1
|
Wāng Y, Han Y, Xu DX. Developmental impacts and toxicological hallmarks of silver nanoparticles across diverse biological models. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100325. [PMID: 38046179 PMCID: PMC10692670 DOI: 10.1016/j.ese.2023.100325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
Silver nanoparticles (AgNPs), revered for their antimicrobial prowess, have become ubiquitous in a range of products, from biomedical equipment to food packaging. However, amidst their rising popularity, concerns loom over their possible detrimental effects on fetal development and subsequent adult life. This review delves into the developmental toxicity of AgNPs across diverse models, from aquatic species like zebrafish and catfish to mammalian rodents and in vitro embryonic stem cells. Our focus encompasses the fate of AgNPs in different contexts, elucidating associated hazardous results such as embryotoxicity and adverse pregnancy outcomes. Furthermore, we scrutinize the enduring adverse impacts on offspring, spanning impaired neurobehavior function, reproductive disorders, cardiopulmonary lesions, and hepatotoxicity. Key hallmarks of developmental harm are identified, encompassing redox imbalances, inflammatory cascades, DNA damage, and mitochondrial stress. Notably, we explore potential explanations, linking immunoregulatory dysfunction and disrupted epigenetic modifications to AgNPs-induced developmental failures. Despite substantial progress, our understanding of the developmental risks posed by AgNPs remains incomplete, underscoring the urgency of further research in this critical area.
Collapse
Affiliation(s)
- Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yapeng Han
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
2
|
Mutalik C, Nivedita, Sneka C, Krisnawati DI, Yougbaré S, Hsu CC, Kuo TR. Zebrafish Insights into Nanomaterial Toxicity: A Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal Nanoparticles. Int J Mol Sci 2024; 25:1926. [PMID: 38339204 PMCID: PMC10856345 DOI: 10.3390/ijms25031926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Nanomaterials are widely used in various fields, and ongoing research is focused on developing safe and sustainable nanomaterials. Using zebrafish as a model organism for studying the potentially toxic effects of nanomaterials highlights the importance of developing safe and sustainable nanomaterials. Studies conducted on nanomaterials and their toxicity and potential risks to human and environmental health are vital in biomedical sciences. In the present review, we discuss the potential toxicity of nanomaterials (inorganic and organic) and exposure risks based on size, shape, and concentration. The review further explores various types of nanomaterials and their impacts on zebrafish at different levels, indicating that exposure to nanomaterials can lead to developmental defects, changes in gene expressions, and various toxicities. The review also covers the importance of considering natural organic matter and chorion membranes in standardized nanotoxicity testing. While some nanomaterials are biologically compatible, metal and semiconductor nanomaterials that enter the water environment can increase toxicity to aquatic creatures and can potentially accumulate in the human body. Further investigations are necessary to assess the safety of nanomaterials and their impacts on the environment and human health.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Nivedita
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Chandrasekaran Sneka
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, East Java, Indonesia;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso;
| | - Chuan-Chih Hsu
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Bragato C, Mostoni S, D’Abramo C, Gualtieri M, Pomilla FR, Scotti R, Mantecca P. On the In Vitro and In Vivo Hazard Assessment of a Novel Nanomaterial to Reduce the Use of Zinc Oxide in the Rubber Vulcanization Process. TOXICS 2022; 10:781. [PMID: 36548614 PMCID: PMC9787408 DOI: 10.3390/toxics10120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide (ZnO) is the most efficient curing activator employed in the industrial rubber production. However, ZnO and Zn(II) ions are largely recognized as an environmental hazard being toxic to aquatic organisms, especially considering Zn(II) release during tire lifecycle. In this context, aiming at reducing the amount of microcrystalline ZnO, a novel activator was recently synthetized, constituted by ZnO nanoparticles (NPs) anchored to silica NPs (ZnO-NP@SiO2-NP). The objective of this work is to define the possible hazards deriving from the use of ZnO-NP@SiO2-NP compared to ZnO and SiO2 NPs traditionally used in the tire industry. The safety of the novel activators was assessed by in vitro testing, using human lung epithelial (A549) and immune (THP-1) cells, and by the in vivo model zebrafish (Danio rerio). The novel manufactured nanomaterial was characterized morphologically and structurally, and its effects evaluated in vitro by the measurement of the cell viability and the release of inflammatory mediators, while in vivo by the Fish Embryo Acute Toxicity (FET) test. Resulting data demonstrated that ZnO-NP@SiO2-NP, despite presenting some subtoxic events, exhibits the lack of acute effects both in vitro and in vivo, supporting the safe-by-design development of this novel material for the rubber industry.
