1
|
Dusacre E, Le Picard C, Hausard V, Rigolet C, Ekoja F, Jean M, Clérandeau C, Villette S, Lagarde F, Lecomte S, Morin B, Cajaraville MP, Cachot J. Distinct toxicity profiles of conventional and biodegradable fishing nets' leachates after artificial aging. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137609. [PMID: 39954430 DOI: 10.1016/j.jhazmat.2025.137609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Fishing nets (FNs) represent a significant source of plastic waste, but their contribution to pollution by micro- and nanoplastics (MNPs) and associated additives is poorly understood. We studied the degradation of a high-performance-polyethylene-polypropylene (HPPE-PP) trawl net and two trammel nets made of polyamide 6 (PA6) or biodegradable polybutylene-succinate-polybutyrate-adipate-terephthalate (PBS-PBAT). Accelerated artificial ageing (AA) was performed using UV irradiation under environmental or extreme conditions followed by abrasion in water with glass microbeads. FN degradation and organic compound release were studied as well as the toxicity of leachates on the marine bacteria Allivibrio fischeri and larvae of the fish Oryzias latipes. AA of FNs under environmental conditions caused slight polymer degradation and did not produce significant MNPs. However, under extreme conditions, PA6 and PBS-PBAT FNs produced 9.1 × 104 MP/mL and 2.0 × 104 MP/mL, respectively. FNs released a total of 27 organic compounds in the leachates from which 7 were quantified at concentrations between 0.35 µg/L (Phthalimide) to 200 µg/L (Succinic-acid 2-methylallyl-undecyl-ester). Only the PBS-PBAT FN leachates induced significant toxicity on bacteria, bioluminescence inhibition ranging from 26 % to 56 %. Exposure of fish larvae to leachates of AA FNs disrupted their behavior. PBS-PBAT FN leachates caused the highest behavior stress indicator at day 12 (8.5), followed by PA6 at day 25 (8) and HPPE-PP at day 12 (7). We concluded that the toxicity of FN leachates was related more to the release of organic compounds than to the release of MPs. The toxicity of bio-based and biodegradable FNs should be further evaluated before their wider implementation in the fishing sector.
Collapse
Affiliation(s)
- Edgar Dusacre
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France; Faculty of Science and Technology and Research Center for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Coralie Le Picard
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Valerian Hausard
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Camille Rigolet
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Faith Ekoja
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France; IMMM UMR 6283, CNRS-Le Mans University, Le Mans 72085, France
| | - Morgane Jean
- IMMM UMR 6283, CNRS-Le Mans University, Le Mans 72085, France
| | | | - Sandrine Villette
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac F-33600, France
| | | | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac F-33600, France
| | - Bénédicte Morin
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Miren P Cajaraville
- Faculty of Science and Technology and Research Center for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France.
| |
Collapse
|
2
|
Rocha GS, Arcanjo C, de Palma Lopes LF, Coulaud R, Duflot A, Giusti-Petrucciani N, Forget-Leray J, Boulangé-Lecomte C. Effects of copper and cadmium, isolated and combined, in the survival and behavior of Eurytemora affinis (Copepoda). MARINE POLLUTION BULLETIN 2025; 214:117829. [PMID: 40101600 DOI: 10.1016/j.marpolbul.2025.117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
The excess of metals released in the environment is of significant concern, and assessing metallic mixtures can be tricky. Copepods are an important link between the producers and higher trophic levels, and their use in ecotoxicology is still scarce compared to other organisms from zooplankton. We evaluated the effects of copper (Cu) and cadmium (Cd), isolated and combined, on nauplii and adults of euryhaline Calanoida copepod Eurytemora affinis from the Seine estuary. The effects of the mixtures were modeled with MixTox, using mortality as endpoint, and the behavior of the adults was evaluated using DanioVision. The nauplii were more sensitive to the metals than adults, especially when exposed to Cd. Regarding the mixtures, the best model to explain the interactions in both stages was the independent action, with synergism in nauplii and antagonism in adults. Synergism was observed in all metallic mixtures to nauplii, increasing with the increase of metals while antagonism was observed in all combinations in adults but with no clear pattern of response related to the metal concentration. Our data suggest that Cd contributed to Cu toxicity in nauplii, but this was not observed in adults. Overall, the copepod's velocity was not significantly affected by the contaminants at the concentrations evaluated. Our data underline the importance of considering (i) the effect of metallic mixtures (ii) in different stages of copepods.
Collapse
Affiliation(s)
- Giseli Swerts Rocha
- NEEA/CRHEA, São Carlos School of Engineering, University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, Parque Arnold Schmidt, CEP 13566-590 São Carlos, SP, Brazil; Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600 Le Havre, France; Universitat Rovira i Virgili; Escola Tècnica Superior d'Enginyeria Química, Departament d'Enginyeria Química, Av. Països Catalans, 26, 43007 Tarragona, Spain.
| | - Caroline Arcanjo
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600 Le Havre, France.
| | - Laís Fernanda de Palma Lopes
- NEEA/CRHEA, São Carlos School of Engineering, University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, Parque Arnold Schmidt, CEP 13566-590 São Carlos, SP, Brazil
| | - Romain Coulaud
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600 Le Havre, France.
| | - Aurélie Duflot
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600 Le Havre, France.
| | - Nathalie Giusti-Petrucciani
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600 Le Havre, France.
| | - J Forget-Leray
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600 Le Havre, France.
| | - Céline Boulangé-Lecomte
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600 Le Havre, France.
