland.
| | - Anurakti Shukla
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India.
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India.
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand 246174, India.
| |
Collapse
|
39
|
Eze VC, Harvey AP. Extractive recovery and valorisation of arsenic from contaminated soil through phytoremediation using Pteris cretica. CHEMOSPHERE 2018; 208:484-492. [PMID: 29886337 DOI: 10.1016/j.chemosphere.2018.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/24/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Contamination of ground water and soil by arsenic poses serious environmental challenges globally. A possible solution to this problem is through phytoremediation using hyper-accumulating plants. This study investigates phytoremediation of soil containing 200 ± 3 mg kg-1 of arsenic using Pteris cretica ferns, and the strategies for arsenic extraction from the ferns biomass and subsequent conversions to valuable arsenic products. The Pteris cretica ferns achieved maximum arsenic accumulations of 4427 ± 79 to 4875 ± 96 mg of arsenic per kg dry biomass after 30 days. Extraction efficiencies of arsenic in the ferns fronds were 94.3 ± 2.1% for ethanol-water (1:1 v/v), 81.5 ± 3.2% for 1:1 (v/v) methanol-water, and 70.8 ± 2.9% for water alone. Molybdic acid process was used to recover 90.8 ± 5.3% of the arsenic, and 95.1 ± 4.6% of the phosphorus in the biomass extract. Quantitative precipitation of Mg3(AsO4)2 and Mg3(PO4)2 occurred on treatment of the aqueous solutions of arsenic and phosphorus after stripping at pH of 8-10. The efficiencies of Mg3(AsO4)2 and Mg3(PO4)2 precipitation were 96 ± 7.2% and 94 ± 3.4%, respectively. Arsenic nanoparticles produced from the recovered Mg3(AsO4)2, using two-stage reduction process, had average particle diameters of 45.5 ± 11.3 nm. These nanoparticles are potentially valuable for medical applications, while the Mg3(AsO4)2 could be converted to more valuable forms of arsenic or used as a pesticide, and the Mg3(PO4)2 in fertiliser. Recovery of these valuable products from phytoremediation biomass would incentivise and drive commercial industries' participation in remediation of contaminated lands.
Collapse
Affiliation(s)
- Valentine C Eze
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Adam P Harvey
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
40
|
Kofroňová M, Mašková P, Lipavská H. Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation. PLANTA 2018; 248:19-35. [PMID: 29736625 DOI: 10.1007/s00425-018-2906-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
This review provides insights into As toxicity in plants with focus on photosynthesis and sugar metabolism as important arsenic targets and simultaneously defence tools against accompanying oxidative stress. Heavy metal contamination is a great problem all over the world. Arsenic, a metalloid occurring naturally in the Earth's crust, also massively spreads out in the environment by human activities. Its accumulation in crops poses a severe health risk to humans and animals. Besides the restriction of human-caused contamination, there are two basic ways how to cope with the problem: first, to limit arsenic accumulation in harvestable parts of the crops; second, to make use of some arsenic hyperaccumulating plants for phytoremediation of contaminated soils and waters. Progress in the use of both strategies depends strongly on the level of our knowledge on the physiological and morphological processes resulting from arsenic exposure. Arsenic uptake is mediated preferentially by P and Si transporters and its accumulation substantially impairs plant metabolism at numerous levels including damages through oxidative stress. Rice is a predominantly studied crop where substantial progress has been made in understanding of the mechanisms of arsenic uptake, distribution, and detoxification, though many questions still remain. Full exploitation of plant potential for soil and water phytoremediations also requires deep understanding of the plant response to this toxic metalloid. The aim of this review is to summarize data regarding the effect of arsenic on plant physiology with a focus on mechanisms providing increased arsenic tolerance and/or hyperaccumulation. The emphasis is placed on the topic unjustifiably neglected in the previous reviews - i.e., carbohydrate metabolism, tightly connected to photosynthesis, and beside others involved in plant ability to cope with arsenic-induced oxidative and nitrosative stresses.
Collapse
Affiliation(s)
- Monika Kofroňová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| | - Petra Mašková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic.