Collapse
Affiliation(s)
- Cinzia Bragato
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Silvia Mostoni
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Christian D’Abramo
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Maurizio Gualtieri
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Francesca Rita Pomilla
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Roberto Scotti
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Paride Mantecca
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
4
|
Bellingeri A, Scattoni M, Venditti I, Battocchio C, Protano G, Corsi I. Ecologically based methods for promoting safer nanosilver for environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129523. [PMID: 35820334 DOI: 10.1016/j.jhazmat.2022.129523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Nanosilver, widely employed in consumer products as biocide, has been recently proposed as sensor, adsorbent and photocatalyst for water pollution monitoring and remediation. Since nanosilver ecotoxicity still pose limitations to its environmental application, a more ecological exposure testing strategy should be coupled to the development of safer formulations. Here, we tested the environmental safety of novel bifunctionalized nanosilver capped with citrate and L-cysteine (AgNPcitLcys) as sensor/sorbent of Hg2+ in terms of behaviour and ecotoxicity on microalgae (1-1000 µg/L) and microcrustaceans (0.001-100 mg/L), from the freshwater and marine environment, in acute and chronic scenarios. Acute toxicity resulted poorly descriptive of nanosilver safety while chronic exposure revealed stronger effects up to lethality. Low dissolution of silver ions from AgNPcitLcys was observed, however a nano-related ecotoxicity is hypothesized. Double coating of AgNPcitLcys succeeded in mitigating ecotoxicity to tested organisms, hence encouraging further research on safer nanosilver formulations. Environmentally safe applications of nanosilver should focus on ecologically relevant exposure scenarios rather than relying only on acute exposure data.
Collapse
Affiliation(s)
- Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Mattia Scattoni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| |
Collapse
|
5
|
Environmental Risk Assessment of Silver Nanoparticles in Aquatic Ecosystems Using Fuzzy Logic. WATER 2022. [DOI: 10.3390/w14121885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rapid development of nanotechnology has stimulated the use of silver nanoparticles (AgNPs) in various fields that leads to their presence in different ecosystem compartments, in particular aquatic ecosystems. Several studies have shown that a variety of living organisms are affected by AgNPs. Therefore, a methodology to assess the risk of AgNPs for aquatic ecosystems was developed. The methodology is based on fuzzy logic, a proven method for dealing with variables with an associated uncertainty, as is the case with many variables related to AgNPs. After a careful literature search, a selection of relevant variables was carried out and the fuzzy model was designed. From inputs such as AgNPs’ size, shape, and coating, it is possible to determine their level of toxicity which, together with their level of concentration, are sufficient to create a risk assessment. Two case studies to assess this methodology are presented, one involving continuous effluent from a wastewater treatment plant and the second involving an accidental spill. The results showed that the accidental spills have a higher risk than WWTP release, with the combination of Plates–BPEI being the most toxic one. This approach can be adapted to different situations and types of nanoparticles, making it highly useful for both stakeholders and decision makers.
