1
|
Zhang S, Li W, Qin Y, Chen Y, Liu Z, Li S, Tang L, Zheng H, Tang X. A novel flocculant based on "happy molecules" for the efficient removal of NSAIDs and NOM complexes: Role of parallel π-π stacking force. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137626. [PMID: 39978195 DOI: 10.1016/j.jhazmat.2025.137626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) pose potential risks to human health and ecosystems in the water cycle. Herein, Dopamine (DA), known as the "happy molecule" and "biological glue", it can interact with various drugs and " adhere " to them. In this study, DA was used as a monomer to modify chitosan (CS) under ultraviolet light through Michael addition and Schiff base reactions, resulting in a novel eco-friendly polymer (CS@PDA) with high flocculation activity for ibuprofen (IBU), representing NSAIDs. CS@PDA achieved the IBU flocculation removal rate of 91.6 %. The mechanism involves three primary forces: hydrophobic interactions, hydrogen bonding, π-π stacking among benzene rings, along with secondary forces like electrostatic neutralization. DFT calculations indicate that π-π interactions between partially parallel-stacked benzene rings are dominant in CS@PDA's flocculation of IBU. Notably, the removal efficiency of ibuprofen (IBU) in coflocculation with natural organic matter (NOM) reached 93.1 %, which was higher than that achieved by flocculating IBU alone (91.6 %). And the co-flocs exhibit greater resistance and re-flocculation capabilities under strong hydraulic stirring conditions. In this mixed mechanism, hydrogen bonding is enhanced while hydrophobic associations diminish. π-π stacking remains significant. The possible flocculation pathways among with three substances were further analyzed. This study employed a star rating methodology to quantify each force's intensity.
Collapse
Affiliation(s)
- Shixin Zhang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Wenli Li
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Yu Qin
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Yao Chen
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Zhen Liu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Sen Li
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Longqing Tang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Huaili Zheng
- Key Laboratory of the three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xiaomin Tang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China.
| |
Collapse
|
2
|
Qasim G, Harris L, Mangal V, Montesdeoca M, Todorova S, Driscoll C. Isolation and Identification of Mercury-Dissolved Organic Matter Complexes in Mercury-Humic Acid Suspensions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9986. [PMID: 39807069 PMCID: PMC11730372 DOI: 10.1002/rcm.9986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/23/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
RATIONALE The complexation with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of mercury (Hg) in aquatic environments. However, identifying these complexes poses a significant challenge because of their low concentrations and the presence of coexisting ions. METHODS In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid-phase extraction (SPE) from Hg-humic acid suspensions, and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). RESULTS Dissolved organic carbon (DOC) and total Hg analysis before and after SPE showed an increase in DOC:Hg ratio. The DOC:Hg ratio was lower in extracts from cartridges with silica structure bonded with hydrocarbon chains (C18) than priority pollutant (PPL) cartridges at circumneutral pH, indicating that C18 was more effective at extracting DOM complexed Hg. These results were confirmed with FTICR-MS analysis, where two Hg-DOM complexes were putatively identified from PPL extracts as opposed to eight from C18 (Winnow score > 75%). In addition, C8H13HgN2O2S, a molecular formula with a m/z ratio of 403.04, was identified across three separate extractions using a C18 cartridge, suggesting that the complexes were preserved during extraction and, presumably, electrospray ionization. CONCLUSIONS The results highlight the effectiveness of the methodology developed in this study-SPE coupled with FTICR-MS for isolating and identifying Hg-DOM complexes. This approach allows for the exploration of the elemental and structural composition of Hg-DOM complexes, which affects Hg speciation, bioavailability, and transformations in aquatic ecosystems. SYNOPSIS A methodology was developed to identify Hg-DOM complexes at low concentrations to gain insight into mercury bioavailability, transformations, and transport in the environment.
Collapse
Affiliation(s)
- Ghulam Hussain Qasim
- Department of Civil and Environmental EngineeringSyracuse UniversitySyracuseNew YorkUSA
| | - Lisa Harris
- Department of ChemistryBrock UniversitySt. CatharinesOntarioCanada
| | - Vaughn Mangal
- Department of ChemistryBrock UniversitySt. CatharinesOntarioCanada
| | - Mario Montesdeoca
- Department of Civil and Environmental EngineeringSyracuse UniversitySyracuseNew YorkUSA
| | - Svetoslava Todorova
- Department of Civil and Environmental EngineeringSyracuse UniversitySyracuseNew YorkUSA
| | - Charles Driscoll
- Department of Civil and Environmental EngineeringSyracuse UniversitySyracuseNew YorkUSA
| |
Collapse
|
3
|
Nunes MABS, Vilas Boas ACD, Fernandes R, Itri R, Marques LR, Ando RA, Petri DFS. Kapok fibers modified with cationic surfactants: Structural insights and efficient removal of Cr(VI) and bisphenol A. J Colloid Interface Sci 2025; 683:1119-1134. [PMID: 39724783 DOI: 10.1016/j.jcis.2024.12.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
In this study, kapok fiber (KF) a hollow and hydrophobic fiber, was modified with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium chloride (CPC), rendering adsorbed amount of ∼0.75 × 10-3 mol/g. Small-angle X-ray scattering (SAXS) measurements of dry KF/CTAB and KF/CPC evidenced a periodic distance of ∼2.6 nm and 2.8 nm, respectively, suggesting the presence of hemimicelles on the surface. KF/CTAB and KF/CPC were used as adsorbents in batch and column adsorption experiments to remove Cr(VI) ions, Bisphenol A (BPA), and their binary mixtures from synthetic solution and fresh water. The adsorbed amounts of Cr(VI) ions on KF/CTAB and KF/CPC, as determined from batch experiments, were 48.62 mg/g and 34.17 mg/g, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that Cr(VI) adsorption on KF/CTAB involved bromide displacement, while chloride remained on KF/CPC. Moreover, Cr(VI) ions were reduced to Cr(III) ions due to a possible oxidation of γ-sitosterol, one component of the KF wax. Density Functional Theory (DFT) calculations indicated that the interaction energy of CTAB- Cr(VI) pair (-167.8 kcal/mol) is more favorable than that of the CPC-Cr(VI) pair (-147.8 kcal/mol). The adsorbed amounts of BPA on KF/CTAB and KF/CPC were 41.66 mg/g and 22.62 mg/g, respectively. XPS analysis indicated the appearance of an OH peak at 533 eV after the adsorption of BPA, aligning with DFT calculations that predicted interactions between the counter-ions (Br or Cl) and BPA hydroxy groups. In column adsorption experiments, Cr(VI) ions were more effectively adsorbed onto KF/CTAB in the presence of BPA, demonstrating the potential of KF/CTAB for the simultaneous remediation of mixed contaminants in water treatment.
Collapse
Affiliation(s)
- Mário A B S Nunes
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Anna C D Vilas Boas
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| | - Rodrigo Fernandes
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil.
| | - Leandro R Marques
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| | - Rômulo A Ando
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| | - Denise F S Petri
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
4
|
Zhang H, Zhao Q, Zhong K, Bai R, Dong J, Ma J, Zhang J, Strathmann TJ. Overlooked interaction between redox-mediator and bisphenol-A in permanganate oxidation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100421. [PMID: 38774192 PMCID: PMC11106538 DOI: 10.1016/j.ese.2024.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 05/24/2024]
Abstract
Research efforts on permanganate (Mn(VII)) combined with redox-mediator (RM), have received increasing attention due to their significant performance for bisphenol-A (BPA) removal. However, the mechanisms underpinning BPA degradation remain underexplored. Here we show the overlooked interactions between RM and BPA during permanganate oxidation by introducing an RM-N-hydroxyphthalimide (NHPI). We discovered that the concurrent generation of MnO2 and phthalimide-N-oxyl (PINO) radical significantly enhances BPA oxidation within the pH range of 5.0-6.0. The detection of radical cross-coupling products between PINO radicals and BPA or its derivatives corroborates the pivotal role of radical cross-coupling in BPA oxidation. Intriguingly, we observed the formation of an NHPI-BPA complex, which undergoes preferential oxidation by Mn(VII), marked by the emergence of an electron-rich domain in NHPI. These findings unveil the underlying mechanisms in the Mn(VII)/RM system and bridge the knowledge gap concerning BPA transformation via complexation. This research paves the way for further exploration into optimizing complexation sites and RM dosage, significantly enhancing the system's efficiency in water treatment applications.
Collapse
Affiliation(s)
- Honglong Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China
| | - Qiaoqiao Zhao
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, PR China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, PR China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, PR China
| | - Jiaojiao Dong
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Timothy J. Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, United States
| |
Collapse
|
5
|
Wang MM, Liu PX, Ye F, Liu LJ, Wen JT, Ni BJ, Luo HW, Wang WK, Xu J. 2D Ni-Co bimetallic oxide nanosheets activate persulfate for targeted conversion of bisphenol A in wastewater into polymers. ENVIRONMENT INTERNATIONAL 2024; 184:108466. [PMID: 38310816 DOI: 10.1016/j.envint.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
The selective removal of targeted pollutants from complex wastewater is challenging. Herein, a novel persulfate (PS)-based advanced oxidation system equipped with a series of two-dimensional (2D) bimetallic oxide nanosheets (NSs) catalysts is developed to selectively degrade bisphenol A (BPA) within mixed pollutants via initiating nonradical-induced polymerization. Results indicate that the Ni0.60Co0.40Ox NSs demonstrate the highest catalytic efficiency among all Ni-Co NSs catalysts. Specifically, BPA degradation rate is 47.34, 27.26, and 9.72 times higher than that of 4-chlorophenol, phenol, and 2,4-dichlorophenol in the mixed solution, respectively. The lower oxidative potential of BPA in relation to the other pollutants renders it the primary target for oxidation within the PDS activation system. PDS molecules combine on the surface of Ni0.60Co0.40Ox NSs to form the surface-activated complex, triggering the generation of BPA monomer radicals through H-abstraction or electron transfer. These radicals subsequently polymerize on the surface of the catalyst through coupling reactions. Importantly, this polymerization process can occur under typical aquatic environmental conditions and demonstrates resistance to background matrices like Cl- and humic acid due to its inherent nonradical attributes. This study offers valuable insights into the targeted conversion of organic pollutants in wastewater into value-added polymers, contributing to carbon recycle and circular economy.
Collapse
Affiliation(s)
- Mei-Mei Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peng-Xi Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Feng Ye
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Li-Juan Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jia-Tai Wen
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Hong-Wei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei-Kang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Juan Xu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Wang L, Feng J, Chen Q, Jiang H, Zhao J, Chang Z, He X, Li F, Pan B. Inhibition mechanisms of biochar-derived dissolved organic matter to triclosan photodegradation: A remarkable role of aliphatics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123056. [PMID: 38040184 DOI: 10.1016/j.envpol.2023.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Endocrine disrupting chemicals like triclosan (TCS) have been thought to be an emergent environmental pollutant. The ubiquitous dissolved organic matter (DOM) is able to interrelate with TCS and hamper its phototransformation. However, how the components in DOM can inhibit the photodegradation of DOM/TCS complex is largely unknown. Herein, we discovered that TCS photodegradation with biochar-derived DOM (BDOM) was interfered by both binding affinity and reactive oxygen species (ROS) productivity. BDOM can not only stimulate TCS photodegradation by producing ROS, but also inhibit the removal of TCS through the interactions between BDOMs and TCS. The quantification of BDOM's impact on TCS photodegradation revealed that BDOM hampered TCS removal with the proportion of -7.95 to -11.24% at pH 8.5, but strengthened it to 13.20% at pH 7.0. Binding process was more easily to inhibit TCS photodegradation in molecular form, while anionic TCS photodegradation was dominated by ROS productivity. Different inhibition mechanisms were involved in TCS photodegradation depending on the components of BDOMs. The hydroxyls and aromatic carbonyls might have hindered the attack of ROS on the phenolic hydroxyl of TCS via hydrogen bond interaction or π-π electron donor-acceptor interaction. Through hydrophobic interaction, the mobile aliphatics could greatly shield TCS to prevent ROS attack by wrapping or twining TCS, playing a significant role in inhibiting TCS removal. Results from this present study can afford a new viewpoint in elucidating the function of BDOMs in the phototransformation of organics and decrease the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Lin Wang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China; Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jing Feng
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Quan Chen
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Hao Jiang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Jing Zhao
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zhaofeng Chang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Xinhua He
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Fangfang Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China.
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| |
Collapse
|
7
|
Kang J, Choi J, Lee D, Son Y. UV/persulfate processes for the removal of total organic carbon from coagulation-treated industrial wastewaters. CHEMOSPHERE 2024; 346:140609. [PMID: 37926165 DOI: 10.1016/j.chemosphere.2023.140609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Sulfate radical-based oxidation processes were investigated to understand the relationship between persulfate (PS) consumption and total organic carbon (TOC) removal from industrial wastewater under various PS concentrations. First, the degradation and mineralization of Bisphenol A (BPA) (initial concentration: 11 mg/L) were investigated in ultraviolet (UV)/PS systems. Complete degradation was achieved within 30 min of UV irradiation, and 41%-72% TOC removal was achieved at PS concentrations of 200 and 400 mg/L. The consumed concentration of S2O82- and generated concentration of SO42- increased gradually to similar levels. The ratio of the PS consumption to TOC removal based on the mass concentration (mg/L) was 14.5 and 23.2 at 180 min for 200 and 400 mg/L of S2O82-, respectively. Three types of coagulation-treated industrial wastewater from metal-processing, food-processing, and adhesive-producing plants were obtained, and TOC removal was analyzed using the same UV/PS systems (initial TOC concentration: 100 mg/L). The TOC removal rates ranged from 16.9% to 94.4% after 180 min of UV irradiation at PS concentrations of 1,000, 2,000, 4,000, and 8,000 mg S2O82-/L. Despite the higher TOC removal at higher PS concentrations, the PS activation efficiency decreased significantly as the PS concentration increased. Only approximately 30%-40% activation efficiency was achieved at a PS concentration of 8,000 mg/L. In this study, the ratio of PS consumption to TOC removal ranged from 20.6 to 43.9.
Collapse
Affiliation(s)
- Jumin Kang
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Jongbok Choi
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Dukyoung Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea.
| |
Collapse
|
8
|
Ke W, Liu Z, Zhu F, Xie Y, Hartley W, Li X, Wu H, Xue S. Remediation potential of magnetic biochar in lead smelting sites: Insight from the complexation of dissolved organic matter with potentially toxic elements. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118556. [PMID: 37453302 DOI: 10.1016/j.jenvman.2023.118556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Magnetic biochar has been widely used in potentially toxic elements (PTEs) polluted soils due to its magnetic separation capability and synchronous immobilization for multiple metals. However, the contribution of magnetic biochar to soil dissolve organic material (SDOM) and its binding behavior with PTEs needs to be further clarified prior to its remediation application on lead smelting sites. In this study, multi-spectral techniques of excitation-emission matrix (EEM) fluorescence spectroscopy and two-dimensional FTIR correlation spectroscopy (2D-FTIR-COS) were used to explore the evolution characteristics of SDOM in the lead smelting site under the remediation of magnetic biochar, and to further analyze its affinity and binding behavior with Pb and As. Results showed that magnetic biochar significantly increased SDOM content and decreased Pb and As available content. EEM and parallel factor analysis (EEM-PARAFAC) and Self-Organizing map analysis showed that humus-like and aromatic DOM increased and microbial-derived SDOM decreased after magnetic biochar cultivation. Furthermore, 2D-FTIR-COS correlation spectroscopy analysis indicated that BDOM had a stronger binding affinity to Pb, while SDOM has a stronger binding affinity to As. The binding sequences of different DOMs to PTEs varied greatly, the carboxyl and amide groups of SDOM and BDOM showed a remarkable and rapid response. Our results enhance the insights of magnetic biochar on soil function and PTEs remediation potential, providing novel information for its environmental remediation application.
Collapse
Affiliation(s)
- Wenshun Ke
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Zheng Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; BGI Engineering Consultants Ltd., Beijing 100038, PR China.
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China.
| | - Yi Xie
- New World Environment Protection Group of Hunan, Changsha 410083, PR China.
| | - William Hartley
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Xue Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Huan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China.
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China.
| |
Collapse
|
9
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Bisphenols-A Threat to the Natural Environment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6500. [PMID: 37834637 PMCID: PMC10573430 DOI: 10.3390/ma16196500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Negative public sentiment built up around bisphenol A (BPA) follows growing awareness of the frequency of this chemical compound in the environment. The increase in air, water, and soil contamination by BPA has also generated the need to replace it with less toxic analogs, such as Bisphenol F (BPF) and Bisphenol S (BPS). However, due to the structural similarity of BPF and BPS to BPA, questions arise about the safety of their usage. The toxicity of BPA, BPF, and BPS towards humans and animals has been fairly well understood. The biodegradability potential of microorganisms towards each of these bisphenols is also widely recognized. However, the scale of their inhibitory pressure on soil microbiomes and soil enzyme activity has not been estimated. These parameters are extremely important in determining soil health, which in turn also influences plant growth and development. Therefore, in this manuscript, knowledge has been expanded and systematized regarding the differences in toxicity between BPA and its two analogs. In the context of the synthetic characterization of the effects of bisphenol permeation into the environment, the toxic impact of BPA, BPF, and BPS on the microbiological and biochemical parameters of soils was traced. The response of cultivated plants to their influence was also analyzed.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Agata Borowik
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
10
|
Rajkumar DS, Murugan G, Padmanaban R. Unraveling the interaction of bisphenol A with collagen and its effect on conformational and thermal stability. Biophys Chem 2023; 298:107026. [PMID: 37182236 DOI: 10.1016/j.bpc.2023.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Evidence suggests the association of bisphenol A (BPA) with increased collagen (COL) expression in the development of fibrosis. Ultraviolet and fluorescence spectra on collagen-BPA interaction showed that 100 ng/ml of BPA initiated loosening of protein backbone through unfolding with exposure of tyrosine residues resulting in an intermediate "Molten Globule" state, which later aggregated with 1 μg/ml of BPA indicated with an apparent red-shift. Conformational changes with CD and ATR-FTIR showed disappearance of negative band with broadening and shifting of peptide carbonyl groups. Light scattering findings with TEM images presented initial dissolution followed by unordered thick fibrillar bundles with 30 μg/ml BPA. The complex was pH sensitive, with calorimetric thermogram revealing increased thermal stability requiring 83°C to denature. Hydrogen bonds of 2.8 Å with hydrophobic interactions of BPA in all grooves of collagen molecule with same pattern and binding energy (-4.1 to -3.9 kcal/mol) confirmed the intensity of aggregate formation via in-silico docking.
Collapse
Affiliation(s)
- Divya Sangeetha Rajkumar
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Gopinath Murugan
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India.
| |
Collapse
|
11
|
Wang L, Li J, Zhao J, Li H, Feng J, Zhang P, Pan B. Photodegradation of clindamycin by the dissolved black carbon is simultaneously regulated by ROS generation and the binding effect. WATER RESEARCH 2023; 233:119784. [PMID: 36863283 DOI: 10.1016/j.watres.2023.119784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/26/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As an essential source of the natural dissolved organic matter (DOM), dissolved black carbon (DBC) plays a vital role in the photodegradation of organics; however, there is rare information about the DBC-induced photodegradation mechanism of clindamycin (CLM), one of the widely used antibiotics. Herein, we discovered DBC-generated reactive oxygen species (ROS) stimulated CLM photodegradation. Hydroxy radical (•OH) could directly attack CLM by OH-addition reaction, the singlet oxygen (1O2) and superoxide (O2•-) contributed to the CLM degradation by transforming to •OH. In addition, the binding between CLM and DBCs inhibited the photodegradation of CLM by decreasing the concentration of freely dissolved CLM. Binding process inhibited CLM photodegradation by 0.25-1.98% at pH 7.0 and 6.1-41.77% at pH 8.5. These findings suggest that the photodegradation of CLM by DBC is simultaneously regulated by the ROS production and binding effect between CLM and DBC, benefiting the exact evaluation of the environmental impact of DBCs.
Collapse
Affiliation(s)
- Lin Wang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Jing Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Jing Zhao
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Jing Feng
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming,650500, China.
| | - Peng Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China.
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| |
Collapse
|
12
|
Zhang P, Zhang PJ, Feng S, Li H, Li J, Du W, Duan W, Li X, Zhang C, Li H, Song S, Pan B. The mechanism of p-nitrophenol degradation by dissolved organic matter derived from biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161693. [PMID: 36681340 DOI: 10.1016/j.scitotenv.2023.161693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Recently, p-nitrophenol (PNP), a common organic environmental pollutant, has been reported to be degraded by biochar. Although the degradation mechanism of PNP by biochar has been explored, the role of biochar-derived dissolved organic matter (BDOM) in PNP degradation remains unclear. Two BDOM samples were prepared in this study, and their PNP degradation performance was analyzed. BDOM5 (prepared at 500 °C) exhibited higher PNP degradation ratio than BDOM7 (prepared at 700 °C). The extent of PNP degradation per unit of BDOM5 and BDOM7 reached 9.54 and 4.19 mg/mg, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis showed that both oxidative and reductive processes contributed to the PNP degradation by BDOM. Compared with BDOM7, the higher PNP removal of BDOM5 was due to the higher electron exchange capacity. Furthermore, hydroxyl radicals (OH) played a critical role in the oxidative degradation process of PNP by BDOM. This study sheds light on the phenomenon of PNP degradation by BDOM and these results may be useful for accurately assessing the environmental impact of biochar application.
Collapse
Affiliation(s)
- Peng Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Peng Jim Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Shihui Feng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Jing Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Wenyan Duan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Xiaohan Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Chan Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hanxue Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Shuangjie Song
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| |
Collapse
|
13
|
Yin L, Zhu J, Kong D, Xu Y, Ge S, Ni L, Li S. Insights into the influence of Fe(III) on the interaction between roxarsone and humic acid using multi-spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122213. [PMID: 36527969 DOI: 10.1016/j.saa.2022.122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The influence of Fe(III) on the interaction between roxarsone (ROX) and humic acid (HA) was investigated by multi-spectroscopic techniques. The fluorescence quenching experiment indicated that the fluorescence intensity of HA-ROX was quenched by Fe(III) through a static quenching process. Synchronous fluorescence spectra provided further information concerning the competitive combination between ROX and Fe(III) for HA. The results of the dialysis equilibrium experiment confirmed the existence of Fe(III) (0.05-0.1 mmol/L) promotes the combination of HA and ROX. Binding mechanisms were further characterized by FTIR spectroscopy, and the carboxyl functional group is involved in the binding process of HA/Fe/ROX. In addition, acidic and neutral conditions are more conducive to the combination of ROX and HA/Fe than alkaline conditions. The above discussion is of great significance in understanding the environmental fate of ROX under the coexistence of Fe(III) and HA.
Collapse
Affiliation(s)
- Li Yin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jiangpeng Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Desheng Kong
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ying Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Siyi Ge
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, School of Environment, Hohai University, Nanjing 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
14
|
Fu L, Bin L, Luo Z, Huang Z, Li P, Huang S, Nyobe D, Fu F, Tang B. Spectral change of dissolved organic matter after extracted by solid-phase extraction and its feasibility in predicting the acute toxicity of polar organic pollutants in textile wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130344. [PMID: 36444059 DOI: 10.1016/j.jhazmat.2022.130344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Spectroscopic parameters can be used as proxies to effectively trace the occurrence of organic trace contaminants, but their suitability for predicting the toxicity of discharged industrial wastewater with similar spectra is still unknown. In this study, the organic contaminants in treated textile wastewater were subdivided and extracted by four commonly-used solid-phase extraction (SPE) cartridges, and the resulting spectral change and toxicity of textile effluent were analyzed and compared. After SPE, the spectra of the percolates from the four cartridges showed obvious differences with respect to the substances causing the spectral changes and being more readily adsorbed by the WAX cartridges. Non-target screening results showed source differences in organic micropollutants, which were one of the main contributors leading to their spectral properties and spectral variations after SPE in the effluents. Two fluorescence parameters (C1 and humic-like) identified by the excitation emission matrix-parallel factor analysis (EEM-PARAFAC) were closely correlated to the toxicity endpoints for Scenedesmus obliquus (inhibition ratios of cell growth and Chlorophyll-a synthesis), which can be applied to quantitatively predict the change of toxicity effect caused by polar organic pollutants. The results would provide novel insights into the spectral feature analysis and toxicity prediction of the residual DOM in industrial wastewater.
Collapse
Affiliation(s)
- Lingfang Fu
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China; National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environmental of the People's Republic of China, Guangzhou 510535, China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Zhaobo Luo
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Zehong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Dieudonne Nyobe
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China.
| |
Collapse
|
15
|
Čokeša Đ, Radmanović S, Potkonjak N, Marković M, Šerbula S. Soil humic acid and arsenite binding by isothermal titration calorimetry and Dynamic Light Scattering: Thermodynamics and aggregation. CHEMOSPHERE 2023; 315:137687. [PMID: 36587921 DOI: 10.1016/j.chemosphere.2022.137687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The arsenite-humic acid binding process was investigated using Isothermal Titration Calorimetry (ITC), Dynamic Light Scattering and Laser Doppler Electrophoresis techniques. The ITC data were successfully (R2 = 0.996-0.936) interpreted by applying the MNIS model, enabling thermodynamic parameters to be determined. The MNIS model was adjusted to the arsenite-HA binding process assuming that hydrogen bonding is the dominant type of interaction in the system. Negative enthalpy change values indicated the arsenite-HAs binding as an exothermic process. Negative ΔG values (-(26.83-27.00) kJ mol-1) pointed out to spontaneous binding reaction, leading to the formation of the arsenite-HA complexes. The binding constant values ((7.57-5.02) 105 M-1) clearly demonstrate pronounced binding affinity. As ΔS values are obviously positive but close to zero, and ΔH>ΔS, the reaction can be considered enthalpy driven. Reaction heats and ΔH values (-(18.96-15.64) kJ mol-1) confirmed hydrogen bonds as the most ascendant interaction type in the arsenite-HA complex. Negative zeta potential values (-45 to -20 mV) had shown that arsenite-HA aggregates remained negatively charged in the whole molar charge ratio range. The HAs' aggregate size change is evident but not particularly pronounced (Zav = 50-180 nm). It can be speculated that aggregation during the titration process is not expressive due to repulsive forces between negatively charged arsenite-HA particles. Thermodynamic and reaction parameters clearly indicated that arsenite-HA complexes are formed at common soil pH values, confirming the possible influence of humic acids on increased As mobility and its reduced bioavailability.
Collapse
Affiliation(s)
- Đuro Čokeša
- Vinča Institute of Nuclear Sciences - University of Belgrade - National Institute of the Republic of Serbia, P.O. Box 522, 11001 Belgrade, Serbia
| | - Svjetlana Radmanović
- University of Belgrade - Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia
| | - Nebojša Potkonjak
- Vinča Institute of Nuclear Sciences - University of Belgrade - National Institute of the Republic of Serbia, P.O. Box 522, 11001 Belgrade, Serbia
| | - Mirjana Marković
- Vinča Institute of Nuclear Sciences - University of Belgrade - National Institute of the Republic of Serbia, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Snežana Šerbula
- University of Belgrade, Technical Faculty in Bor, V.J. 12, 19210 Bor, Serbia
| |
Collapse
|
16
|
Ye Y, Cai X, Wang Z, Xie X. Characterization of dissolved black carbon and its binding behaviors to ceftazidime and diclofenac pharmaceuticals: Employing the molecular weight fractionation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120449. [PMID: 36265731 DOI: 10.1016/j.envpol.2022.120449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As the ubiquitous component of the aquatic environment, dissolved organic matter (DOM) readily bind with residual pharmaceutical contaminants (PCs) and influence their environmental behaviors. However, the binding mechanisms between dissolved black carbon (DBC), a vital part of the natural DOM pool, and PCs were poorly researched. In this study, the bulk DBC was divided into four fractions in molecular weight (MW) via an ultrafiltration system, and the properties of DBC and their binding interaction with two kinds of typical PCs (ceftazidime (CAZ) and diclofenac (DCF)) were explored concretely. The results showed that low MW component was the main contributor to bulk DBC, and the aromaticity increased with the increase of MW. The categories of chemical structures and fluorescent substances in different MW DBC were similar. Multispectral techniques showed that the oxygen-enriched compounds in DBC had the higher affinity to CAZ/DCF. The -NH-, -COOH, -NH2 groups in CAZ molecules appeared to form the hydrogen bond with DBC. Fluorescence quenching experiments were analyzed, and the binding mechanisms were specifically expounded from the thermodynamic perspective. The fluorophore of fulvic acid-like compounds (FA) were quenched by both static and dynamic quenching mechanisms, while only static quenching occurred for humic acid-like compounds (HA). For bulk DBC, the hydrogen bond and van der Waals force were the major forces in the HA-CAZ system, while the hydrophobic force made the primary contribution to the HA-DCF system, which might be ascribed to the higher hydrophobic nature of DCF. Notably, with the increase of HA MW, the main binding mode of HA-CAZ/DCF changed from hydrophobic force to hydrogen bond and van der Waals force gradually, which also directly proved that various noncovalent interactions co-driven the binding processes. Our findings are beneficial to better assess the fate of DBC and PCs and the corresponding complexes in the aquatic environment.
Collapse
Affiliation(s)
- Yuping Ye
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China
| | - Xuewei Cai
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China.
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
17
|
Park TJ, Shin HS, Hur J. Prediction of polarity-dependent environmental behaviors of humic substances (HS) using a HS hydrophobicity index based on hydrophilic interaction chromatography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156993. [PMID: 35772533 DOI: 10.1016/j.scitotenv.2022.156993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
A variety of analytical methods have been applied to describe the properties of aquatic humic substances (HS). However, there are only a few methods available to probe HS hydrophobicity because of the heterogeneous character of HS. In this study, hydrophilic interaction chromatography (HILIC) equipped with a UV detector was employed to describe the heterogeneous distribution of HS with respect to its hydrophobicity and to suggest a representative HS hydrophobicity index. To this end, various mobile phases were explored to achieve the optimal separation capability of HILIC. The highest resolution was obtained with a mobile phase comprising acetonitrile and water at a ratio of 70:30 (v:v). A calibration curve was successfully constructed using eight different HS precursor compounds, which allowed for the successful conversion of the retention time (RT) into the octanol-water partition coefficient (Kow) (log Kow = -2.83 × (RT) + 17.44, R2 = 0.950). Several possible HS hydrophobicity indices were derived from the HILIC chromatogram. Among those, the weight-average log KOW value exhibited the strongest negative correlation with the well-known polarity index, (O + N)/C ratios, of seven reference HS samples. This new HILIC-based index (i.e., average log KOW) also presented a good relationship with the HS binding coefficients with pyrene as well as the extent of HS adsorption onto kaolinite at a given solution chemistry (i.e., at a high ionic strength and a neutral pH), both of which are known to be largely governed by the hydrophobic nature of HS. This study demonstrated that the average KOW value based on HILIC is an intuitive and robust HS hydrophobicity index to fully represent the heterogeneous distribution of hydrophobicity within a bulk HS and could be applied to predict many environmental behaviors related to HS hydrophobicity or HS polarity.
Collapse
Affiliation(s)
- Tae Jun Park
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Hyun-Sang Shin
- Department of Environmental Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| |
Collapse
|
18
|
Chen P, Shi M, Liu X, Wang X, Fang M, Guo Z, Wu X, Wang Y. Comparison of the binding interactions of 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicides with humic acid: Insights from multispectroscopic techniques, DFT and 2D-COS-FTIR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113699. [PMID: 35643030 DOI: 10.1016/j.ecoenv.2022.113699] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor is one of the important herbicides to solve the problem of weed control. With the widespread and continued use of HPPD inhibitor (HPPDi) herbicides, it may inevitably put pressure on the environment. Humic acid (HA) can effectively interact with pesticides through sorption or covalent bond formation and promote the degradation of pesticides, which can reduce the risk of pesticides in the environment. In the present study, the interactions of four HPPDi herbicides (sulcotrione, tembotrione, topramezone and mesotrione) with HA were reported and comparative assessment of the binding using multispectral technology, density functional theory (DFT) calculation and two-dimensional correlation spectroscopy (2D-COS). Time-resolved measurements and the Stern-Volmer constant at different temperature verified that HPPDi can bind with HA through the static quenching mechanism. From the thermodynamic parameters, the interaction force between HA and sulcotrione, tembotrione, topramezone and mesotrione was provided by electrostatic force. DFT, binding constant and three-dimensional (3D) fluorescence peak variation all indicated that the order of the binding ability of the four HPPDi and HA was mesotrione > tembotrione > sulcotrione > topramezone. According to dynamic light scattering (DLS), pH 7 is most conducive to the formation of HA-HPPDi complexes. Fourier transform infrared spectroscopy (FTIR) and 2D-COS showed that HA combined with HPPDi through aromatic C-H, CO and C-X, and the first binding group to HA was almost all CO. Sulcotrione, tembotrione, topramezone and mesotrione quench the endogenous fluorescence of HA by a static quenching mechanism and bind to HA through electrostatic interaction to form a complex. These results provide important insights into the combination of environmental pollutants with HA.
Collapse
Affiliation(s)
- Panpan Chen
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mengchen Shi
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xina Liu
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Wang
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mengling Fang
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zhuorui Guo
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yi Wang
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Pan D, Wu X, Chen P, Zhao Z, Fan F, Wang Y, Zhu M, Xue J, Wang Y. New insights into the interactions between humic acid and three neonicotinoid pesticides, with multiple spectroscopy technologies, two-dimensional correlation spectroscopy analysis and density functional theory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149237. [PMID: 34375255 DOI: 10.1016/j.scitotenv.2021.149237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of neonicotinoid pesticides in agricultural production has caused pressure on the environment. In the present work, the interactions between humic acid (HA) and three neonicotinoid insecticides, dinotefuran, clothianidin and nitenpyram, were investigated by using multiple spectroscopy techniques combined with two-dimensional correlation spectroscopy analysis and density functional theory (DFT). Dinotefuran, clothianidin and nitenpyram could quench the endogenous fluorescence of HA through a static quenching process dominated by hydrogen bonds and van der Waals forces. According to the revised Stern-Volmer equation and DFT calculation, the binding abilities of the three pesticides with HA were ranked as dinotefuran < clothianidin < nitenpyram. The results of dynamic light scattering showed that neutral conditions were more conducive to the combination of HA and dinotefuran, clothianidin and nitenpyram. Through Fourier transform infrared spectroscopy (FTIR) combined with two-dimensional correlation analysis (2D-COS), the functional group with the strongest binding ability in the HA-dinotefuran, HA-clothianidin and HA-nitenpyram system was CH, CO and CO, respectively. The work will help to further understand the behavior of neonicotinoid pesticides in the environment.
Collapse
Affiliation(s)
- