1
|
Ramcharran H, Ghosh A, Meng Q, Li G, Chernov ES, Lutz M, Mansour HM, Satalin J, Satalin S, Gaver DP, Bates JH, Nieman G, Kollisch-Singule M. Meconium Influences Pulmonary Short-Chain Fatty Acid Concentration in Porcine Meconium Aspiration Model. Biomed Hub 2025; 10:8-22. [PMID: 39816637 PMCID: PMC11735036 DOI: 10.1159/000542807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
Introduction The factors influencing meconium aspiration syndrome (MAS) severity remain poorly understood. In a piglet model of MAS, we hypothesized the respiratory microbiome would reflect the bacterial signature of meconium with short-chain fatty acid (SCFA) accumulation as a byproduct of bacterial fermentation. Methods Cesarean section at approximately 115-day term was performed on two sows. Male (9) and female (3) piglets were delivered, instrumented, anesthetized, and randomized into a Control (n = 6) or MAS group (n = 6). MAS received a meconium slurry (3 mL/kg) aspiration injury. Experimental animals were monitored continuously, ventilated, and resuscitated for 24 h. BALF was collected for 16S microbiome sequencing and SCFA analysis by gas chromatography. Effects of SCFAs on A549 alveolar pulmonary epithelial in vitro cell viability and inflammation were assessed. Results The MAS group had significantly higher fluid and vasopressor requirements than the Control group (p < 0.05) though both groups developed lung injury. The meconium microbiome demonstrated a difference in genus proportions as compared with the BALF of the Control and MAS groups. The MAS group had a relative increase in propionic acid-forming bacteria and higher BALF concentrations of propionic acid (0.6 ± 0.2 mmol/kg) than the Control group (0.2 ± 0.2 mmol/kg; p > 0.05). Propionic acid was associated with decreased pulmonary epithelial cell viability and an upregulated pro-inflammatory response. Conclusions Meconium may host a microbiome with byproducts that interact with the pulmonary epithelium and influence lung injury severity in MAS.
Collapse
Affiliation(s)
- Harry Ramcharran
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Auyon Ghosh
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Qinghe Meng
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Guanqun Li
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Mark Lutz
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Heidi M. Mansour
- Center for Translational Science, Florida International University, Port Saint Lucie, FL, USA
| | - Joshua Satalin
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Sarah Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Donald P. Gaver
- Department of Bioengineering, Tulane University, New Orleans, LA, USA
| | - Jason H.T. Bates
- Department of Bioengineering, University of Vermont, Burlington, VT, USA
| | - Gary Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | | |
Collapse
|
2
|
Lin C, Lane KJ, Chomitz VR, Griffiths JK, Brugge D. The Exposure Peaks of Traffic-Related Ultrafine Particles Associated with Inflammatory Biomarkers and Blood Lipid Profiles. TOXICS 2024; 12:147. [PMID: 38393242 PMCID: PMC10893127 DOI: 10.3390/toxics12020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
In this article, we explored the effects of ultrafine particle (UFP) peak exposure on inflammatory biomarkers and blood lipids using two novel metrics-the intensity of peaks and the frequency of peaks. We used data previously collected by the Community Assessment of Freeway Exposure and Health project from participants in the Greater Boston Area. The UFP exposure data were time-activity-adjusted hourly average concentration, estimated using land use regression models based on mobile-monitored ambient concentrations. The outcome data included C-reactive protein, interleukin-6 (IL-6), tumor necrosis factor-alpha receptor 2 (TNF-RII), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides and total cholesterol. For each health indicator, multivariate regression models were used to assess their associations with UFP peaks (N = 364-411). After adjusting for age, sex, body mass index, smoking status and education level, an increase in UFP peak exposure was significantly (p < 0.05) associated with an increase in TNF-RII and a decrease in HDL and triglycerides. Increases in UFP peaks were also significantly associated with increased IL-6 and decreased total cholesterol, while the same associations were not significant when annual average exposure was used. Our work suggests that analysis using peak exposure metrics could reveal more details about the effect of environmental exposures than the annual average metric.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.L.); (V.R.C.); (J.K.G.)
| | - Kevin J. Lane
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA;
| | - Virginia R. Chomitz
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.L.); (V.R.C.); (J.K.G.)
| | - Jeffrey K. Griffiths
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.L.); (V.R.C.); (J.K.G.)