Collapse
|
6
|
Brinkmann BW, Koch BEV, Peijnenburg WJGM, Vijver MG. Microbiota-dependent TLR2 signaling reduces silver nanoparticle toxicity to zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113522. [PMID: 35447474 DOI: 10.1016/j.ecoenv.2022.113522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Many host-microbiota interactions depend on the recognition of microbial constituents by toll-like receptors of the host. The impacts of these interactions on host health can shape the hosts response to environmental pollutants such as nanomaterials. Here, we assess the role of toll-like receptor 2 (TLR2) signaling in the protective effects of colonizing microbiota against silver nanoparticle (nAg) toxicity to zebrafish larvae. Zebrafish larvae were exposed to nAg for two days, from 3 to 5 days post-fertilization. Using an il1ß-reporter line, we first characterized the accumulation and particle-specific inflammatory effects of nAg in the total body and intestinal tissues of the larvae. This showed that silver gradually accumulated in both the total body and intestinal tissues, yet specifically caused particle-specific inflammation on the skin of larvae. Subsequently, we assessed the effects of microbiota-dependent TLR2 signaling on nAg toxicity. This was done by comparing the sensitivity of loss-of-function zebrafish mutants for TLR2, and each of the TLR2-adaptor proteins MyD88 and TIRAP (Mal), under germ-free and microbially-colonized conditions. Irrespective of their genotype, microbially-colonized larvae were less sensitive to nAg than their germ-free siblings, supporting the previously identified protective effect of microbiota against nAg toxicity. Under germ-free conditions, tlr2, myd88 and tirap mutants were equally sensitive to nAg as their wildtype siblings. However, when colonized by microbiota, tlr2 and tirap mutants were more sensitive to nAg than their wildtype siblings. The sensitivity of microbially-colonized myd88 mutants did not differ significantly from that of wildtype siblings. These results indicate that the protective effect of colonizing microbiota against nAg-toxicity to zebrafish larvae involves TIRAP-dependent TLR2 signaling. Overall, this supports the conclusion that host-microbiota interactions affect nanomaterial toxicity to zebrafish larvae.
Collapse
Affiliation(s)
- Bregje W Brinkmann
- Institute of Environmental Sciences (CML), Environmental Biology, Leiden University, Leiden, The Netherlands.
| | - Bjørn E V Koch
- Institute of Biology Leiden (IBL), Animal Sciences, Leiden University, Leiden, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Environmental Biology, Leiden University, Leiden, The Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Environmental Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Mao L, Zheng L, You H, Ullah MW, Cheng H, Guo Q, Zhu Z, Xi Z, Li R. A comparison of hepatotoxicity induced by different lengths of tungsten trioxide nanorods and the protective effects of melatonin in BALB/c mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40793-40807. [PMID: 33772475 DOI: 10.1007/s11356-021-13558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Tungsten trioxide nanoparticles (WO3 NPs) have shown increasing promise in biological and biomedical fields in recent years. However, their possible hazards, especially the adverse effects related to their sizes on human health and environment, are still yet poorly understood. In this study, we compared the hepatotoxicity in mice induced by WO3 nanorods of two different lengths (125-200 nm and 0.8-2 μm) via intraperitoneal injection, and explored the protective role of melatonin, an antioxidant, against the hepatotoxicity. The results showed that 10 mg/kg/day of shorter WO3 nanorods could cause obvious hepatic function impairment, histopathological lesions, and significant enhancement in levels of oxidative stress and inflammation in mouse liver. However, similar effects were found only in the 20 mg/kg/day longer WO3 nanorods-treated mice, and these adverse effects were attenuated by pretreatment with melatonin. These findings indicate that WO3 nanorods can exert hepatotoxicity in mice in a dose- and length-dependent manner, and that shorter WO3 nanorods cause more severe hepatotoxicity than their longer counterparts. Melatonin could serve as an effective protective agent against the longer WO3 nanorods-induced hepatotoxicity by decreasing the oxidative stress level. This study is important for determining the environmental and human health risks of exposure to WO3 NPs and their size-dependent toxicity, and provides an appealing strategy to avoid the adverse effects. WO3 nanorods with different lengths can exert hepatotoxicity in mice, in a dose- and length-dependent manner. Short WO3 nanorods causes more severe hepatic injury than long ones. Melatonin exhibits an effectively protective effects against WO3 nanorods-induced hepatic injury through reducing the oxidative stress level.
