1
|
Loh A, Kim D, An JG, Choi N, Yim UH. Characteristics of sub-micron aerosols in the Yellow Sea and its environmental implications. MARINE POLLUTION BULLETIN 2024; 204:116556. [PMID: 38850756 DOI: 10.1016/j.marpolbul.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The Yellow Sea, characterized by an influx of both natural marine and anthropogenic pollutants, coupled with favorable photochemical conditions, serve as key sites for potential interactions between atmospheric gases and aerosols. A recent air monitoring campaign in the Yellow Sea revealed aerosol contributions from four sources, with the highest mass concentrations and dominance of NO3- (38.1 ± 0.37 %) during winds from China. Indications of potential secondary aerosol formation were observed through the presence of hydrolysis and oxidation products of nitrate and volatile organic compounds. Correlations between time series distributions of biomass burning organic aerosols and particle number counts (Dp 100-500 nm, R2 = 0.94) further suggest potential size growth through adsorption and scavenging processes. The results from this study provide observational evidence of a shift in atmospheric compositions from sulfate to nitrate, leading to an increased atmospheric nitrogen deposition in the Yellow Sea.
Collapse
Affiliation(s)
- Andrew Loh
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Donghwi Kim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Joon Geon An
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Narin Choi
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Koo JH, Lee D, Bae H, Lee T, Na SG, Yeh SW, Park J, Yeo M. Back-trajectory analyses for evaluating the transboundary transport effect to the aerosol pollution in South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124031. [PMID: 38679127 DOI: 10.1016/j.envpol.2024.124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/28/2023] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
This study performed a back-trajectory analysis to determine the influence of transboundary transport on the extent of aerosol pollution in South Korea, based on 5-year PM2.5 measurements (2015-2019) in five cities covering South Korea. A transboundary transport case was selected if a back trajectory passed over a dedicated region (BOX 1 and BOX 2) in the Yellow Sea. First, we found that the frequency of transboundary transport largely increases in the high pollution case, and this pattern is almost consistent for all months and all five cities, indicating the importance of investigating the horizontal direction of air mass movement associated with PM2.5, which has been discussed extensively in previous studies. In this study, we also examined the altitude change and straight moving distance (defined as travel distance) of back trajectories regarding the extent of local PM2.5. Consequently, we found that back trajectories in high aerosol pollution showed much lower altitudes and shorter travel differences, implying a significant contribution of surface emissions and stagnant air conditions to severe aerosol pollution. As a result, the local PM2.5 level was not significantly enhanced when the air mass passed over the Yellow Sea if transboundary transport occurred at high altitudes with rapid movement (i.e., high altitude and long travel distance back-trajectory). Based on these results, we suggest utilizing the combined information of the horizontal direction, altitude variation, and length of back trajectories to better evaluate transboundary transport.
Collapse
Affiliation(s)
- Ja-Ho Koo
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - Donghee Lee
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyejin Bae
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - Taegyung Lee
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong Gyun Na
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sang-Wook Yeh
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jinsoo Park
- Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Minju Yeo
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Kim H, Kim HS, Kim J, Yang D, Lee K, Kim K, Ock G, Park HG, Robinson RS, Kim MS, Park GH, Kim JH, Kim YI, Lee MH, Park CU, Lim D, Han S, Kim TW. Identifying the external N and Hg inputs to the estuary ecosystem based on the triple isotopic information (δ 15N NO3, Δ 17O NO3 and δ 18O NO3). MARINE POLLUTION BULLETIN 2024; 200:116035. [PMID: 38271917 DOI: 10.1016/j.marpolbul.2024.116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
The supply and sources of N and Hg in the Geum estuary of the western coast of Korea were evaluated. Triple isotope proxies (δ15NNO3, Δ17ONO3 and δ18ONO3) of NO3- combined with conservative mixing between river and ocean waters were used to improve isotope finger-printing methods. The N pool in the Geum estuary was primarily influenced by the Yellow Sea water, followed by riverine discharge (821 × 106 mol yr-1) and atmospheric deposition (51 × 106 mol yr-1). The influence of the river was found to be greater for Hg than that of the atmosphere. The triple isotope proxies revealed that the riverine and atmospheric inputs of N have been affected by septic wastes and fossil fuel burning, respectively. From the inner estuary towards offshore region, the influence of the river diminishes, thus increasing the relative impact of the atmosphere. Moreover, the isotope proxies showed a significant influence of N assimilation in February and nitrification in May.
Collapse
Affiliation(s)
- Haryun Kim
- Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hye Seon Kim
- National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Jihee Kim
- Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dongwoo Yang
- National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Kitack Lee
- Division of Environmental Science and Engineering, Pohang University of Science & Technology, Pohang 37673, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute, 21990 Incheon, Republic of Korea
| | - Giyoung Ock
- National Institute of Ecology, Secheon 33657, Republic of Korea
| | - Hyung-Geun Park
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Rebecca S Robinson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Min-Seob Kim
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Geun-Ha Park
- Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Ju-Hyoung Kim
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Young-Il Kim
- Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Myoung Hoon Lee
- Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Chae-Un Park
- Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Dhongil Lim
- Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 61005 Gwangju, Republic of Korea.
| | - Tae-Wook Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; OJEong Resilience Institute, Korea University, Seoul 02481, Republic of Korea.
| |
Collapse
|
4
|
Li L, Bi X, Wang X, Song L, Dai Q, Liu B, Wu J, Zhang Y, Feng Y. High aerosol loading over the Bohai Sea: Long-term trend, potential sources, and impacts on surrounding cities. ENVIRONMENT INTERNATIONAL 2024; 183:108387. [PMID: 38141490 DOI: 10.1016/j.envint.2023.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Air pollution over the oceans has received less attention compared to densely populated urban areas of continents. The Bohai Sea, a semi-enclosed sea in northern China, is surrounded by thirteen industrial cities that have experienced significant improvements in air quality over the past decade. However, the changes in air pollution over the Bohai Sea and its impacts on surrounding cities remain poorly understood. To address this, this study investigated the evolution of air pollution and its chemical composition in the Bohai Sea over four decades, utilizing satellite remote sensing data, reanalysis datasets, emissions inventories, and statistical modeling. Historically, the region has suffered from severe air pollution, resulting from a combination of continental emissions and marine inputs (e.g., sea salt, ports and maritime vessel activities). The aerosol optical depth (AOD) over the sea was higher than the mean levels observed in its surrounding coastal cities. Statistically, 45% of the air masses reaching the Bohai Sea are associated with natural sources (dust- and marine-rich), while the remainder carry anthropogenic pollutants from continental regions. With the exception of Cangzhou city, these coastal cities suffer from air pollutants originating from the Bohai Sea. Cities in the northern region of the sea, spanning from Tianjin to Yingkou, are particularly impacted. The majority of the surrounding cities are affected by a large proportion of anthropogenic aerosol types transported through air masses from the Bohai Sea, including those from biomass burning and industrial activities. These findings emphasize the considerable influence of human-induced sources in the Bohai Sea on neighboring urban areas. Furthermore, being a maritime region, natural sources like sea salt and dust from the sea may also exert a discernible impact on the neighboring environment.
Collapse
Affiliation(s)
- Linxuan Li
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaohui Bi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuehan Wang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lilai Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianhui Wu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yufen Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Xiang L, Fan Y, Yu X. The Joint Clean Air Actions and air quality spillovers in China. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:829-842. [PMID: 37917808 DOI: 10.1080/10962247.2023.2255579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/30/2023] [Indexed: 11/04/2023]
Abstract
Facing severe air pollution in its North Plain, the central government of China initiated the Joint Clean Air Action (JCAA) in 2017 to facilitate pollution mitigation efforts across the region. While quite a few studies investigated the effectiveness of this regulation, much less attention is paid to the pollution spillover effects. We empirically examine the effects, and show that 1) air quality in the east of the target cities has been improved due to positive spillover of improved air quality under the JCAA; 2) the beneficiary spillover lasts for two seasons and disappeared in autumn and winter; 3) air quality in the north, south and west directions are almost not changed; 4) wind direction and topography, two determinants of atmospheric transport, have a considerable influence over the spillover effects. Our study provides a fresh perspective to understand the impacts of the JCAA policy and underlines the necessity of taking both pollution and air quality spillover effects into the cost-benefit analysis.Implications: Pollution regulations in one place may increase pollution in other places, as production and emissions are re-allocated under the incentives induced by regional-specific regulations. This phenomenon has long been recognized in the literature as pollution spillover. However, if the relevant production and emissions are not re-allocated, at least not re-allocated in large quantities, local air quality improvement induced by regulations may also benefit the neighboring areas. We call this effect air quality spillover. Both spillover effects should be rigorously evaluated, which is of scientific interest by itself and also contributes to a comprehensive cost-benefit analysis of environmental regulations.
Collapse
Affiliation(s)
- Lin Xiang
- School of Economics and Management, Beihang University, Beijing, People's Republic of China
| | - Ying Fan
- School of Economics and Management, Beihang University, Beijing, People's Republic of China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, People's Republic of China
| | - Xueying Yu
- School of Economics and Management, Beihang University, Beijing, People's Republic of China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, People's Republic of China
| |
Collapse
|
6
|
Roy D, Kim J, Lee M, Park J. Adverse impacts of Asian dust events on human health and the environment-A probabilistic risk assessment study on particulate matter-bound metals and bacteria in Seoul, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162637. [PMID: 36889412 DOI: 10.1016/j.scitotenv.2023.162637] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to assess the impact of Asian dust (AD) on the human health and the environment. Particulate matter (PM) and PM-bound trace elements and bacteria were examined to determine the chemical and biological hazards associated with AD days and compared with non-AD days in Seoul. On AD days, the mean PM10 concentration was ∼3.5 times higher than that on non-AD days. Elements generated from the Earth's crust (Al, Fe, and Ca) and anthropogenic sources (Pb, Ni, and Cd) were identified as major contributors to coarse and fine particles, respectively. During AD days, the study area was recognized as "severe" for pollution index and pollution load index levels, and "moderately to heavily polluted" for geoaccumulation index levels. The potential cancer risk (CR) and non-CR were estimated for the dust generated during AD events. On AD days, total CR levels were significant (in 1.08 × 10-5-2.22 × 10-5), which were associated with PM-bound As, Cd, and Ni. In addition, inhalation CR was found to be similar to the incremental lifetime CR levels estimated using the human respiratory tract mass deposition model. In a short exposure duration (14 days), high PM and bacterial mass deposition, significant non-CR levels, and a high presence of potential respiratory infection-causing pathogens (Rothia mucilaginosa) were observed during AD days. Significant non-CR levels were observed for bacterial exposure, despite insignificant levels of PM10-bound elements. Therefore, the substantial ecological risk, CR, and non-CR levels for inhalation exposure to PM-bound bacteria, and the presence of potential respiratory pathogens, indicate that AD events pose a significant risk to both human lung health and the environment. This study provides the first comprehensive examination of significant non-CR levels for bacteria and carcinogenicity of PM-bound metals during AD events.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jayun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
7
|
Chong H, Lee S, Cho Y, Kim J, Koo JH, Pyo Kim Y, Kim Y, Woo JH, Hyun Ahn D. Assessment of air quality in North Korea from satellite observations. ENVIRONMENT INTERNATIONAL 2023; 171:107708. [PMID: 36571994 DOI: 10.1016/j.envint.2022.107708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
North Korea's air quality is poorly understood due to a lack of reliable data. Here, we analyzed urban- to national-scale air quality changes in North Korea using multi-year satellite observations. Pyongyang, Nampo, Pukchang, and Munchon were identified as pollution hotspots. On a national scale, we found that North Korea experienced 6.7, 17.8, and 20.6 times greater amounts of nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) per unit primary energy supply (PES) than South Korea from 2005 to 2018. Besides, North Korea had a 24.3 times larger aerosol optical depth (AOD) per PES than South Korea from 2011 to 2018. Severe CO and aerosol pollution is aligned with extensive biofuel combustion. High SO2 pollution corresponds with the strong coal dependence of the industry. The change rates of the national average columns for NO2, SO2, and CO were + 3.6, -4.4, and -0.4 % yr-1, respectively. The AOD change rate was -4.8 % yr-1. Overall decreasing trends, except for NO2, are likely due to a decline in coal-fired PES. Positive NO2 trends are consistent with increasing industrial activities. Each pollutant showed consistent patterns of linear trends, even after correcting the influence of transboundary pollution. Flue gas control and biofuel consumption reduction seem necessary to improve North Korea's air quality.
Collapse
Affiliation(s)
- Heesung Chong
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seoyoung Lee
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeseul Cho
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jhoon Kim
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Ja-Ho Koo
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong Pyo Kim
- Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Younha Kim
- International Institute for Applied Systems Analysis, A-2361, Laxenburg, Austria
| | - Jung-Hun Woo
- Department of Technology Fusion Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dha Hyun Ahn
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
8
|
Long-Term Trend of the Levels of Ambient Air Pollutants of a Megacity and a Background Area in Korea. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is imperative to understand the changes of the levels of air pollutants in Northeast Asia with respect to the changes of the emissions of air pollutants. In this study, we analyzed long-term trends of both the chemical composition of fine particles and gaseous species in Seoul, a megacity, and Baengnyeong Island, a background area located in the Yellow Sea of Republic of Korea (South Korea) from 2012 to 2019. Long-term changes of the concentrations of air pollutants were analyzed using the Mann–Kendall trend test and Sen’s slope. Since the SO2 emissions in this region have been significantly reduced during last decade, NO3– has become the major species of fine particles instead of SO42–. Seoul and Baengnyeong Island are rich in NH4+ in the atmosphere, and due to the SO2 emission reduction, the balance of ammonia–nitric acid–sulfuric acid has been changed, and the concentration of NO3– has increased. This trend is more obvious in Baengnyeong Island than Seoul due to the lower local emissions in Baengnyeong Island. As a result of this study, it is possible to confirm that concentrations of air pollutants and the majority of aerosols affecting PM2.5 concentrations in Northeast Asia have changed according to the changes in emissions in this region.
Collapse
|
9
|
Nguyen TNT, Vuong QT, Lee SJ, Xiao H, Choi SD. Identification of source areas of polycyclic aromatic hydrocarbons in Ulsan, South Korea, using hybrid receptor models and the conditional bivariate probability function. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:140-151. [PMID: 34981807 DOI: 10.1039/d1em00320h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study identifies the emission source areas for the atmospheric polycyclic aromatic hydrocarbons (PAHs) detected in Ulsan, South Korea. To achieve this, in addition to a conditional bivariate probability function (CBPF), two hybrid receptor models - the three-dimensional potential source contribution function (3D-PSCF) model and the 3D concentration weighted function (3D-CWT) model - were used, both of which adopt trajectory segments within the mixing layer. Notably, the fraction-weighted trajectory (FWT), a combination of PAH gas/particle partitioning with a hybrid receptor model, was introduced for the first time in this study to support the identification of emission source areas using other approaches (i.e., 3D-PSCF, 3D-CWT, and CBPF). Consequently, it was found that gaseous PAHs in Ulsan mostly originated from local emission sources (i.e., transportation and industrial emissions) throughout the year, whereas particulate PAHs were likely to originate from emission sources in China (e.g., Shandong, Hebei, and Liaoning) during spring and winter via long-range transport. However, in summer and fall, the influence of local emissions on particulate PAHs appeared to be stronger. The FWT was able to distinguish between local and distant sources more effectively, especially in summer and fall, i.e., the periods when local sources increased their contribution. This study thus increases the understanding of the long-range transport of PAHs in Northeast Asia, and the novel FWT approach exhibits the potential to be employed in the source area identification of various semi-volatile organic chemicals.
Collapse
Affiliation(s)
- Tuyet Nam Thi Nguyen
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Faculty of Environmental Science, Saigon University, Ho Chi Minh City, 72710, Vietnam
| | - Quang Tran Vuong
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Sang-Jin Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
10
|
Kim JS, Lee MH. Effect of filter collection efficiency on the clean air delivery rate in an air cleaner. INDOOR AIR 2021; 31:745-754. [PMID: 33020961 DOI: 10.1111/ina.12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The performance of an air cleaner is evaluated by the clean air delivery rate (CADR), which is defined as the measure of the delivery of contaminant-free air. Herein, we conducted comparative analyses of various particulate air filters with various collection efficiencies. We installed each filter in identical commercial air cleaners to determine the effects of the collection efficiency on the CADR. Three different filters (E11, E12, and H13 classes) were prepared to determine the effects of the filter collection efficiency and pressure drop on the air cleaner performance (ie, the CADR). Based on experimental data, filters E11 and E12 had similar CADRs and flow rates. However, filter H13, which had the highest collection efficiency and the lowest flow rate, had the lowest CADR. This indicates that even if a filter with higher collection efficiency is installed in an air cleaner, the larger pressure drop causes a reduction in the air flow rate. The CADR value is widely distributed for a flow rate range for commercially available models; however, the collection efficiencies for most air cleaners on the market lie in a narrow range. Therefore, the flow rate has the most direct impact on the performance of a commercial air cleaner.
Collapse
Affiliation(s)
- Jin Sik Kim
- Educational Environment Assessment Team, Korea Educational Environments Protection Agency, Osong-eup, Heungdeok-gu, Chungbuk, South Korea
| | - Myong-Hwa Lee
- Department of Environmental Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, South Korea
| |
Collapse
|
11
|
Jung J, Choi Y, Wong DC, Nelson D, Lee S. Role of sea fog over the Yellow Sea on air quality with the direct effect of aerosols. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2021; 126:10.1029/2020jd033498. [PMID: 33868887 PMCID: PMC8048130 DOI: 10.1029/2020jd033498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this study, we investigate the impact of sea fog over the Yellow Sea on air quality with the direct effect of aerosols for the entire year of 2016. Using the WRF-CMAQ two-way coupled model, we perform four model simulations with the up-to-date emission inventory over East Asia and dynamic chemical boundary conditions provided by hemispheric model simulations. During the spring of 2016, prevailing westerly winds and anticyclones caused the formation of a temperature inversion over the Yellow Sea, providing favorable conditions for the formation of fog. The inclusion of the direct effect of aerosols enhanced its strength. On foggy days, we find dominant changes of aerosols at an altitude of 150-200 m over the Yellow Sea resulted by the production through aqueous chemistry (~12.36% and ~3.08% increases in sulfate and ammonium) and loss via the wet deposition process (~-2.94% decrease in nitrate); we also find stronger wet deposition of all species occurring in PBL. Stagnant conditions associated with reduced air temperature caused by the direct effect of aerosols enhanced aerosol chemistry, especially in coastal regions, and it exceeded the loss of nitrate. The transport of air pollutants affected by sea fog extended to a much broader region. Our findings show that the Yellow Sea acts as not only a path of long-range transport but also as a sink and source of air pollutants. Further study should investigate changes in the impact of sea fog on air quality in conjunction with changes in the concentrations of aerosols and the climate.