- Department of Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| | - Doug Brugge
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
3
|
Juárez-Facio AT, Rogez-Florent T, Méausoone C, Castilla C, Mignot M, Devouge-Boyer C, Lavanant H, Afonso C, Morin C, Merlet-Machour N, Chevalier L, Ouf FX, Corbière C, Yon J, Vaugeois JM, Monteil C. Ultrafine Particles Issued from Gasoline-Fuels and Biofuel Surrogates Combustion: A Comparative Study of the Physicochemical and In Vitro Toxicological Effects. TOXICS 2022; 11:21. [PMID: 36668747 PMCID: PMC9861194 DOI: 10.3390/toxics11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Gasoline emissions contain high levels of pollutants, including particulate matter (PM), which are associated with several health outcomes. Moreover, due to the depletion of fossil fuels, biofuels represent an attractive alternative, particularly second-generation biofuels (B2G) derived from lignocellulosic biomass. Unfortunately, compared to the abundant literature on diesel and gasoline emissions, relatively few studies are devoted to alternative fuels and their health effects. This study aimed to compare the adverse effects of gasoline and B2G emissions on human bronchial epithelial cells. We characterized the emissions generated by propane combustion (CAST1), gasoline Surrogate, and B2G consisting of Surrogate blended with anisole (10%) (S+10A) or ethanol (10%) (S+10E). To study the cellular effects, BEAS-2B cells were cultured at air-liquid interface for seven days and exposed to different emissions. Cell viability, oxidative stress, inflammation, and xenobiotic metabolism were measured. mRNA expression analysis was significantly modified by the Surrogate S+10A and S+10E emissions, especially CYP1A1 and CYP1B1. Inflammation markers, IL-6 and IL-8, were mainly downregulated doubtless due to the PAHs content on PM. Overall, these results demonstrated that ultrafine particles generated from biofuels Surrogates had a toxic effect at least similar to that observed with a gasoline substitute (Surrogate), involving probably different toxicity pathways.
Collapse
Affiliation(s)
| | | | | | - Clément Castilla
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Mélanie Mignot
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | - Hélène Lavanant
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Christophe Morin
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | - Laurence Chevalier
- Univ Rouen Normandie, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - François-Xavier Ouf
- Institut de Radioprotection et de Sureté Nucléaire, PSN-RES, SCA, LPMA, 91192 Gif-sur-Yvette, France
| | - Cécile Corbière
- Univ Rouen Normandie, UNICAEN, ABTE UR 4651 F, 76000 Rouen, France
| | - Jérôme Yon
- Univ Rouen Normandie, INSA Rouen, CNRS, CORIA, 76000 Rouen, France
| | | | | |
Collapse
|
4
|
Almeida-Silva M, Cardoso J, Alemão C, Santos S, Monteiro A, Manteigas V, Marques-Ramos A. Impact of Particles on Pulmonary Endothelial Cells. TOXICS 2022; 10:toxics10060312. [PMID: 35736920 PMCID: PMC9227819 DOI: 10.3390/toxics10060312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
According to the WHO, air quality affects around 40 million people, contributing to around 21,000 premature deaths per year. Severe respiratory diseases, such as asthma and chronic obstructive pulmonary disorder, can be promoted by air pollution, which has already been documented; this is one of the reasons why air quality is a very relevant factor for human health and well-being. Aerosols are an aggregation of solid or liquid particles dispersed in the air and can be found in the form of dust or fumes. Aerosols can be easily inhaled or absorbed by the skin, which can lead to adverse health effects according to their sizes that range from the nanometre to the millimetre scale. Based on the PRISMA methodology and using the Rayyan QCRI platform, it was possible to assess more than four hundred research articles. This systematic review study aimed to understand the impact of particles on pulmonary endothelial cells, namely particulate matter in different sizes, cigarette smoke, diesel exhaust particles and carbon black. The main conclusions were that particles induce multiple health effects on endothelial cells, namely endothelial dysfunction, which can lead to apoptosis and necrosis, and it may also cause necroptosis in lung structure.