| |
Collapse
|
3
|
Yang J, Wen X, Huang X, Zou J, Lu Y, Yuan F, Xiao S, Tang X, Liu Z, Wu Z, Huang X. Characterization of two cellular superoxide dismutases in Protohermes xanthodes (Megaloptera: Corydalidae) in response to sublethal chlorpyrifos stress. ENVIRONMENTAL ENTOMOLOGY 2025; 54:309-319. [PMID: 39946167 DOI: 10.1093/ee/nvaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 04/19/2025]
Abstract
Pesticides released into the environment are increasingly recognized as a global threat to freshwater ecosystems because of their adverse effects on non-target organisms, particularly aquatic insects and other arthropods. Superoxide dismutases (SODs) are important antioxidant enzymes that play a crucial role in protecting organisms from oxidative stress induced by harmful materials. In this study, we identified 2 cellular SODs (PxSOD1 and PxSOD2) in Protohermes xanthodes Navás (Megaloptera: Corydalidae), an freshwater predatory insect, and determined the oxidative stress induced in P. xanthodes larvae by sublethal exposure to chlorpyrifos (CPF). PxSOD1 and PxSOD2 are members of the cytoplasmic Cu/ZnSODs and mitochondrial MnSODs, respectively, and differ substantially in protein structure. Both PxSOD1 and PxSOD2 recombinant proteins demonstrated catalytic activity toward O2•- in the activity assays. After exposure to sublethal concentrations of CPF, malondialdehyde (MDA) content and SOD activities were increased in P. xanthodes larvae in a dose-dependent manner. PxSOD1 expression was decreased in the 0.42 and 4.2 μg/L CPF groups and increased in the 4.2 μg/L CPF group. PxSOD2 was upregulated by 0.42, 4.2, and 8.4 μg/L CPF treatments and the expression levels in the 4.2 and 8.4 μg/L CPF groups were significantly higher than that in the no CPF control. Our results suggest that sublethal concentrations of CPF can induce oxidative stress in P. xanthodes larvae, and the cellular SODs in P. xanthodes larvae may contribute to the protection against CPF-induced oxidative stress.
Collapse
Affiliation(s)
- Jie Yang
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, People's Republic of China
| | - Xi Wen
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, People's Republic of China
| | - Xingrui Huang
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, People's Republic of China
| | - Jie Zou
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, People's Republic of China
| | - Yun Lu
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, People's Republic of China
| | - Fang Yuan
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, People's Republic of China
| | - Sijie Xiao
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, People's Republic of China
| | - Xiaochao Tang
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, People's Republic of China
| | - Zhixiao Liu
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, People's Republic of China
| | - Zhengwei Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Xinglong Huang
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, People's Republic of China
| |
Collapse
|
4
|
Brand JA, Martin JM, Michelangeli M, Thoré ES, Sandoval-Herrera N, McCallum ES, Szabo D, Callahan DL, Clark TD, Bertram MG, Brodin T. Advancing the Spatiotemporal Dimension of Wildlife-Pollution Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2025; 12:358-370. [PMID: 40224496 PMCID: PMC11984497 DOI: 10.1021/acs.estlett.5c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025]
Abstract
Chemical pollution is one of the fastest-growing agents of global change. Numerous pollutants are known to disrupt animal behavior, alter ecological interactions, and shift evolutionary trajectories. Crucially, both chemical pollutants and individual organisms are nonrandomly distributed throughout the environment. Despite this fact, the current evidence for chemical-induced impacts on wildlife largely stems from tests that restrict organism movement and force homogeneous exposures. While such approaches have provided pivotal ecotoxicological insights, they overlook the dynamic spatiotemporal interactions that shape wildlife-pollution relationships in nature. Indeed, the seemingly simple notion that pollutants and animals move nonrandomly in the environment creates a complex of dynamic interactions, many of which have never been theoretically modeled or experimentally tested. Here, we conceptualize dynamic interactions between spatiotemporal variation in pollutants and organisms and highlight their ecological and evolutionary implications. We propose a three-pronged approach-integrating in silico modeling, laboratory experiments that allow movement, and field-based tracking of free-ranging animals-to bridge the gap between controlled ecotoxicological studies and real-world wildlife exposures. Advances in telemetry, remote sensing, and computational models provide the necessary tools to quantify these interactions, paving the way for a new era of ecotoxicology that accounts for spatiotemporal complexity.
Collapse
Affiliation(s)
- Jack A. Brand
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Institute
of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom
| | - Jake M. Martin
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
- School
of Life and Environmental Sciences, Deakin
University, Waurn Ponds 3216, Australia
| | - Marcus Michelangeli
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Australian
Rivers Institute, Griffith University, Nathan 4111, Australia
| | - Eli S.J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- TRANSfarm
- Science, Engineering, & Technology Group, KU Leuven, Lovenjoel 3360, Belgium
- Laboratory
of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary
Biology, Institute of Life, Earth and Environment, University of Namur, Namur 5000, Belgium
| | - Natalia Sandoval-Herrera
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
| | - Erin S. McCallum
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
| | - Drew Szabo
- Centre
of Excellence in Mass Spectrometry, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- School
of Chemistry, The University of Melbourne, Melbourne 3010, Australia
| | - Damien L. Callahan
- School
of Life and Environmental Sciences, Deakin
University, Waurn Ponds 3216, Australia
| | - Timothy D. Clark
- School
of Life and Environmental Sciences, Deakin
University, Waurn Ponds 3216, Australia
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Tomas Brodin
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
| |
Collapse
|
5
|
Dwivedi S, Gaur VK, Gupta J. Ecotoxicological impact of succinate dehydrogenase inhibitor (SDHI) fungicides on non-targeted organisms: a review. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:341-361. [PMID: 39843715 DOI: 10.1007/s10646-024-02849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/24/2025]
Abstract
As the global population continues to grow, the use of pesticides to increase food production is projected to escalate. Pesticides are critical in plant protection, offering a powerful defense against fungal diseases such as apple scab, leaf spot, sclerotinia rot, damping off, sheath blight, and root rot, which threaten crops like cereals, corn, cotton, soybean, sugarcane, tuberous vegetables, and ornamentals. Succinate Dehydrogenase Inhibitor (SDHI) fungicides represent a novel class essential for controlling fungal pathogens and bolstering food security. However, the impact of SDHIs on non-target organisms, including freshwater and terrestrial invertebrates, crustaceans, and oligochaetes, remains insufficiently understood. Empirical studies indicate that SDHIs can induce mortality, mitochondrial dysfunction, oxidative stress, and developmental delays in non-target organims. Additionally, the environmental persistence of these compounds raises concerns about their potential for ecological disruption. The effects of SDHIs on pollinating species and the possible transgenerational transmission of harmful effects warrant further investigation. Comprehensive transcriptomic analyses are necessary to elucidate the molecular disturbances and adverse outcome pathways triggered by SDHIs. Furthermore, there are emerging concerns about the endocrine-disrupting potential of SDHIs in aquatic organisms. For the first time, this review aims to synthesize existing knowledge on the ecotoxicological impacts of SDHIs on non-target organisms and identify critical research directions to address the ecological challenges posed by their use.