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| |
Collapse
|
41
|
Sandhi A, Landberg T, Greger M. Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1098-1105. [PMID: 29157972 DOI: 10.1016/j.envpol.2017.11.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 05/21/2023]
Abstract
This work investigates whether aquatic moss (Warnstorfia fluitans) originating from an arsenic (As)-contaminated wetland close to a mine tailings impoundment may be used for phytofiltration of As. The aim was to elucidate the capacity of W. fluitans to remove As from arsenite and arsenate contaminated water, how nutrients affect the As uptake and the proportion of As adsorption and absorption by the moss plant, which consists of dead and living parts. Arsenic removal from 0, 1, or 10% Hoagland nutrient solution containing 0-100 μM arsenate was followed over 192 h, and the total As in aquatic moss after treatment was analysed. The uptake and speciation of As in moss cultivated in water containing 10 μM arsenate or arsenite were examined as As uptake in living (absorption + adsorption) and dead (adsorption) plant parts. Results indicated that W. fluitans removed up to 82% of As from the water within one hour when 1 μM arsenate was added in the absence of nutrients. The removal time increased with greater nutrient and As concentrations. Up to 100 μM As had no toxic effect on the plant biomass. Both arsenite and arsenate were removed from the solution to similar extents and, independent of the As species added, more arsenate than arsenite was found in the plant. Of the As taken up, over 90% was firmly bound to the tissue, a possible mechanism for resisting high As concentrations. Arsenic was both absorbed and adsorbed by the moss, and twice as much As was found in living parts as in dead moss tissue. This study revealed that W. fluitans has potential to serve as a phytofilter for removing As from As-contaminated water without displaying any toxic effects of the metalloid.
Collapse
Affiliation(s)
- Arifin Sandhi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, SE-106 91 Stockholm, Sweden; Land and Water Resources Engineering Division, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden.
| | - Tommy Landberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, SE-106 91 Stockholm, Sweden
| | - Maria Greger
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, SE-106 91 Stockholm, Sweden
| |
Collapse
|
42
|
Cao Y, Sun D, Chen JX, Mei H, Ai H, Xu G, Chen Y, Ma LQ. Phosphate Transporter PvPht1;2 Enhances Phosphorus Accumulation and Plant Growth without Impacting Arsenic Uptake in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018. [PMID: 29539263 DOI: 10.1021/acs.est.7b06674] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Phosphorus is an important macronutrient for plant growth and is acquired by plants mainly as phosphate (P). Phosphate transporters (Phts) are responsible for P and arsenate (AsV) uptake in plants including arsenic-hyperaccumulator Pteris vittata. P. vittata is efficient in AsV uptake and P utilization, but the molecular mechanism of its P uptake is largely unknown. In this study, a P. vittata Pht, PvPht1;2, was cloned and transformed into tobacco ( Nicotiana tabacum). In hydroponic experiments, all transgenic lines displayed markedly higher P content and better growth than wild type, suggesting that PvPht1;2 mediated P uptake in plants. In addition, expressing PvPht1;2 also increased the shoot/root 32P ratio by 69-92% and enhanced xylem sap P by 46-62%, indicating that PvPht1;2 also mediated P translocation in plants. Unlike many Phts permeable to AsV, PvPht1;2 showed little ability to transport AsV. In soil experiments, PvPht1;2 also significantly increased shoot biomass without elevating As accumulation in PvPht1;2 transgenic tobacco. Taken together, our results demonstrated that PvPht1;2 is a specific P transporter responsible for P acquisition and translocation in plants. We envisioned that PvPht1;2 can enhance crop P acquisition without impacting AsV uptake, thereby increasing crop production without compromising food safety.
Collapse
Affiliation(s)
- Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Dan Sun
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Jun-Xiu Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Hanyi Mei
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Hao Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Yanshan Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Lena Q Ma
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- Soil and Water Science Department , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
43
|
Han YH, Jia MR, Liu X, Zhu Y, Cao Y, Chen DL, Chen Y, Ma LQ. Bacteria from the rhizosphere and tissues of As-hyperaccumulator Pteris vittata and their role in arsenic transformation. CHEMOSPHERE 2017; 186:599-606. [PMID: 28813694 DOI: 10.1016/j.chemosphere.2017.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/28/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As)-resistant bacteria are abundant in the rhizosphere and tissues of As-hyperaccumulator Pteris vittata. However, little is known about their roles in As transformation and As uptake in P. vittata. In this study, the impacts of P. vittata tissue extracts with or without surface sterilization on As transformation in solutions containing 100 μg L-1 AsIII or AsV were investigated. After 48 h incubation, the sterilized and unsterilized root extracts resulted in 45% and 73% oxidation of AsIII, indicating a role of both rhizobacteria and endobacteria. In contrast, AsV reduction was only found in rhizome and frond extracts at 3.7-24% of AsV. A total of 37 strains were isolated from the tissue extracts, which are classified into 18 species based on morphology and 16S rRNA. Phylogenic analysis showed that ∼44% isolates were Firmicutes and others were Proteobacteria except for one strain belonging to Bacteroidetes. While most endobacteria were Firmicutes, most rhizobacteria were Proteobacteria. All isolated bacteria belonged to AsV reducers except for an As-sensitive strain and one AsIII- oxidizer PVR-YHB6-1. Since As transformation was not observed in solutions after filtrating or boiling, we concluded that both rhizobacteria and endobacteria were involved in As transformation in the rhizosphere and tissues of P. vittata.
Collapse
Affiliation(s)
- Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China; Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian, 326801, China
| | - Meng-Ru Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Xue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Ying Zhu
- Fujian Center for Disease Control & Prevention, Fuzhou, Fujian, 350001, China
| | - Yue Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Deng-Long Chen
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian, 326801, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
44
|
Chen Y, Hua CY, Jia MR, Fu JW, Liu X, Han YH, Liu Y, Rathinasabapathi B, Cao Y, Ma LQ. Heterologous Expression of Pteris vittata Arsenite Antiporter PvACR3;1 Reduces Arsenic Accumulation in Plant Shoots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10387-10395. [PMID: 28834681 DOI: 10.1021/acs.est.7b03369] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Arsenic (As) is a toxic carcinogen so it is crucial to decrease As accumulation in crops to reduce its risk to human health. Arsenite (AsIII) antiporter ACR3 protein is critical for As metabolism in organisms, but it is lost in flowering plants. Here, a novel ACR3 gene from As-hyperaccumulator Pteris vittata, PvACR3;1, was cloned and expressed in Saccharomyces cerevisiae (yeast), Arabidopsis thaliana (model plant), and Nicotiana tabacum (tobacco). Yeast experiments showed that PvACR3;1 functioned as an AsIII-antiporter to mediate AsIII efflux to an external medium. At 5 μM AsIII, PvACR3;1 transgenic Arabidopsis accumulated 14-29% higher As in the roots and 55-61% lower As in the shoots compared to WT control, showing lower As translocation. Besides, transgenic tobacco under 5 μM AsIII or AsV also showed similar results, indicating that expressing PvACR3;1 gene increased As retention in plant roots. Moreover, observation of PvACR3;1-green fluorescent protein fusions in transgenic Arabidopsis showed that PvACR3;1 protein localized to the vacuolar membrane, indicating that PvACR3;1 mediated AsIII sequestration into vacuoles, consistent with increased root As. In addition, soil experiments showed ∼22% lower As in the shoots of transgenic tobacco than control. Thus, our study provides a potential strategy to limit As accumulation in plant shoots, representing the first report to decrease As translocation by sequestrating AsIII into vacuoles, shedding light on engineering low-As crops to improve food safety.
Collapse
Affiliation(s)
- Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Jiangsu 210023, China
| | - Chen-Yu Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Jiangsu 210023, China
| | - Meng-Ru Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Jiangsu 210023, China
| | - Jing-Wei Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Jiangsu 210023, China
| | - Xue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Jiangsu 210023, China
| | - Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Jiangsu 210023, China
- Quangang Petrochemical Research Institute, Fujian Normal University , Quanzhou, Fujian 326801, China
| | - Yungen Liu
- Research Institute of Rural Sewage Treatment, South West Forestry University , Yunnan 650224, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida , Gainesville, Florida 32611, United States
| | - Yue Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Jiangsu 210023, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Jiangsu 210023, China
- Soil and Water Science Department, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|