Collapse
Affiliation(s)
- Marina Almeida-Silva
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Jéssica Cardoso
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Catarina Alemão
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Sara Santos
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Ana Monteiro
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, 2695-066 Bobadela-Loures, Portugal
| | - Vítor Manteigas
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, 2695-066 Bobadela-Loures, Portugal
| | - Ana Marques-Ramos
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Correspondence: ; Tel.: +351-966087971
| |
Collapse
|
5
|
Particulate Matter-Induced Acute Coronary Syndrome: MicroRNAs as Microregulators for Inflammatory Factors. Mediators Inflamm 2021; 2021:6609143. [PMID: 34931116 PMCID: PMC8684514 DOI: 10.1155/2021/6609143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
The most prevalent cause of mortality and morbidity worldwide is acute coronary syndrome (ACS) and its consequences. Exposure to particulate matter (PM) from air pollution has been shown to impair both. Various plausible pathogenic mechanisms have been identified, including microRNAs (miRNAs), an epigenetic regulator for gene expression. Endogenous miRNAs, average 22-nucleotide RNAs (ribonucleic acid), regulate gene expression through mRNA cleavage or translation repression and can influence proinflammatory gene expression posttranscriptionally. However, little is known about miRNA responses to fine PM (PM2.5, PM10, ultrafine particles, black carbon, and polycyclic aromatic hydrocarbon) from air pollution and their potential contribution to cardiovascular consequences, including systemic inflammation regulation. For the past decades, microRNAs (miRNAs) have emerged as novel, prospective diagnostic and prognostic biomarkers in various illnesses, including ACS. We wanted to outline some of the most important studies in the field and address the possible utility of miRNAs in regulating particulate matter-induced ACS (PMIA) on inflammatory factors in this review.
Collapse
|
6
|
Juarez Facio AT, Yon J, Corbière C, Rogez-Florent T, Castilla C, Lavanant H, Mignot M, Devouge-Boyer C, Logie C, Chevalier L, Vaugeois JM, Monteil C. Toxicological impact of organic ultrafine particles (UFPs) in human bronchial epithelial BEAS-2B cells at air-liquid interface. Toxicol In Vitro 2021; 78:105258. [PMID: 34653646 DOI: 10.1016/j.tiv.2021.105258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/30/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
Air pollution has significant health effects worldwide, and airborne particles play a significant role in these effects. Ultrafine particles (UFPs) have an aerodynamic diameter of 0.1 μm or less, can penetrate deep into the respiratory tree, and are more toxic due to their large specific surface area, which should adsorb organic compounds. The aim of this study is to show the toxicological effects of UFPs with high organic content at low dose on BEAS-2B cells through at air-liquid interface (ALI) exposure using a Vitrocell® technology and a miniCAST (Combustion Aerosol Standard) generator. In conjunction with this approach, chemical analysis of particles and gas phase was performed to evaluate the presence of polycyclic aromatic hydrocarbons (PAHs). Chemical analyses confirmed the presence of PAHs in UFPs. With this experimental setup, exposure of the BEAS-2B cells induced neither cytotoxicity nor mitochondrial dysfunction. However, an increase of oxidative stress was observed, as assessed through Nrf2, NQO1, HO-1, CuZnSOD, MnSOD, and Catalase gene expression, together with significant induction of genes related to xenobiotic metabolism CYP1A1 and CYP1B1. Negative regulation of inflammatory genes expression (IL-6 and IL-8) was present three hours after the exposition to the UFPs. Taken together, this experimental approach, using repeatable conditions, should help to clarify the mechanisms by which organic UFPs induce toxicological effects.