Collapse
Affiliation(s)
- Shreya Dwivedi
- Amity Institute of Environmental Sciences, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India
- Ecotoxicology Laboratory, Toxicology Department, Institute for Industrial Research & Toxicology, F-209, UPSIDC, Industrial Area, MG Road, Ghaziabad, 201013, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Juhi Gupta
- Amity Institute of Environmental Sciences, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India.
| |
Collapse
|
6
|
Diogo BS, Rodrigues S, Golovko O, Antunes SC. From bacteria to fish: ecotoxicological insights into sulfamethoxazole and trimethoprim. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52233-52252. [PMID: 39138731 PMCID: PMC11374860 DOI: 10.1007/s11356-024-34659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Sulfamethoxazole (SMX) and trimethoprim (TRIM) are two of the most used antibiotics in the last 50 years, to prevent and treat bacterial infections; however, the available literature about toxicity to non-target organisms is quite discrepant and incomplete. This study aims to assess the SMX and TRIM ecotoxicological effects in standard species: Aliivibrio fischeri (bioluminescence inhibition), Escherichia coli ATCC 25922 (growth inhibition), Lemna minor (growth inhibition and biochemical biomarkers), Daphnia magna (immobilization/mortality, life history traits, and biochemical biomarkers), and Danio rerio (survival, hatching, abnormalities, and biochemical biomarkers). The species tested showed different acute sensitivities to SMX (A. fischeri < D. magna < E. coli < L. minor) and TRIM (L. minor < A. fischeri < D. magna < E. coli). Overall, TRIM reveals less toxicity than SMX, except for E. coli (Ecotoxicological approach based on Antimicrobial Susceptibility Testing - EcoAST procedure). Both antibiotics affect individually (e.g., growth and survival) and sub-individually (e.g., antioxidant defenses) L. minor, D. magna, and D. rerio. This study allowed us to generate relevant data and fill gaps in the literature regarding the effects of SMX and TRIM in aquatic organisms. The here-obtained results can be used to (i) complete and re-evaluate the Safety Data Sheet to improve the assessment of environmental safety and management of national and international entities; (ii) clarify the environmental risks of these antibiotics in aquatic ecosystems reinforcing the inclusion in the 4th Watch List of priority substances to be monitored in whole inland waters by the Water Framework Directive; and (iii) combat the development of antimicrobial resistance, as well as supporting the definition of environmental measurements in the context of European One Health Action Plan. However, it is essential to continue studying these antibiotics to better understand their toxicity at ecologically relevant concentrations and their long-term effects under different climatic change scenarios.
Collapse
Affiliation(s)
- Bárbara S Diogo
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Sara Rodrigues
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| | - Sara C Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
7
|
Lencioni V, Rizzi C, Gobbi M, Mustoni A, Villa S. Glacier foreland insect uptake synthetic compounds: an emerging environmental concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113859-113873. [PMID: 37855959 DOI: 10.1007/s11356-023-30387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Pesticides, synthetic fragrances and polycyclic aromatic hydrocarbons contaminated two glacier-fed streams (Amola, Mandrone) and one spring (Grostè) in the Italian Alps. Ten compounds (chlorpyrifos (CPY), chlorpyrifos-methyl (CPY-m), galaxolide (HHCB), tonalide (AHTN), fluorene (Flu), phenanthrene (Phen), anthracene (Ant), fluoranthene (Fl), pyrene (Pyr), benzo[a]anthracene (BaA)) accumulated in aquatic larvae of chironomids (Diamesa steinboecki, D. latitarsis, D. bertrami, D. tonsa, D. zernyi, Pseudokiefferiella parva, Orthocladiinae) and tipulids. Their tissue concentrations (detected by gas chromatography coupled with mass spectrometry) ranged from 1.1 ± 0.1 ng/g d.w. (= dry weight) (CPY-m in D. tonsa from Amola) to 68.0 ± 9.1 ng/g d.w. (Pyr in D. steinboecki from Mandrone). HHCB, AHTN, and CPY, with one exception, were accumulated by all aquatic insects. Six compounds (CPY, CPY-m, HHCB, AHTN, Fl, Pyr) also contaminated carabids (Nebria germarii, N. castanea, N. jockischii) predating adults of merolimnic insects. Their tissue concentrations ranged from 1.1 ± 0.3 ng/g d.w. (CPY-m in N. germarii from Mandrone) to 84.6 ± 0.3 ng/g d.w. (HHCB in N. castanea from Grostè). HHCB and AHTN were accumulated by all Nebria species. Intersite and interspecies differences were observed, which might be attributed to different environmental contamination levels. There was a stronger similarity between species from the same site than among the same species from different sites, suggesting that uptake is not species specific. At all sites, the concentration of xenobiotics was higher in larvae than in water and comparable or higher in carabids than in larvae from the same site, suggesting trophic transfer by emerging aquatic insects to their riparian predators.