Collapse
Affiliation(s)
- Lin Mao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lifang Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Huihui You
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haoyan Cheng
- Institute of Nano-Science and Nano-Technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Qing Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zhihong Zhu
- Institute of Nano-Science and Nano-Technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Zhuge Xi
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
8
|
Santos J, Barreto Â, Almeida C, Azevedo C, Domingues I, Amorim MJB, Maria VL. Toxicity of boron and vanadium nanoparticles on Danio rerio embryos - Phenotypical, biochemical, and behavioral alterations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105930. [PMID: 34364155 DOI: 10.1016/j.aquatox.2021.105930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Engineered nanoparticles (NPs) are emerging contaminants of concern and it is important to understand their environmental behavior and ecological risks to exposed organisms. Despite their ubiquitous presence in the environment, there is little information about the hazards of certain NPs, such as boron (BNPs) and vanadium (VNPs). The aim of the present research was to investigate the effects of commercial BNPs and VNPs (80 to 100 nm) to zebrafish embryos, at different levels of biological organization. A range of nominal concentrations for both NPs (0, 0.01, 0.1, 1, and 10 mg/L) was tested. Due to the presence of triton X-100 in the NPs' stock dispersions, an additional control group was included (0.001% triton X-100). Survival, hatching, and malformations of embryos were assessed for 96 hours (h) exposure. Locomotor behavior was evaluated at 120 h. Furthermore, embryos were exposed to 0, 1, and 10 mg/L of NPs to evaluate a set of biomarker responses after 96 h: cholinesterase (ChE) and glutathione S-transferase (GST) activities, total glutathione (TG) and energy budgets levels. VNPs induced malformations (10 mg/L), hyperactivity (10 mg/L), erratic swimming (0.01 mg/L), altered swimming pattern (>0.01 mg/L), delayed hatching (10 mg/L) and altered biochemical responses involved in antioxidant defense (GST and TG at >1 mg/L), neurotransmission (ChE at 10 mg/L) and energy metabolism (lipids at >1 mg/L and carbohydrates at 10 mg/L). BNPs caused malformations (10 mg/L), affected swimming pattern (>0.01 mg/L), induced erratic swimming (10 mg/L) and decreased TG content and GST activity (>1 mg/L). At the same concentrations, VNPs affected a greater number of endpoints than BNPs, demonstrating a greater toxicity to zebrafish embryos. The present study shows that BNPs and VNPs may affect aquatic organisms, albeit at relatively great non-environmentally relevant concentrations, reinforcing the importance of the risk assessment of different NPs.
Collapse
Affiliation(s)
- Joana Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ângela Barreto
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Célia Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cátia Azevedo
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vera L Maria
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
d’Amora M, Raffa V, De Angelis F, Tantussi F. Toxicological Profile of Plasmonic Nanoparticles in Zebrafish Model. Int J Mol Sci 2021; 22:ijms22126372. [PMID: 34198694 PMCID: PMC8232250 DOI: 10.3390/ijms22126372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Plasmonic nanoparticles are increasingly employed in several fields, thanks to their unique, promising properties. In particular, these particles exhibit a surface plasmon resonance combined with outstanding absorption and scattering properties. They are also easy to synthesize and functionalize, making them ideal for nanotechnology applications. However, the physicochemical properties of these nanoparticles can make them potentially toxic, even if their bulk metallic forms are almost inert. In this review, we aim to provide a more comprehensive understanding of the potential adverse effects of plasmonic nanoparticles in zebrafish (Danio rerio) during both development and adulthood, focusing our attention on the most common materials used, i.e., gold and silver.
Collapse
Affiliation(s)
- Marta d’Amora
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.A.); (F.T.)
- Correspondence:
| | - Vittoria Raffa
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy;
| | - Francesco De Angelis
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.A.); (F.T.)
| | - Francesco Tantussi
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.A.); (F.T.)
| |
Collapse
|
10
|
Hu B, Yin N, Yang R, Liang S, Liang S, Faiola F. Silver nanoparticles (AgNPs) and AgNO 3 perturb the specification of human hepatocyte-like cells and cardiomyocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138433. [PMID: 32302844 DOI: 10.1016/j.scitotenv.2020.138433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 05/11/2023]
Abstract
Silver nanoparticles (AgNPs) are commonly utilized industrial compounds mostly because of their antimicrobial properties. Nevertheless, our understanding of their potential developmental toxicity in humans is still limited. Embryonic stem cells (ESCs) are powerful in vitro tools for developmental toxicity assessments of chemicals. Here, we evaluated the potential developmental toxicity during early embryogenesis of AgNPs and AgNO3 with human ESC (hESC)-based differentiation systems in vitro. We found that human relevant concentrations of AgNPs and Ag ions affected the specification of two of the three primary germ layers, endoderm and mesoderm, without drastically affecting ectoderm. Furthermore, the two forms of Ag impaired the generation and functions of hepatocytes-like cells derived from endoderm, by decreasing the expression of important liver markers such as AFP, ALB, and HNF4A, and altering glycogen storage. When considering cardiac development, AgNPs and AgNO3 manifested opposite adverse effects, in that AgNPs increased while AgNO3 decreased the expression of typical cardiac markers (NKX2.5, MYH6, and ISL) in hESC-derived cardiomyocytes. In conclusion, our findings argue for a potential developmental toxicity of AgNP doses we are exposed to, or levels detected in the human body, especially at very early stages during embryogenesis, and which may not be just due to Ag leakage. Moreover, mesendoderm-derived cell types, tissues and organs may be more prone to AgNP toxicity than ectoderm lineages.