Collapse
Affiliation(s)
| | - J Yon
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, CORIA, 76000 Rouen, France
| | - C Corbière
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | | | - C Castilla
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - H Lavanant
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - M Mignot
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - C Devouge-Boyer
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - C Logie
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | - L Chevalier
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - J-M Vaugeois
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | - C Monteil
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France.
| |
Collapse
|
7
|
Hufnagel M, Neuberger R, Wall J, Link M, Friesen A, Hartwig A. Impact of Differentiated Macrophage-Like Cells on the Transcriptional Toxicity Profile of CuO Nanoparticles in Co-Cultured Lung Epithelial Cells. Int J Mol Sci 2021; 22:ijms22095044. [PMID: 34068728 PMCID: PMC8126233 DOI: 10.3390/ijms22095044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
To mimic more realistic lung tissue conditions, co-cultures of epithelial and immune cells are one comparatively easy-to-use option. To reveal the impact of immune cells on the mode of action (MoA) of CuO nanoparticles (NP) on epithelial cells, A549 cells as a model for epithelial cells have been cultured with or without differentiated THP-1 cells, as a model for macrophages. After 24 h of submerged incubation, cytotoxicity and transcriptional toxicity profiles were obtained and compared between the cell culture systems. Dose-dependent cytotoxicity was apparent starting from 8.0 µg/cm2 CuO NP. With regard to gene expression profiles, no differences between the cell models were observed concerning metal homeostasis, oxidative stress, and DNA damage, confirming the known MoA of CuO NP, i.e., endocytotic particle uptake, intracellular particle dissolution within lysosomes with subsequent metal ion deliberation, increased oxidative stress, and genotoxicity. However, applying a co-culture of epithelial and macrophage-like cells, CuO NP additionally provoked a pro-inflammatory response involving NLRP3 inflammasome and pro-inflammatory transcription factor activation. This study demonstrates that the application of this easy-to-use advanced in vitro model is able to extend the detection of cellular effects provoked by nanomaterials by an immunological response and emphasizes the use of such models to address a more comprehensive MoA.
Collapse
|
8
|
Wang B, Lau YS, Huang Y, Organ B, Chuang HC, Ho SSH, Qu L, Lee SC, Ho KF. Chemical and toxicological characterization of particulate emissions from diesel vehicles. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124613. [PMID: 33301973 DOI: 10.1016/j.jhazmat.2020.124613] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
This paper presents a detailed chemical and toxicological characterization of the diesel particulate matter (PM) emitted from diesel vehicles running on a chassis dynamometer under different driving conditions. Chemical analyses were performed to characterize the contents of organic carbon (OC), elemental carbon (EC), and 31 polycyclic aromatic hydrocarbons (PAHs) in the collected PM samples. The OC-EC analysis results revealed that PM emissions from diesel vehicles in this study were dominated by OC and that the emission of vehicles equipped with diesel particulate filters had high OC/EC ratios. The PAH analysis results revealed that 4- and 5-ring PAHs were the dominant PAHs in the OC fraction of the PM samples. Particle toxicity was evaluated through three toxicological markers in human A549 cells, namely (1) acellular 2,7-dichlorofluorescein (DCFH) for oxidative potential, (2) interleukin-6 (IL-6) for inflammation, and (3) glutathione (GSH) for antioxidation after exposure. Statistical analyses revealed that vehicle sizes have statistically significant effects on the concentrations of the markers. Correlation analysis between PAHs and toxicological markers revealed that significant correlations existed between specific compounds and markers. Our results can be used as a reference by policy makers to formulate emission control strategies and as a dataset for other modeling studies.
Collapse
Affiliation(s)
- Bei Wang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China.