Collapse
Affiliation(s)
- Valeria Lencioni
- Climate and Ecology Unit, Research and Museum Collections Office, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy.
| | - Cristiana Rizzi
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Mauro Gobbi
- Climate and Ecology Unit, Research and Museum Collections Office, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy
| | - Andrea Mustoni
- Adamello Brenta Natural Park, Via Nazionale, 24, 38080, Strembo (Trento), Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| |
Collapse
|
8
|
Henry J, Bai Y, Kreuder F, Saaristo M, Kaslin J, Wlodkowic D. Sensory-Motor Perturbations in Larval Zebrafish ( Danio rerio) Induced by Exposure to Low Levels of Neuroactive Micropollutants during Development. Int J Mol Sci 2022; 23:ijms23168990. [PMID: 36012255 PMCID: PMC9409309 DOI: 10.3390/ijms23168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Due to increasing numbers of anthropogenic chemicals with unknown neurotoxic properties, there is an increasing need for a paradigm shift toward rapid and higher throughput behavioral bioassays. In this work, we demonstrate application of a purpose-built high throughput multidimensional behavioral test battery on larval stages of Danio rerio (zebrafish) at 5 days post fertilization (dpf). The automated battery comprised of the established spontaneous swimming (SS), simulated predator response (SPR), larval photomotor response (LPR) assays as well as a new thermotaxis (TX) assay. We applied the novel system to characterize environmentally relevant concentrations of emerging pharmaceutical micropollutants including anticonvulsants (gabapentin: 400 ng/L; carbamazepine: 3000 ng/L), inflammatory drugs (ibuprofen: 9800 ng/L), and antidepressants (fluoxetine: 300 ng/L; venlafaxine: 2200 ng/L). The successful integration of the thermal preference assay into a multidimensional behavioral test battery provided means to reveal ibuprofen-induced perturbations of thermal preference behaviors upon exposure during embryogenesis. Moreover, we discovered that photomotor responses in larval stages of fish are also altered by the as yet understudied anticonvulsant gabapentin. Collectively our results demonstrate the utility of high-throughput multidimensional behavioral ecotoxicity test batteries in prioritizing emerging risks associated with neuroactive drugs that can perturb neurodevelopment. Moreover, we showcase the added value of thermotaxis bioassays for preliminary screening of emerging contaminants.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Yutao Bai
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Minna Saaristo
- Environmental Protection Authority Victoria, EPA Science, Macleod, VIC 3085, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
9
|
Trenti F, Sandron T, Guella G, Lencioni V. Insect cold-tolerance and lipidome: Membrane lipid composition of two chironomid species differently adapted to cold. Cryobiology 2022; 106:84-90. [DOI: 10.1016/j.cryobiol.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
|
10
|
Wang D, Lv W, Yuan Y, Zhang T, Teng H, Losey JE, Chang X. Effects of insecticides on malacostraca when managing diamondback moth (Plutella xylostella) in combination planting-rearing fields. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113090. [PMID: 34929500 DOI: 10.1016/j.ecoenv.2021.113090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The combination of crop planting and animal rearing in the same area is popular. However, if the methods of planting and rearing are not appropriate, it will result in losses and the disruption of pest management. The toxicities of 17 insecticides to Plutella xylostella, Eriocheir sinensis, and Procambarus clarkii were tested. The recommended maximum field doses were used in 2 d and 4 d bioassays, and the levels of resistance of P. xylostella to insecticides were determined. Of five insecticides that had relatively low toxicity to E. sinensis and P. clarkii, spinetoram and MbNPV showed the best control efficacy of P. xylostella, followed by tetrachlorantraniliprole, chlorantraniliprole, and avermectin. P. xylostella had relatively little resistance to spinetoram, MbNPV, chlorantraniliprole, and avermectin. Therefore, we concluded that the best insecticides suitable for combination planting and rearing fields (cauliflower-crab or cauliflower-crayfish) were spinetoram and MbNPV, followed by chlorantraniliprole and avermectin. Other insecticides, such as emamectin benzoate, indoxacarb, and chlorfenapyr were effective at controlling P. xylostella, but they were not suitable for use in combination planting and rearing fields because of their high toxicity to crabs and crayfish.
Collapse
Affiliation(s)
- Dongsheng Wang
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Weiguang Lv
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yongda Yuan
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tianshu Zhang
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Haiyuan Teng
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - John E Losey
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoli Chang
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Pescatore T, Di Nica V, Finizio A, Ademollo N, Spataro F, Rauseo J, Patrolecco L. Sub-lethal effects of soil multiple contamination on the avoidance behaviour of Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112861. [PMID: 34628156 DOI: 10.1016/j.ecoenv.2021.112861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/25/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Natural ecosystems are frequently exposed to complex mixtures of different chemicals. However, the environmental risk assessment is mainly based on data from individual substances. In this study, the individual and combined effects on the terrestrial earthworm E. fetida exposed to the anionic surfactant sodium lauryl ether sulphate (SLES) and the pesticides chlorpyrifos (CPF) and imidacloprid (IMI) were investigated, by using the avoidance behaviour as endpoint. Earthworms were exposed to a soil artificially contaminated with five sub-lethal concentrations of each contaminant, both as single substances and in combination of binary and ternary mixtures. Overall results showed that IMI provoked the highest avoidance effect on earthworms, with a concentration value that induced an avoidance rate of 50% of treated organisms (AC50) of 1.30 mg/kg, followed by CPF (AC50 75.26 mg/kg) and SLES (AC50 139.67 mg/kg). The application of the Combination Index (CI) method, indicated that a deviation from the additive response occurred for most of the tested chemical mixtures, leading to synergistic or antagonistic avoidance responses. Synergistic effects were produced by the exposure to the two lowest concentrations of the CPF+IMI mixture, and by the highest concentrations of SLES+CPF and SLES+CPF+IMI mixtures. On the contrary, antagonistic effects were observed at the lowest concentrations of the binary mixtures containing the SLES and at almost all the tested concentrations of the SLES+CPF+IMI mixture (with the exception of the highest tested concentration). These results show that the avoidance test is suitable to assess the detrimental effects exerted on earthworms by chemical mixtures in soil ecosystems and the use of behavioural endpoints can increase the ecological significance of environmental risk assessment procedures.