Collapse
Affiliation(s)
- Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Hu B, Yang R, Cheng Z, Liang S, Liang S, Yin N, Faiola F. Non-cytotoxic silver nanoparticle levels perturb human embryonic stem cell-dependent specification of the cranial placode in part via FGF signaling. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122440. [PMID: 32151936 DOI: 10.1016/j.jhazmat.2020.122440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/02/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are compounds used in numerous consumer products because of their desirable optical, conductive and antibacterial properties. However, several in vivo and in vitro studies have raised concerns about their potential developmental toxicity. Here, we employed a human embryonic stem cell model to evaluate the potential ectodermal toxicity of AgNPs, at human relevant concentrations. Among the four major ectodermal lineages tested, only cranial placode specification was significantly affected by AgNPs and AgNO3, morphology-wise and in the expression of specific markers, such as SIX3 and PAX6. Mechanistically, we found that the effects of AgNPs on the cranial placode differentiation were probably due to Ag ion leakage and mediated by the FGF signaling. Thus, AgNPs may have the ability to alter the early stages of embryonic development.
Collapse
Affiliation(s)
- Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanwen Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Kalimuthu K, Kim JM, Subburaman C, Kwon WY, Hwang SH, Jeong S, Jo MG, Kim HJ, Park KS. Characterization of Rajath Bhasma and Evaluation of Its Toxicity in Zebrafish Embryos and Its Antimicrobial Activity. J Microbiol Biotechnol 2020; 30:920-925. [PMID: 32238767 PMCID: PMC9728409 DOI: 10.4014/jmb.1911.11018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Abstract
In India, nanotechnology has been used in therapeutic applications for several millennia. One example of a traditional nanomedicine is Rajath Bhasma (als°Called calcined silver ash), which is used as an antimicrobial and for the treatment of various ailments and conditions such as memory loss, eye diseases, and dehydration. In this study, we aimed t°Characterize the physical composition and morphology of Rajath Bhasma and its suitability for use as a non-toxic antimicrobial agent. First, Rajath Bhasma was physically characterized via i) Fourier-transform infrared spectroscopy to analyze the surface functional groups, ii) scanning electron microscopy coupled with energydispersive X-ray spectroscopy to observe the morphology and elemental composition, and iii) X-ray diffraction to determine the crystalline phases. Thereafter, functional characterization was performed through toxicity screening using zebrafish embryos and through antimicrobial activity assessment against gram-positive (Staphylococcus epidermidis) and gram-negative (Escherichia coli) bacteria. Rajath Bhasma was found to harbor alkene, hydroxyl, aldehyde, and amide functional groups originating from biological components on its surface. The main component of Rajath Bhasma is silver, with particle size of 170-210 nm, and existing in the form of spherical aggregates with pure crystalline silver structures. Furthermore, Rajath Bhasma did not exert toxic effects on zebrafish embryos at concentrations below 5 μg/ml and exhibited effective antimicrobial activity against both gram-positive and gram-negative bacteria. The present results indicate that Rajath Bhasma is a potentially effective antimicrobial agent without toxicity when used at concentrations below 5 μg/ml.
Collapse
Affiliation(s)
- Kalishwaralal Kalimuthu
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Min Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Woo Young Kwon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Hyun Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sehan Jeong
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Geun Jo
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung Joo Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-450-3742 Fax: +82-2-450-3742 E-mail: ;
| |
Collapse
|
13
|
Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, Seabra AB. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121974. [PMID: 32062374 DOI: 10.1016/j.jhazmat.2019.121974] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 05/02/2023]
Abstract
Silver nanoparticles (AgNPs) have attracted remarkable attention due to their powerful antimicrobial action as well as their particular physicochemical properties. This has led to their application in a wide variety of products with promising results. However, their interaction with the environment and toxicity in live terrestrial or aquatic organisms is still a matter of intense debate. More detailed knowledge is still required about the toxicity of AgNPs, their possible uptake mechanisms and their adverse effects in live organisms. Several studies have reported the interactions and potential negative effects of AgNPs in different organisms. In this review, we report and discuss the current state of the art and perspectives for the impact of AgNPs on different organisms present in the environment. Recent progress in interpreting uptake, translocation and accumulation mechanisms in different organisms and/or living animals are discussed, as well as the toxicity of AgNPs and possible tolerance mechanisms in live organisms to cope with their deleterious effects. Finally, we discuss the challenges of accurate physicochemical characterization of AgNPs and their ecotoxicity in environmentally realistic conditions such as soil and water media.
Collapse
Affiliation(s)
- G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile.
| | - O Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile; Chemical Engineering Department, Universidad de La Frontera, PO Box 54-D, Temuco, Chile
| | - N Durán
- NanoBioss Lab., Chemistry Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - M C Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile; Chemical Engineering Department, Universidad de La Frontera, PO Box 54-D, Temuco, Chile
| | - M Martínez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, 54-D, Temuco, Chile
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal d ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
14
|
Zorraquín-Peña I, Cueva C, Bartolomé B, Moreno-Arribas MV. Silver Nanoparticles against Foodborne Bacteria. Effects at Intestinal Level and Health Limitations. Microorganisms 2020; 8:E132. [PMID: 31963508 PMCID: PMC7022296 DOI: 10.3390/microorganisms8010132] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Foodborne diseases are one of the factors that endanger the health of consumers, especially in people at risk of exclusion and in developing countries. The continuing search for effective antimicrobials to be used in the food industry has resulted in the emergence of nanotechnology in this area. Silver nanoparticles (Ag-NPs) are the nanomaterial with the best antimicrobial activity and therefore, with great potential of application in food processing and packing. However, possible health effects must be properly addressed to ensure food safety. This review presents a detailed description on the main applications of Ag-NPs as antimicrobial agents for food control, as well as the current legislation concerning these materials. Current knowledge about the impact of the dietary exposure to Ag-NPs in human health with special emphasis on the changes that nanoparticles undergo after passing through the gastrointestinal tract and how they alter the oral and gut microbiota, is also summarized. It is concluded that given their potential and wide properties against foodborne pathogens, research in Ag-NPs is of great interest but is not exempt from difficulties that must be resolved in order to certify the safety of their use.
Collapse
Affiliation(s)
| | | | | | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (I.Z.-P.); (C.C.); (B.B.)
| |
Collapse
|
15
|
Li X, Li A, Zhang W, Liu X, Liang Y, Yao X, Song M. A pilot study of mothers and infants reveals fetal sex differences in the placental transfer efficiency of heavy metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109755. [PMID: 31605956 DOI: 10.1016/j.ecoenv.2019.109755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
It has been demonstrated that heavy metals cross the placental barrier and exert potentially harmful fetal effects. Although previous studies showed sex differences in response to similar intrauterine environments, little is known about fetal sex-related differences in placental transfer and accumulation of heavy metals. This study aimed to reveal the sex-specific risk of fetal exposure to heavy metals in pregnant women. We detected the exposure levels of eight heavy metals in 64 paired mother-infant maternal blood, cord blood and placental tissue samples. We found that the placental transfer efficiency (PTE) of titanium (Ti) and silver (Ag) was significantly higher in the group with male fetuses than that with female fetuses. The group with male fetuses had a larger placental:maternal blood ratio of Ag levels than the group with female fetuses, indicating fetal sex-related differences in placental transfer and accumulation of Ag. Prospective research should focus on the sex differences of adverse health effects induced by heavy metals and other pollutants.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, PR China
| | - Aijing Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, PR China
| | - Wenjuan Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, PR China
| | - Xiaowei Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, PR China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, PR China
| | - Xinglei Yao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
16
|
Bai C, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol 2019; 40:37-63. [DOI: 10.1002/jat.3910] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| |
Collapse
|