| | - Yik-Sze Lau
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuhan Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Bruce Organ
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Jockey Club Heavy Vehicle Emissions Testing and Research Centre, Hong Kong, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Steven Sai Hang Ho
- Division of Atmosphere Sciences, Desert Research Institute, Reno, NV 89512, United States; Hong Kong Premium Services and Research Laboratory, Cheung Sha Wan, Kowloon, Hong Kong, China
| | - Linli Qu
- Hong Kong Premium Services and Research Laboratory, Cheung Sha Wan, Kowloon, Hong Kong, China
| | - Shun-Cheng Lee
- Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Richards LB, Li M, Folkerts G, Henricks PA, Garssen J, van Esch BC. Butyrate and Propionate Restore the Cytokine and House Dust Mite Compromised Barrier Function of Human Bronchial Airway Epithelial Cells. Int J Mol Sci 2020; 22:ijms22010065. [PMID: 33374733 PMCID: PMC7793466 DOI: 10.3390/ijms22010065] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Barrier dysfunction of airway epithelium contributes to the development of allergies, airway hyper-responsiveness and immunological respiratory diseases. Short-chain fatty acids (SCFA) enhance and restore the barrier function of the intestinal epithelium. This study investigated whether acetate, propionate and butyrate enhance the integrity of bronchial epithelial cells. Differentiating human bronchial epithelial cells (16HBE) grown on transwells were exposed to butyrate, propionate and acetate while trans-epithelial electrical resistance was monitored over time. Restorative effects of SCFA were investigated by subsequent incubation of cells with IL-4, IL-13 or house dust mite extract and SCFA. SCFA effects on IL-4-induced cytokine production and the expression of zonula occludens-1 (ZO-1) and Mitogen-activated protein kinases (MAPK) signalling pathways were investigated by ELISA and Western blot assays. Propionate and butyrate enhanced the barrier function of differentiating 16HBE cells and induced complete recovery of the barrier function after exposure to the above-mentioned stimuli. Butyrate decreased IL-4-induced IL-6 production. IL-4 decreased ZO-1 protein expression and induced phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) and c-Jun N-terminal kinases (JNK) in 16HBE cells, both of which could be restored by SCFA. SCFA showed prophylactic and restorative effects on airway epithelial barrier function, which might be induced by increased ZO-1 expression.
Collapse
Affiliation(s)
- Levi B. Richards
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.B.R.); (M.L.); (G.F.); (P.A.J.H.); (J.G.)
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Meng Li
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.B.R.); (M.L.); (G.F.); (P.A.J.H.); (J.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.B.R.); (M.L.); (G.F.); (P.A.J.H.); (J.G.)
| | - Paul A.J. Henricks
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.B.R.); (M.L.); (G.F.); (P.A.J.H.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.B.R.); (M.L.); (G.F.); (P.A.J.H.); (J.G.)
- Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Betty C.A.M. van Esch
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.B.R.); (M.L.); (G.F.); (P.A.J.H.); (J.G.)
- Nutricia Research, 3584 CT Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-62-573-2735
| |
Collapse
|
10
|
Gómez-Budia M, Konttinen H, Saveleva L, Korhonen P, Jalava PI, Kanninen KM, Malm T. Glial smog: Interplay between air pollution and astrocyte-microglia interactions. Neurochem Int 2020; 136:104715. [DOI: 10.1016/j.neuint.2020.104715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
|
11
|
Naclerio R, Ansotegui IJ, Bousquet J, Canonica GW, D'Amato G, Rosario N, Pawankar R, Peden D, Bergmann KC, Bielory L, Caraballo L, Cecchi L, Cepeda SAM, Chong Neto HJ, Galán C, Gonzalez Diaz SN, Idriss S, Popov T, Ramon GD, Ridolo E, Rottem M, Songnuan W, Rouadi P. International expert consensus on the management of allergic rhinitis (AR) aggravated by air pollutants: Impact of air pollution on patients with AR: Current knowledge and future strategies. World Allergy Organ J 2020; 13:100106. [PMID: 32256939 PMCID: PMC7132263 DOI: 10.1016/j.waojou.2020.100106] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Allergic rhinitis affects the quality of life of millions of people worldwide. Air pollution not only causes morbidity, but nearly 3 million people per year die from unhealthy indoor air exposure. Furthermore, allergic rhinitis and air pollution interact. This report summarizes the discussion of an International Expert Consensus on the management of allergic rhinitis aggravated by air pollution. The report begins with a review of indoor and outdoor air pollutants followed by epidemiologic evidence showing the impact of air pollution and climate change on the upper airway and allergic rhinitis. Mechanisms, particularly oxidative stress, potentially explaining the interactions between air pollution and allergic rhinitis are discussed. Treatment for the management of allergic rhinitis aggravated by air pollution primarily involves treating allergic rhinitis by guidelines and reducing exposure to pollutants. Fexofenadine a non-sedating oral antihistamine improves AR symptoms aggravated by air pollution. However, more efficacy studies on other pharmacological therapy of coexisting AR and air pollution are currently lacking.
Collapse
Key Words
- AER, Allergic eosinophilic rhinitis
- AP, Activator protein
- AR, Allergic rhinitis
- ARE, Antioxidant response element
- Air pollutants
- Air pollution
- Allergic rhinitis
- Antioxidant enzymes
- CFS, Chronic fatigue syndrome
- CO, Carbon monoxide
- COPD, Chronic obstructive pulmonary disease
- Climate change
- DAMP, Damage-associated molecular patterns
- DEP, Diesel exhaust particles
- ECAT, Elemental carbon attributable to traffic
- ECP, Eosinophil cationic protein
- GSH-Px, Glutathione peroxidase
- HDM, House dust mites
- HEPA, High efficiency particulate air
- HO, Hemeoxygenase
- HVAC, Heating, ventilation and air conditioning
- IAP, Indoor air pollution
- IAQ, Indoor air quality
- INS, Intranasal steroids
- Indoor air quality
- LDH, Lactate dehydrogenase
- MCP, Monocyte chemotactic protein
- MSQPCR, Mold specific quantitative PCR
- NAR, Non allergic rhinitis
- NF-κβ, Nuclear factor kappa β
- NO2, Nitrogen dioxide
- NOx, Nitric oxides
- Nrf2, Nuclear factor erythroid-2 related factor
- O3, Ozone
- OAP, Outdoor air pollution
- Occupational rhinitis
- Oxidative stress
- PAMP, Pathogen-associated molecular patterns
- PM, Particulate matter
- PON, Paraoxonase
- RNS, Reactive nitrosative species
- ROS, Reactive oxygen species
- SO2, Sulphur dioxide
- SOD, Superoxide dismutase
- TLR, Toll like receptor
- TNF, Tumor necrosis factor
- TOS, Total oxidative status
- TRAP, Traffic related air pollutants
- UFP, Ultra-fine particles
- VOCs, Volatile organic compound
Collapse
Affiliation(s)
| | | | - Jean Bousquet
- INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, Villejuif, France
- University Versailles St-Quentin-en-Yvelines, France
- Allergy-Centre-Charité, Charité–Universita¨tsmedizin Berlin, Berlin, Germany
| | | | - Gennaro D'Amato
- Division of Respiratory and Allergic Diseases, High Specialty Hospital A. Cardarelli, Napoli, Italy; School of Specialization in Respiratory Diseases University Federico II Naples, Italy
| | - Nelson Rosario
- Pediatric Respiratory Medicine Division, Complexo Hospital de Clinicas, UFPR, Curitiba, Brazil
| | - Ruby Pawankar
- Dept. of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - David Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology; Division of Allergy, Immunology and Rheumatology, Dpt. of Pediatrics UNS School of Medicine, USA
| | | | - Leonard Bielory
- Medicine & Ophthalmology Hackensack Meridian School of Medicine at Seton Hall University Nutley, New Jersey, USA
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Lorenzo Cecchi
- Centre de Bioclimatology, University de Florence, Florence, Italy
- SOS Allergy and Immunology, Prato - USL Toscana Centro, Italy
| | - S. Alfonso M. Cepeda
- Fundación Hospital Universitario Metropolitano de Barranquilla, Barranquilla, Colombia
| | | | - Carmen Galán
- Department of Botany, Ecology and Plant Physiology, University of Córdoba, Spain
| | | | - Samar Idriss
- Department of Otolaryngology- Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Todor Popov
- Alexander's University Hospital Clinic of Allergy & Asthma, Bulgaria
| | - German D. Ramon
- Alergia e Inmunología, Hospital Italiano Regional del Sur, Bahía Blanca-Buenos Aires, Argentina
| | - Erminia Ridolo
- Department of Clinical and Experimental Medicine, Università; di Parma, Parma, Italy
| | - Menachem Rottem
- Allergy Asthma and Immunology, Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine Technion, Israel Institute of Technology, Haifa, Israel
| | - Wisuwat Songnuan
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Philip Rouadi
- Department of Otolaryngology- Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| |
Collapse
|
12
|
Early Proteome Shift and Serum Bioactivity Precede Diesel Exhaust-induced Impairment of Cardiovascular Recovery in Spontaneously Hypertensive Rats. Sci Rep 2019; 9:6885. [PMID: 31053794 PMCID: PMC6499793 DOI: 10.1038/s41598-019-43339-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/18/2019] [Indexed: 01/11/2023] Open
Abstract