Collapse
Affiliation(s)
- Tanita Pescatore
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy; Department of Ecological and Biological Science (DEB-Tuscia University), Viterbo, Italy
| | - Valeria Di Nica
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milan, Italy.
| | - Antonio Finizio
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milan, Italy
| | - Nicoletta Ademollo
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| | - Francesca Spataro
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| |
Collapse
|
12
|
Muñiz-González AB, Paoli F, Martínez-Guitarte JL, Lencioni V. Molecular biomarkers as tool for early warning by chlorpyrifos exposure on Alpine chironomids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118061. [PMID: 34523523 DOI: 10.1016/j.envpol.2021.118061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Pesticides used in agriculture can be transported at a medium-high distance due to the drift effect, reaching even remote areas as mountain regions, glaciers, and snow cover. With the melting process, pesticides enter freshwater glacier ecosystems, becoming a threat to wildlife fauna, mainly dominated by Diptera Chironomidae. Chlorpyrifos (CPF), as one of the most commonly used pesticides in alpine vineyards and apple orchards, is frequently detected in icemelt waters. We selected as target species, larvae of the cold stenothermal chironomid Diamesa zernyi, collected in two glacier-fed streams (Presena and Amola) in the Italian Alps. Firstly, a de novo transcriptome was obtained, and secondly, a gene array was designed to study the molecular response of a wild population of D. zernyi exposed to three sub-lethal CPF concentrations corresponding to 1/100 LC10 (0.011 μg/L), 1/10 LC10 (0.11 μg/L), and LC10 (1.1 μg/L), for 24 h. The sub-organismal response was evaluated by Real-Time Polymerase Chain Reaction (RT-PCR), employing 40 genes related to essential metabolic routes as future candidates for biomarkers in wildlife chironomids. After 24 h, the endocrine system (E75, E93, EcR, and Met), detoxification response (GSTO3, GSTS1), and stress response (hsp75, hsp83, HYOU1) were altered. CPF seems to act as an endocrine disruptor and could lead to defective larval development, disrupted cellular homeostasis through heat shock proteins (HSPs) alteration (defective protein folding and mitochondrial functions), as well as oxidative damage (confirmed by increased GST expression). For the first time, molecular studies detected early alarm signals in wildlife in glacier environments. Our findings confirm the high environmental risk of CPF affecting aquatic insect metabolism and raise the level of concern about this pesticide in high altitude water bodies, generally considered pristine. Furthermore, this study emphasizes the incipient need to use non-model organisms for the evaluation of natural ecosystems. We also highlight the demand for research into new molecular biomarkers, and the importance of including molecular approaches in toxicology evaluations to detect the early adverse effects of pollutants.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Biology and Toxicology Group, Dept. Physics, Mathematics and Fluids, UNED. Paseo Senda del Rey, 9, 28040, Madrid, Spain.
| | - Francesca Paoli
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, I-38122, Trento, Italy
| | - José-Luis Martínez-Guitarte
- Biology and Toxicology Group, Dept. Physics, Mathematics and Fluids, UNED. Paseo Senda del Rey, 9, 28040, Madrid, Spain
| | - Valeria Lencioni
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, I-38122, Trento, Italy
| |
Collapse
|
13
|
Rizzi C, Villa S, Cuzzeri AS, Finizio A. Use of the Species Sensitivity Distribution Approach to Derive Ecological Threshold of Toxicological Concern (eco-TTC) for Pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12078. [PMID: 34831835 PMCID: PMC8623465 DOI: 10.3390/ijerph182212078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
The species sensitivity distribution (SSD) calculates the hazardous concentration at which 5% of species (HC5) will be potentially affected. For many compounds, HC5 values are unavailable impeding the derivation of SSD curves. Through a detailed bibliographic survey, we selected HC5 values (from acute toxicity tests) for freshwater aquatic species and 129 pesticides. The statistical distribution and variability of the HC5 values within the chemical classes were evaluated. Insecticides are the most toxic compounds in the aquatic communities (HC5 = 1.4 × 10-3 µmol L-1), followed by herbicides (HC5 = 3.3 × 10-2 µmol L-1) and fungicides (HC5 = 7.8 µmol L-1). Subsequently, the specificity of the mode of action (MoA) of pesticides on freshwater aquatic communities was investigated by calculating the ratio between the estimated baseline toxicity for aquatic communities and the HC5 experimental values gathered from the literature. Moreover, we proposed and validated a scheme to derive the ecological thresholds of toxicological concern (eco-TTC) of pesticides for which data on their effects on aquatic communities are not available. We proposed eco-TTCs for different classes of insecticides, herbicides, and fungicides with a specific MoA, and three eco-TTCs for those chemicals with unavailable MoA. We consider the proposed approach and eco-TTC values useful for risk management purposes.
Collapse
Affiliation(s)
| | - Sara Villa
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (C.R.); (A.S.C.); (A.F.)
| | | | | |
Collapse
|
14
|
Cai S, Jia Y, Donde OO, Wang Z, Zhang J, Fang T, Xiao B, Wu X. Effects of microcystin-producing and non-microcystin-producing Microcystis on the behavior and life history traits of Chironomus pallidivittatus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117613. [PMID: 34147780 DOI: 10.1016/j.envpol.2021.117613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Species of the genus Microcystis are among the most notorious cyanobacteria in eutrophic lakes worldwide, with ability present adverse effects on many aquatic organisms. In the surface sediments, Microcystis can be ingested by benthic macroinvertebrates such as Chironomus. However, the potential negative effects of Microcystis on Chironomus life history traits remain unclear. In the present study, we investigated the effect of different Microcystis diets on specific behaviors (burrowing activity, locomotion ability) and life history traits of Chironomus pallidivittatus (Diptera, Chironomidae). We also studied the interactive effects of microcystin-producing M. aeruginosa and temperature (15, 20, and 25 °C) stress on chironomid larvae. The results showed that the inhibitory effect on the cumulative emergence and burrowing activity of larvae was more severe when they were fed M. aeruginosa among the three Microcystis diets groups. Locomotion ability (i.e., locomotor distance and velocity) and adult dry weight decreased significantly in the group fed M. aeruginosa. Locomotion was significantly inhibited and mortality increased when the larvae were fed a mixture of M. aeruginosa and M. wesenbergii, which may have been the result of additive or synergistic effect of the toxins. Under the stress of lower temperature, C. pallidivittatus larvae exhibited weaker locomotion and growth ability, and the emerging adults were mostly male. At both the lower and higher temperature conditions, M. aeruginosa cause cumulative emergence decreased, and sex ratio imbalance, which inhibited the reproduction of larvae from the population perspective. The fourth-instar larvae showed better adaption to Microcystis than did the other instars. This study thus highlights the adverse effects of microcystin-producing M. aeruginosa on Chironomus. It also provides a novel perspective on how environmental factors may influence the behavior and life history traits of chironomid larvae, and how they may respond to cyanobacterial blooms and global warming.
Collapse
Affiliation(s)
- Shenghe Cai
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlu Jia
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Oscar Omondi Donde
- Department of Environmental Science, Egerton University, P. O. Box 536-20115, Egerton, Kenya
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
| | - Junqian Zhang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tao Fang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
15
|
Rebechi D, Palacio-Cortés AM, Richardi VS, Beltrão T, Vicentini M, Grassi MT, da Silva SB, Alessandre T, Hasenbein S, Connon R, Navarro-Silva MA. Molecular and biochemical evaluation of effects of malathion, phenanthrene and cadmium on Chironomus sancticaroli (Diptera: Chironomidae) larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111953. [PMID: 33482495 DOI: 10.1016/j.ecoenv.2021.111953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
In-vitro effects of sub-lethal concentrations of malathion, phenanthrene (Phe) and cadmium (Cd) were tested on Chironomus sancticaroli larvae in acute bioassays by measuring biochemical and molecular parameters. Malathion was evaluated at 0.001, 0.0564 and 0.1006 mg L-1; Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 0.001, 3.2 and 7.4 mg L-1. The recovery test carried out at the highest concentration of each compound showed that survival of larvae exposed to Phe ranged from 4% to 5%, while the effects of malathion and Cd were irreversible, not allowing the emergence of adults. Results showed that malathion and Cd inhibited AChE, EST-α and ES-β activities at the two highest concentrations. Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 3.2 and 7.4 mg L-1 inhibited glutathione S-transferase activity. Oxidative stress was exclusively induced by the lowest concentration of malathion considering SOD activity once CAT was unaffected by the stressors. Lipid peroxidation was registered exclusively by malathion at the two highest concentrations, and total hemoglobin content was only reduced by Cd at the two highest concentrations. The relationship among biochemical results, examined using the PCA, evidenced that malathion and Cd concentrations were clustered into two groups, while Phe only formed one group. Four hemoglobin genes of C. sancticaroli were tested for the first time in this species, with Hemoglobin-C being upregulated by malathion. The toxicity ranking was malathion > Phe > Cd, while biochemical and molecular results showed the order malathion > Cd > Phe. Our results highlight the importance of combining different markers to understand the effects of the diverse compounds in aquatic organisms.
Collapse
Affiliation(s)
- Débora Rebechi
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | - Tiago Beltrão
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maiara Vicentini
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Marco Tadeu Grassi
- Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Thiago Alessandre
- Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Simone Hasenbein
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, CA, USA
| | - Richard Connon
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
16
|
Muñiz-González AB. Ibuprofen as an emerging pollutant on non-target aquatic invertebrates: Effects on Chironomus riparius. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103537. [PMID: 33157253 DOI: 10.1016/j.etap.2020.103537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The concern about pharmaceuticals has been increased over the last decade due to their burgeoning consumption. Ibuprofen has an extensive presence in surface water with risks for the aquatic biota. This study focuses on the effects of ibuprofen at environmental concentrations on the survival, transcriptional level, and enzymatic activity for 24, 96 h on Chironomus riparius. Ibuprofen developed a substantial effect on survival by all the conditions. mRNA levels of EcR, Dronc, and Met (endocrine system), hsp70, hsp24, and hsp27 (stress response), and Proph and Def (immune system) were modified, joined to increased GST and PO activity. The results confirmed alterations on the development of C. riparius, as well as two essential mechanisms, involved in protection against external toxicological challenge. Ibuprofen poses an incipient risk to C. riparius and could at an organismal level by compromising their survival, development, and ability to respond to adverse conditions on the future populations.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Toxicology and Biology Group, Department of Mathematics and Fluid Physics, UNED, Spain.
| |
Collapse
|
17
|
Di Nica V, González ABM, Lencioni V, Villa S. Behavioural and biochemical alterations by chlorpyrifos in aquatic insects: an emerging environmental concern for pristine Alpine habitats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30918-30926. [PMID: 31630352 DOI: 10.1007/s11356-019-06467-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to assess how different concentrations of the insecticide chlorpyrifos (1.1, 5.24, 11, 52.4, 110, 262, 524 and 1100 ng L-1) affect the swimming behaviour of Diamesa zernyi larvae following exposure. A video tracking system was employed to analyse two swimming traits (total distance moved and average speed) of the larvae simultaneously after 3 days of exposure to the pesticide at 2 °C. The behavioural results were also interpreted according to biochemical responses to oxidative stress (OS) induced by chlorpyrifos, based on malondialdehyde (MDA) and protein carbonyl (PCC) content. Both distance and speed significantly decreased after 72 h of exposure to chlorpyrifos concentrations of ≥ 110 ng L-1, under which significant OS was detected as lipid peroxidation (level of MDA) and protein carbonylation (level of carbonyl). Analysis of altered swimming behaviour, along with MDA and carbonyl content, indicated that ≥ 110 ng L-1 contamination levels of the insecticide cause the organism to reallocate energy normally used for locomotor activity to repair cell damage, which might explain the strong impairment to locomotor performance. Locomotor performance is an ecologically relevant trait for elucidating the population dynamics of key species, with disturbance to this trait having long-term negative impacts on population and community structure. Therefore, chlorpyrifos insecticides represent a serious ecological risk for mountain aquatic species based on the detrimental effects observed in the current study, as the tested concentrations were those at which the insecticide is found in many Alpine rivers of Italy.