Collapse
Affiliation(s)
- Jia Jung
- Department of Earth and Atmospheric Sciences, University of Houston, TX, USA
| | - Yunsoo Choi
- Department of Earth and Atmospheric Sciences, University of Houston, TX, USA
- Corresponding Author:
| | - David C. Wong
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Delaney Nelson
- Department of Earth and Atmospheric Sciences, University of Houston, TX, USA
| | - Sojin Lee
- Department of Safety and Environment Research, The Seoul Institute, Seoul, Republic of Korea
| |
Collapse
|
12
|
Lee KH, Bae MS. Discrepancy between scientific measurement and public anxiety about particulate matter concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143980. [PMID: 33341609 DOI: 10.1016/j.scitotenv.2020.143980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/02/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
This study presents the characteristics and relevance of air quality in the sensitive public environment by analyzing scientific observations and social data detailing the present status of particulate matter (PM) concentrations alongside the changes in the public perception. By projecting time-series data under the same conditions over long periods of time, the difference between the clarity in the information provided by the media and scientific data was quantified, and the patterns in these fields were identified. We confirmed that the PM mass loads in the atmosphere and column concentrations continue to decrease whereas the number of media articles and internet searches with related key words increased over the same period. It was observed that the number of articles in the media increased by 10.5 times over the same period in which the PM mass in the atmosphere decreased by approximately 2.5%. The correlation analysis between the scientific observation data and social data showed significant correlation for the pairs of PM10 and aerosol optical thickness (AOT), meteorological visibility and relative humidity, and media publications with the number of internet portal searches. These results indicate that individual interest and anxiety about the air quality increased quantitatively as a result of these issues being mentioned in new media sources. These results demonstrate the reasons why atmospheric scientists should provide more information about current air quality to the public and exert their professionality in scientific and public discourse.
Collapse
Affiliation(s)
- Kwon-Ho Lee
- Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University, Gangneung, Republic of Korea.
| | - Min-Suk Bae
- Department of Environment Engineering, Mokpo National University, Mokpo, Republic of Korea.
| |
Collapse
|
13
|
Bae M, Kim BU, Kim HC, Kim J, Kim S. Role of emissions and meteorology in the recent PM 2.5 changes in China and South Korea from 2015 to 2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116233. [PMID: 33326920 DOI: 10.1016/j.envpol.2020.116233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
In this study, we examined the change rates of PM2.5 concentrations, aerosol optical depth (AOD), and the concentrations of PM2.5 precursors, such as SO2 and NO2, in China and South Korea using surface and satellite observations from 2015 to 2018. To quantify the impacts of the emissions and meteorology on the concentration changes, we performed a series of air quality simulations with year-specific meteorology and a fixed anthropogenic emissions inventory. The surface PM2.5 observations in China and South Korea decreased at rates of 9.1 and 4.3%/yr during the study period, respectively. The AODs from Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color Imager (GOCI) also decreased faster over China than the AODs over South Korea. For the PM2.5 decrease in China, the emission impact was more significant (73%) than the meteorology impact (27%). On the contrary, in South Korea, the emissions and meteorology impacts on PM2.5 reductions were similar (51% vs 49%). The SO2 concentration over China in 2018 significantly reduced to approximately half of the level in 2015. In turn, the sulfate concentration in Baengnyeong (BN), located in a downwind pathway from China to South Korea, decreased at a rate of 0.79%/month. However, the nitrate concentration in BN showed an increasing trend due to the non-linear chemical reactions among sulfate-nitrate-ammonium. The increased nitrate compensated for the reduced PM2.5 concentration from the sulfate decrease at BN. Additionally, the number of high (>50 μg/m3) PM2.5 concentration days continuously decreased in China, but the number in South Korea increased. It is noted that emission reductions in an upwind area do not guarantee corresponding air quality improvement in the downwind area when complex secondary aerosol formation processes, as well as spatiotemporal changes in meteorology, are involved in the transboundary transport of air pollutants.
Collapse
Affiliation(s)
- Minah Bae
- Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea
| | - Byeong-Uk Kim
- Georgia Environmental Protection Division, Atlanta, GA, USA
| | - Hyun Cheol Kim
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA; Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, MD, USA
| | - Jhoon Kim
- Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea.
| |
Collapse
|
14
|
Cao F, Zhang X, Hao C, Tiwari S, Chen B. Light absorption enhancement of particulate matters and their source apportionment over the Asian continental outflow site and South Yellow Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8022-8035. [PMID: 33048295 DOI: 10.1007/s11356-020-11134-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Light absorption enhancement of black carbon due to the aerosol mixing states is an important parameterization for climate modeling, while emission source contributions to the enhancement factor are unclear. An intensive campaign was conducted simultaneously at a China coastal site (Qingdao city) and maritime sites (South Yellow Sea, SYS) in August and Nov to Dec 2018. The absorption enhancement (EMAC) of the black carbon was calculated using a two-step solvent dissolution protocol and found 1.96 ± 0.68, 1.64 ± 0.38, and 2.40 ± 0.76 for Qingdao summer (QS), Qingdao autumn (QA), and SYS, respectively. Positive matrix factorization (PMF) model identified six sources of PM2.5 and EMAC, which were secondary aerosol (with contribution 27.9% and 29.2%), coal combustion (24.9% and 20.2%), industrial emissions (15.2% and 25.4%), sea salt (6.9% and 9.6%), vehicle emissions (12.1% and 10.9%), and soil dust (13.0% and 4.7%), respectively. These sources increased the absorption of black carbon by a factor of 1.25 ± 0.11 (secondary aerosol), 1.21 ± 0.20 (industrial emissions), 1.17 ± 0.08 (coal combustion), 1.09 ± 0.07 (vehicle emissions), 1.08 ± 0.17 (sea salt), and 1.04 ± 0.10 (soil dust). Based on the correlation between PM and EMAC source contributions, we estimated that secondary aerosols, industrial emissions, and coal combustion contributed to 74.8% of absorption enhancement at a regional scale in China. The source apportionment for EMAC offers a new diagnosis for each source regarding aerosol forcing simulation which inputs from the individual emission sector.
Collapse
Affiliation(s)
- Feiyan Cao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiaorong Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Chunyu Hao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Shani Tiwari
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Bing Chen
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.
| |
Collapse
|
15
|
Lee S, Kim M, Kim SY, Lee DW, Lee H, Kim J, Le S, Liu Y. Assessment of long-range transboundary aerosols in Seoul, South Korea from Geostationary Ocean Color Imager (GOCI) and ground-based observations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:115924. [PMID: 33221083 DOI: 10.1016/j.envpol.2020.115924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
To better understand air quality issues in South Korea, it is essential to identify the main contributors of air pollution and to quantify the effects of transboundary transport. In this study, geostationary satellite measurements were used to assess the effects of aerosol transport on air quality in South Korea. This study proposes a method to define the long-range transport (LRT) of aerosols into the Korean Peninsula using remote sensing obervations and back-trajectories and estimates the LRT effects on air quality in Seoul using in-situ particulate matter (PM) measurements. Aerosol optical depths (AODs) are obtained from the Geostationary Ocean Color Imager (GOCI), and the back-trajectories are from the National Ocean and Atmospheric Administration (NOAA) HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. For LRT events, satellite observations showed high AOD plumes over the Yellow Sea, a pathway between Eastern China and South Korea, and the movements of aerosol plumes transported to South Korea were also detected. PM2.5 concentrations, PM10 concentrations, and AOD during LRT increased by 52%, 49%, and 81%, respectively, relative to their average values for 2015-2018. To quantitatively characterize the LRT of aerosols, the effects of LRT on PM2.5 concentrations were estimated for each PM concentration category. The contribution of LRT to PM2.5 concentrations was estimated to be 33% during 2015-2018. When high concentrations of PM2.5 were observed in Seoul, they were likely to be associated with LRT events.
Collapse
Affiliation(s)
- Seoyoung Lee
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, South Korea
| | - Minseok Kim
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, South Korea
| | - Seung-Yeon Kim
- Environmental Satellite Centre, Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, 22689, South Korea
| | - Dong-Won Lee
- Environmental Satellite Centre, Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, 22689, South Korea
| | - Hanlim Lee
- Division of Earth Environmental System Science, Major of Spatial Information Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Jhoon Kim
- Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, South Korea.
| | - Sophia Le
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 20218, USA
| | - Yang Liu
- Emory University, Rollins School of Public Health, Atlanta, GA, 30322, USA
| |
Collapse
|
16
|
Kim E, Kim BU, Kim HC, Kim S. Direct and cross impacts of upwind emission control on downwind PM 2.5 under various NH 3 conditions in Northeast Asia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115794. [PMID: 33120348 DOI: 10.1016/j.envpol.2020.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Emissions reductions in upwind areas can influence the PM2.5 concentrations in downwind areas via long-range transport. However, few studies have assessed the impact of upwind PM2.5 precursor controls on changes in downwind PM2.5 concentrations. In this study, we analyzed the overall impact of PM2.5 precursor emission controls in upwind areas on PM2.5 in downwind areas with two types of impacts: "direct impact" and "cross impact." The former refers to PM2.5 changes in downwind areas due to the transported PM2.5 itself, whereas the latter represents PM2.5 changes due to reactions between the transported gaseous precursors and intermediates (i.e., HNO3) originating from upwind areas and locally emitted precursors (i.e. NH3) in the downwind areas. As a case study, we performed air quality modeling for Northeast Asia for January 15-17, 2016 by setting China and South Korea as the upwind and downwind areas, respectively. To account for potential spatiotemporal variations in NH3 emissions in downwind areas, we considered two NH3 conditions. When NOx emissions in China were reduced by 35%, in downwind areas the PM2.5 concentrations decreased by 2.2 μg/m3 under NH3-rich conditions, while PM2.5 concentrations increased by 2.3 μg/m3 under NH3-poor conditions. The direct impact increased by 4.0 μg/m3 in both cases due to upwind NOx disbenefit effects. However, the cross impacts led to a PM2.5 decrease of 6.2 μg/m3 under NH3-rich conditions versus a PM2.5 increase of 1.7 μg/m3 under NH3-poor conditions. We noted that PM2.5 concentrations in the downwind areas may not improve unless a cross impact outweighs a direct impact. This may be one of the reasons why South Korea PM2.5 concentrations have not declined despite efforts by China to reduce their PM2.5 precursor emissions.
Collapse
Affiliation(s)
- Eunhye Kim
- Department of Environmental & Safety Engineering, Ajou University, Suwon, South Korea
| | - Byeong-Uk Kim
- Georgia Environmental Protection Division, Atlanta, GA, 30354, USA
| | - Hyun Cheol Kim
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, 20740, USA; Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, MD, 20740, USA
| | - Soontae Kim
- Department of Environmental & Safety Engineering, Ajou University, Suwon, South Korea.
| |
Collapse
|
17
|
Koo JH, Kim J, Lee YG, Park SS, Lee S, Chong H, Cho Y, Kim J, Choi K, Lee T. The implication of the air quality pattern in South Korea after the COVID-19 outbreak. Sci Rep 2020; 10:22462. [PMID: 33384456 PMCID: PMC7775425 DOI: 10.1038/s41598-020-80429-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/15/2020] [Indexed: 12/01/2022] Open
Abstract
By using multiple satellite measurements, the changes of the aerosol optical depth (AOD) and nitrogen dioxide (NO2) over South Korea were investigated from January to March 2020 to evaluate the COVID-19 effect on the regional air quality. The NO2 decrease in South Korea was found but not significant, which indicates the effects of spontaneous social distancing under the maintenance of ordinary life. The AODs in 2020 were normally high in January, but they became lower starting from February. Since the atmosphere over Eastern Asia was unusually stagnant in January and February 2020, the AOD decrease in February 2020 clearly reveals the positive effect of the COVID-19. Considering the insignificant NO2 decrease in South Korea and the relatively long lifetime of aerosols, the AOD decrease in South Korea may be more attributed to the improvement of the air quality in neighboring countries. In March, regional atmosphere became well mixed and ventilated over South Korea, contributing to large enhancement of air quality. While the social activity was reduced after the COVID-19 outbreak, the regional meteorology should be also examined significantly to avoid the biased evaluation of the social impact on the change of the regional air quality.
Collapse
Affiliation(s)
- Ja-Ho Koo
- Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea
| | - Jhoon Kim
- Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea.
| | - Yun Gon Lee
- Department of Atmospheric Sciences, Chungnam National University, Daejeon, Republic of Korea.
| | - Sang Seo Park
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Seoyoung Lee
- Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea
| | - Heesung Chong
- Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea
| | - Yeseul Cho
- Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea
| | - Jaemin Kim
- Department of Atmospheric Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Kyungbae Choi
- Department of Atmospheric Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Taegyung Lee
- Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Gaubert B, Emmons LK, Raeder K, Tilmes S, Miyazaki K, Arellano AF, Elguindi N, Granier C, Tang W, Barré J, Worden HM, Buchholz RR, Edwards DP, Franke P, Anderson JL, Saunois M, Schroeder J, Woo JH, Simpson IJ, Blake DR, Meinardi S, Wennberg PO, Crounse J, Teng A, Kim M, Dickerson RR, He H, Ren X, Pusede SE, Diskin GS. Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:14617-14647. [PMID: 33414818 PMCID: PMC7786812 DOI: 10.5194/acp-20-14617-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Global coupled chemistry-climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic and biomass burning emissions, chemical production and loss via OH reaction from emissions of anthropogenic and biogenic volatile organic compounds (VOCs) play an important role. Here we investigate the reasons for this underestimation using aircraft measurements taken in May and June 2016 from the Korea-United States Air Quality (KORUS-AQ) experiment in South Korea and the Air Chemistry Research in Asia (ARIAs) in the North China Plain (NCP). For reference, multispectral CO retrievals (V8J) from the Measurements of Pollution in the Troposphere (MOPITT) are jointly assimilated with meteorological observations using an ensemble adjustment Kalman filter (EAKF) within the global Community Atmosphere Model with Chemistry (CAM-Chem) and the Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is underestimated by 42% in the control run and by 12% with the MOPITT assimilation run. The inversion suggests an underestimation of anthropogenic CO sources in many regions, by up to 80% for northern China, with large increments over the Liaoning Province and the North China Plain (NCP). Yet, an often-overlooked aspect of these inversions is that correcting the underestimation in anthropogenic CO emissions also improves the comparison with observational O3 datasets and observationally constrained box model simulations of OH and HO2. Running a CAM-Chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29% for CO, 18% for ozone, 11% for HO2, and 27% for OH. Longer-lived anthropogenic VOCs whose model errors are correlated with CO are also improved, while short-lived VOCs, including formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O3, with an average underestimation of 5.5 ppbv, and a reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by separately increasing by a factor of 2 the modeled biogenic emissions for the plant functional types found in Korea. Results also suggest that controlling VOC and CO emissions, in addition to widespread NO x controls, can improve ozone pollution over East Asia.
Collapse
Affiliation(s)
- Benjamin Gaubert
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
| | - Louisa K. Emmons
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
| | - Kevin Raeder
- Computational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Simone Tilmes
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
| | - Kazuyuki Miyazaki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Avelino F. Arellano
- Dept. of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Nellie Elguindi
- Laboratoire d’Aérologie, CNRS, Université de Toulouse, Toulouse, France
| | - Claire Granier
- Laboratoire d’Aérologie, CNRS, Université de Toulouse, Toulouse, France
- NOAA Chemical Sciences Laboratory-CIRES/University of Colorado, Boulder, CO, USA
| | - Wenfu Tang
- Advanced Study Program, National Center for Atmospheric Research, Boulder, CO, USA
| | - Jérôme Barré
- European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, UK
| | - Helen M. Worden
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
| | - Rebecca R. Buchholz
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
| | - David P. Edwards
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
| | - Philipp Franke
- Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung IEK-8, 52425 Jülich, Germany
| | - Jeffrey L. Anderson
- Computational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Marielle Saunois
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | | | - Jung-Hun Woo
- Department of Advanced Technology Fusion, Konkuk University, Seoul, South Korea
| | - Isobel J. Simpson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Donald R. Blake
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Simone Meinardi
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | - John Crounse
- California Institute of Technology, Pasadena, CA, USA
| | - Alex Teng
- California Institute of Technology, Pasadena, CA, USA
| | - Michelle Kim
- California Institute of Technology, Pasadena, CA, USA
| | - Russell R. Dickerson
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Hao He
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Xinrong Ren
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
| | - Sally E. Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
19
|
Abstract
The COVID-19 pandemic has led countries to take action, which has included practicing social distancing or lockdown. Many cities are experiencing air quality improvements due to human activity restrictions. The purpose of this study was to compare the air quality between 2020 and the previous three years, focusing on the two cities (Seoul and Daegu) where coronavirus is spreading the fastest in Korea. Significant decreases in PM2.5, PM10, CO, and NO2 were observed in both cities. In particular, compared to the same period of 2017-2019, in March 2020, PM2.5 showed remarkable reductions of 36% and 30% in Seoul and Daegu, respectively. The effects of social distancing have maximized improvements in air quality due to reduced transboundary pollutants. The PM2.5/PM10 ratio was significantly reduced after social distancing, indicating that the contribution of traffic-related PM2.5 declined. Air quality improved overall from January to July, and the most noticeable drop in the air quality index (AQI) was observed in April. These findings indicate that relatively weak social distancing measures compared to a COVID-19 lockdown can help reduce air pollutant levels. At the same time, however, changes in air quality in the neighboring countries caused by COVID-19 control action are affecting Korea.
Collapse
|
20
|
Tiwari S, Kun L, Chen B. Spatial variability of sedimentary carbon in South Yellow Sea, China: impact of anthropogenic emission and long-range transportation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23812-23823. [PMID: 32301087 DOI: 10.1007/s11356-020-08686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
During the last few decades, sedimentary carbons gain great concerns of research interest among the scientific committee worldwide due to their adverse impact on aquatic chemistry, ecology, and hence human health along with global climate change. In the present study, we investigated the spatial distribution of mass concentration of sedimentary carbon (viz. black carbon: BC, and its components, char and soot) along with their burial fluxes in the surface sediments of the South Yellow Sea (SYS). The concentration of sedimentary carbon is measured by using an emerging method of thermal/optical reflectance. The observed BC concentration is found in the range of 0.02-1.02 mg g-1 with a mean value of 0.49 ± 0.26 mg g-1. The mean burial fluxes of BC, char, and soot also have a similar spatial variation to their concentration with the mean value along with relative standard deviation (in bracket) 22.43 ± 12.49 (~ 56%), 5.90 ± 3.99 (~ 68%), and 16.53 ± 10.67 (65%), respectively. Relatively lower value of char/soot ratio, i.e., 0.48 ± 0.22, indicates the dominance of soot in surface sediments that could be mainly derived from the fossil fuel combustion which is further confirmed from emission inventory data suggesting maximum contribution, i.e., ~ 66-80%, of the total BC emission emitted from residential and industrial emission sources. The back trajectories analysis revealed a significant impact of long-range transportation on BC concentration in the surface sediments of SYS. Further study of BC concentrations in sea sediments and their interaction with other organic/inorganic compounds in continental shelves is highly needed for a better understanding of the global carbon cycle.
Collapse
Affiliation(s)
- Shani Tiwari
- Environmental Research Institute, Shandong University, Qingdao, China.
| | - Liu Kun
- Environmental Research Institute, Shandong University, Qingdao, China
| | - Bing Chen
- Environmental Research Institute, Shandong University, Qingdao, China.
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.
- Collaborative Innovation Center of Climate Change, Nanjing, Jiangsu Province, China.
| |
Collapse
|