Single circulating factors are often investigated to explain air pollution-induced cardiovascular dysfunction, yet broader examinations of the identity and bioactivity of the entire circulating milieu remain understudied. The purpose of this study was to determine if exposure-induced cardiovascular dysfunction can be coupled with alterations in both serum bioactivity and the circulating proteome. Two cohorts of Spontaneously Hypertensive Rats (SHRs) were exposed to 150 or 500 μg/m3 diesel exhaust (DE) or filtered air (FA). In Cohort 1, we collected serum 1 hour after exposure for proteomics analysis and bioactivity measurements in rat aortic endothelial cells (RAECs). In Cohort 2, we assessed left ventricular pressure (LVP) during stimulation and recovery from the sympathomimetic dobutamine HCl, one day after exposure. Serum from DE-exposed rats had significant changes in 66 serum proteins and caused decreased NOS activity and increased VCAM-1 expression in RAECs. While rats exposed to DE demonstrated increased heart rate at the start of LVP assessments, heart rate, systolic pressure, and double product fell below baseline in DE-exposed rats compared to FA during recovery from dobutamine, indicating dysregulation of post-exertional cardiovascular function. Taken together, a complex and bioactive circulating milieu may underlie air pollution-induced cardiovascular dysfunction.
Collapse
|
13
|
Bengalli R, Zerboni A, Marchetti S, Longhin E, Priola M, Camatini M, Mantecca P. In vitro pulmonary and vascular effects induced by different diesel exhaust particles. Toxicol Lett 2019; 306:13-24. [DOI: 10.1016/j.toxlet.2019.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
|
14
|
Mu X, Liu J, Yang K, Huang Y, Li X, Yang W, Qi S, Tu W, Shen G, Li Y. 0# Diesel water-accommodated fraction induced lipid homeostasis alteration in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:952-961. [PMID: 30373040 DOI: 10.1016/j.envpol.2018.07.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
To investigate the developmental effects and corresponding molecular mechanism of diesel in freshwater organisms, zebrafish embryos were exposed to 0# diesel water-accommodated fraction (WAF) at different concentrations. Mortality, embryonic morphological endpoints, transcriptional profile and lipid profile were evaluated after exposure. Exposure to 0# diesel WAF had no significant effect on the survival of zebrafish embryos from 1.5 to 96 hpf. However, a significant increase in mortality was observed at 144 and 196 hpf in the groups of 20 and 40 mg/L 0# diesel WAF. RNA-Seq results demonstrated that 0# diesel WAF could induce significant alterations in transcription profile at concentrations of 0.05 mg/L (the limit for petroleum hydrocarbon concentration in surface water in China) and 5 mg/L. Gene Ontology enrichment and similarity analysis indicated that lipid metabolism, lipid synthesis, biological transport, drug metabolism and homeostatic processes were the most altered biological processes after exposure to 0# diesel WAF. Further, transcription levels of genes involved in cholesterol and fatty acid synthesis were significantly inhibited by diesel WAF according to qPCR results. Lipidomics results also indicated that several lipid species (cholesterol ester, fatty acid, diglyceride and triglyceride) decreased after 0# diesel WAF exposure. These results reflect the potential risk of diesel pollution in freshwater ecosystems especially on the alteration of lipid homeostasis and enable a better understanding of the molecular pathways underlying the action of diesel WAF in zebrafish embryos.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ke Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xuxing Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Dziendzikowska K, Gajewska M, Wilczak J, Mruk R, Oczkowski M, Żyła E, Królikowski T, Stachoń M, Øvrevik J, Myhre O, Kruszewski M, Wojewódzka M, Lankoff A, Gromadzka-Ostrowska J. The effects of 1st and 2nd generation biodiesel exhaust exposure on hematological and biochemical blood indices of Fisher344 male rats - The FuelHealth project. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:34-47. [PMID: 30142495 DOI: 10.1016/j.etap.2018.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Diesel exhaust emissions (DEE), being one of the main causes of ambient air pollution, exert a detrimental effect on human health and increase morbidity and mortality related to cardiovascular and pulmonary diseases. Therefore, the objective of the present study was to investigate potential adverse effects of exhausts emissions from B7 fuel, the first-generation biofuel containing 7% of fatty acid methyl esters (FAME), and SHB20 fuel, the second-generation biofuel containing 20% FAME/hydrotreated vegetable oil (HVO), after a whole-body exposure with and without diesel particle filter (DPF). The experiment was performed on 95 male Fischer 344 rats, divided into 10 groups (8 experimental, 2 control). Animals were exposed to DEE (diluted with charcoal-filtered room air to 2.1-2.2% (v/v)) for 7 or 28 days (6 h/day, 5 days/week) in an inhalation chamber. DEE originated from Euro 5 engine with or without DPF treatment, run on B7 or SHB20 fuel. Animals in the control groups were exposed to clean air. Our results showed that the majority of haematological and biochemical parameters examined in blood were at a similar level in the exposed and control animals. However, exposure to DEE from the SHB20 fuel caused an increase in the number of red blood cells (RBC) and haemoglobin concentration. Moreover, 7 days exposure to DEE from SHB20 fuel induced genotoxic effects manifested by increased levels of DNA single-strand breaks in peripheral blood lymphocytes. Furthermore, inhalation of both types of DEE induced oxidative stress and caused imbalance of anti-oxidant defence enzymes. In conclusion, exposure to DEE from B7, which was associated with higher exposure to polycyclic aromatic hydrocarbons, resulted in decreased number of T and NK lymphocytes, while DEE from SHB20 induced a higher level of DNA single-strand breaks, oxidative stress and increased red blood cells parameters. Additionally, DPF technology generated increased number of smaller PM and made the DEE more reactive and more harmful, manifested as deregulation of redox balance.
Collapse
Affiliation(s)
- K Dziendzikowska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Poland.
| | - M Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - J Wilczak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - R Mruk
- Department of Production Organization and Engineering, Faculty of Production Engineering, Warsaw University of Life Sciences, Poland
| | - M Oczkowski
- Department of Dietetics, Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Poland
| | - E Żyła
- Department of Dietetics, Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Poland
| | - T Królikowski
- Department of Dietetics, Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Poland
| | - M Stachoń
- Department of Dietetics, Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Poland
| | - J Øvrevik
- Department of Air Pollution and Noise, Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - O Myhre
- Department of Toxicology and Risk Assessment, Division of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - M Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, Rzeszów, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - M Wojewódzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - A Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - J Gromadzka-Ostrowska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Poland
| |
Collapse
|
16
|
De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T. Insights in particulate matter-induced allergic airway inflammation: Focus on the epithelium. Clin Exp Allergy 2018; 48:773-786. [PMID: 29772098 DOI: 10.1111/cea.13178] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Outdoor air pollution is a major environmental health problem throughout the world. In particular, exposure to particulate matter (PM) has been associated with the development and exacerbation of several respiratory diseases, including asthma. Although the adverse health effects of PM have been demonstrated for many years, the underlying mechanisms have not been fully identified. In this review, we focus on the role of the lung epithelium and specifically highlight multiple cytokines in PM-induced respiratory responses. We describe the available literature on the topic including in vitro studies, findings in humans (ie observations in human cohorts, human controlled exposure and ex vivo studies) and in vivo animal studies. In brief, it has been shown that exposure to PM modulates the airway epithelium and promotes the production of several cytokines, including IL-1, IL-6, IL-8, IL-25, IL-33, TNF-α, TSLP and GM-CSF. Further, we propose that PM-induced type 2-promoting cytokines are important mediators in the acute and aggravating effects of PM on airway inflammation. Targeting these cytokines could therefore be a new approach in the treatment of asthma.
Collapse
Affiliation(s)
- K C De Grove
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - S Provoost
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G G Brusselle
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G F Joos
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - T Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|