Collapse
Affiliation(s)
- Valeria Di Nica
- Department of Earth and Environmental Sciences - DISAT, University of Milano - Bicocca, Milan, Italy
| | - Ana Belén Muñiz González
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy
- Group of Biology and Environmental Toxicology, Department Physics, Mathematics and Fluids, Science Faculty, National Distance Education University (UNED), Madrid, Spain
| | - Valeria Lencioni
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy.
| | - Sara Villa
- Department of Earth and Environmental Sciences - DISAT, University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
18
|
Rizzi C, Seveso D, Galli P, Villa S. First record of emerging contaminants in sponges of an inhabited island in the Maldives. MARINE POLLUTION BULLETIN 2020; 156:111273. [PMID: 32510412 DOI: 10.1016/j.marpolbul.2020.111273] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
In the Maldivian islands, the lack of sewage wastewater treatment and an improper landfill enhance the potential hazard of emerging contaminants, including pharmaceuticals and personal care products. In order to analyze the occurrence of emerging contaminants in the marine biota, sponges were collected in two coral reef areas of Magoodhoo island (Faafu), one near the landfill and the other furthest from the island. Caffeine, fluoxetine and norfluoxetine were detected only in the proximity of the landfill, with caffeine showing the highest concentration (28.4 ng/g d.w.), followed by fluoxetine (6.00 ng/g d.w.). Norfluoxetine was below the limit of quantification of 10 ng/g d.w. Nitro xylene, N,N-Diethyl-meta-toluamide and galaxolide were found in both areas, with concentrations of 3.51/6.11/8.54 and <LOQ/1.14/0.62 ng/g d.w., respectively. Due to the vital role of the coral reef for the livelihood and economy of the Maldivian people, attention should be paid to this class of contaminant.
Collapse
Affiliation(s)
- Cristiana Rizzi
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20126 Milano, Italy
| | - Davide Seveso
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives.
| | - Paolo Galli
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives
| | - Sara Villa
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20126 Milano, Italy
| |
Collapse
|
19
|
Rozmánková E, Pípal M, Bláhová L, Njattuvetty Chandran N, Morin B, Gonzalez P, Bláha L. Environmentally relevant mixture of S-metolachlor and its two metabolites affects thyroid metabolism in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105444. [PMID: 32078888 DOI: 10.1016/j.aquatox.2020.105444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Herbicides and their metabolites are often detected in water bodies where they may cause adverse effects to non-target organisms. Their effects at environmentally relevant concentrations are often unclear, especially concerning mixtures of pesticides. This study thus investigated the impacts of one of the most used herbicides: S-metolachlor and its two metabolites, metolachlor oxanilic acid (MOA) and metolachlor ethanesulfonic acid (MESA) on the development of zebrafish embryos (Danio rerio). Embryos were exposed to the individual substances and their environmentally relevant mixture until 120 hpf (hours post-fertilization). The focus was set on sublethal endpoints such as malformations, hatching success, length of fish larvae, spontaneous movements, heart rate and locomotion. Moreover, expression levels of eight genes linked to the thyroid system disruption, oxidative stress defense, mitochondrial metabolism, regulation of cell cycle and retinoic acid (RA) signaling pathway were analyzed. Exposure to S-metolachlor (1 μg/L) and the pesticide mixture (1 μg/L of each substance) significantly reduced spontaneous tail movements of 21 hpf embryos. Few rare developmental malformations were observed, but only in larvae exposed to more than 100 μg/L of individual substances (craniofacial deformation, non-inflated gas bladder, yolk sac malabsorption) and to 30 μg/L of each substance in the pesticide mixture (spine deformation). No effect on hatching success, length of larvae, heart rate or larvae locomotion were found. Strong responses were detected at the molecular level including induction of p53 gene regulating the cell cycle (the pesticide mixture - 1 μg/L of each substance; MESA 30 μg/L; and MOA 100 μg/L), as induction of cyp26a1 gene encoding cytochrome P450 (pesticide mixture - 1 μg/L of each substance). Genes implicated in the thyroid system regulation (dio2, thra, thrb) were all overexpressed by the environmentally relevant concentrations of the pesticide mixture (1 μg/L of each substance) and MESA metabolite (1 μg/L). Zebrafish thyroid system disruption was revealed by the overexpressed genes, as well as by some related developmental malformations (mainly gas bladder and yolk sac abnormalities), and reduced spontaneous tail movements. Thus, the thyroid system disruption represents a likely hypothesis behind the effects caused by the low environmental concentrations of S-metolachlor, its two metabolites and their mixture.
Collapse
Affiliation(s)
- Eliška Rozmánková
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; University of Bordeaux, EPOC, UMR 5805, 33400 Talence, France
| | - Marek Pípal
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lucie Bláhová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | | | - Bénédicte Morin
- University of Bordeaux, EPOC, UMR 5805, 33400 Talence, France
| | | | - Luděk Bláha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
20
|
Cao X, Yan C, Yang X, Zhou L, Zou W, Xiu G. Photolysis-Induced Neurotoxicity Enhancement of Chlorpyrifos in Aquatic System: A Case Investigation on Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:461-470. [PMID: 31868356 DOI: 10.1021/acs.jafc.9b05908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contamination of the environment by toxic pesticides has become of great concern in agricultural countries. Chlorpyrifos (CP) is among the pesticides most commonly detected in the environment owing to its wide agricultural applications. The aim of this study was to compare potential changes in the toxicity of CP after irradiation. To this end, photolysis of CP was conducted under simulated sunlight, and neurotoxicity assessment was carried out at CP of 20 and 50 μg L-1 and its corresponding irradiated mixture solutions which contain a mixture of identified intermediates using the nematode, Caenorhabditis elegans as a model organism. Photodegradation of 20 μg L-1 CP for 1 h produced no obvious reduction of physiological damage, and more serious effects on animal movement were detected after exposure of the animals to a solution of 50 μg L-1 for 1 h irradiation compared with unirradiated solution. GABAergic and cholinergic neurons were selectively vulnerable to CP exposure, and maximal neuropathological alterations were observed after 1 h irradiation of the CP solutions in coherence with the behavioral impairment. The generation of photoproducts was considered to be responsible for the enhanced disturbance on those biological processes. This work provided useful information on the toxicological assessments of chemicals that were produced during the environmental transformation of pesticides.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Chenzhi Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Xuerui Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Lei Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , PR China
| | - Wenjun Zou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , PR China
| |
Collapse
|
21
|
Wang H, Meng Z, Liu F, Zhou L, Su M, Meng Y, Zhang S, Liao X, Cao Z, Lu H. Characterization of boscalid-induced oxidative stress and neurodevelopmental toxicity in zebrafish embryos. CHEMOSPHERE 2020; 238:124753. [PMID: 31545217 DOI: 10.1016/j.chemosphere.2019.124753] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Boscalid is a widely used fungicide in agriculture and has been frequently detected in both environments and agricultural products. However, evidence on the neurotoxic effect of boscalid is scarce. In this study, zebrafish served as an animal model to investigate the toxic effects and mechanisms of boscalid on aquatic vertebrates or higher animals. And we unravelled that boscalid induced developmental defects associated with oxidative stress. Developmental defects, including head deformity, hypopigmentation, decreased number of newborn neurons, structural defects around the ventricle, enlarged intercellular space in the brain, and nuclear concentration, were observed in zebrafish embryos after boscalid exposure at 48 hpf. Interestingly, we found that boscalid might directly induce oxidative stress and alter the activity of ATPase, which in turn disrupted the expression of genes involved in neurodevelopment and transmitter-transmitting signalings and melanocyte differentiation and melanin synthesis signalings. Ultimately, the differentiation of nerve cells and melanocytes were both impacted and the synthesis of melanin was inhibited, leading to morphological abnormalities. Additionally, exposure to boscalid led to less and imbalance motion and altered tendency of locomotor in larval fish. Collectively, our results provide new evidences for a comprehensive assessment of its toxicity and a warning for its residues in environment and agricultural products.
Collapse
Affiliation(s)
- Honglei Wang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Zhen Meng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Liqun Zhou
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Meile Su
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Yunlong Meng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, PR China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China.
| |
Collapse
|
22
|
Amoatey P, Baawain MS. Effects of pollution on freshwater aquatic organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1272-1287. [PMID: 31486195 DOI: 10.1002/wer.1221] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 05/24/2023]
Abstract
This paper presents the reviews of scientific papers published in 2018 issues on the effects of anthropogenic pollution on the aquatic organisms dwelling in freshwater ecosystem at global scale. The first part of the study provides the summary of relevant literature reviews followed by field and survey based studies. The second part is based on categories of different classes/sources of pollutants which affect freshwater organism. This is composed of several sections including metals and metalloids, wastewater and effluents, sediments, nutrients, pharmaceuticals, polycyclic aromatic hydrocarbons, flame retardants, persistent organic pollutants, pharmaceuticals and illicit drugs, emerging contaminants, pesticides, herbicides, and endocrine disruptors. The final part of the study highlights the reviews of published research work on new pollutants such as microplastics and engineered nanoparticles which affect the freshwater organisms. PRACTITIONER POINTS: Heavy metals concentrations should be assessed at nano-scale in aquatic environment. Air pollutants could have long-term effects on freshwater ecosystem. Future studies should focus on bioremediations of freshwater pollution.
Collapse
Affiliation(s)
- Patrick Amoatey
- Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mahad Said Baawain
- Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
23
|
Selvaraj V, Venkatasubramanian H, Ilango K, Santhakumar K. A simple method to study motor and non-motor behaviors in adult zebrafish. J Neurosci Methods 2019; 320:16-25. [DOI: 10.1016/j.jneumeth.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/19/2019] [Accepted: 03/09/2019] [Indexed: 11/15/2022]
|
24
|
Legradi JB, Di Paolo C, Kraak MHS, van der Geest HG, Schymanski EL, Williams AJ, Dingemans MML, Massei R, Brack W, Cousin X, Begout ML, van der Oost R, Carion A, Suarez-Ulloa V, Silvestre F, Escher BI, Engwall M, Nilén G, Keiter SH, Pollet D, Waldmann P, Kienle C, Werner I, Haigis AC, Knapen D, Vergauwen L, Spehr M, Schulz W, Busch W, Leuthold D, Scholz S, vom Berg CM, Basu N, Murphy CA, Lampert A, Kuckelkorn J, Grummt T, Hollert H. An ecotoxicological view on neurotoxicity assessment. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:46. [PMID: 30595996 PMCID: PMC6292971 DOI: 10.1186/s12302-018-0173-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 05/04/2023]
Abstract
The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.
Collapse
Affiliation(s)
- J. B. Legradi
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Environment and Health, VU University, 1081 HV Amsterdam, The Netherlands
| | - C. Di Paolo
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - M. H. S. Kraak
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - H. G. van der Geest
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - E. L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - A. J. Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| | - M. M. L. Dingemans
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - R. Massei
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - W. Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - X. Cousin
- Ifremer, UMR MARBEC, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, 34250 Palavas-les-Flots, France
- INRA, UMR GABI, INRA, AgroParisTech, Domaine de Vilvert, Batiment 231, 78350 Jouy-en-Josas, France
| | - M.-L. Begout
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, 17137 L’Houmeau, France
| | - R. van der Oost
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, The Netherlands
| | - A. Carion
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - V. Suarez-Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - F. Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - B. I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany
| | - M. Engwall
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - G. Nilén
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - S. H. Keiter
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - D. Pollet
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - P. Waldmann
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - C. Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - I. Werner
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - A.-C. Haigis
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - D. Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - L. Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - M. Spehr
- Institute for Biology II, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - W. Schulz
- Zweckverband Landeswasserversorgung, Langenau, Germany
| | - W. Busch
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - D. Leuthold
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - S. Scholz
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - C. M. vom Berg
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600 Switzerland
| | - N. Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - C. A. Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, USA
| | - A. Lampert
- Institute of Physiology (Neurophysiology), Aachen, Germany
| | - J. Kuckelkorn
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - T. Grummt
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - H. Hollert
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|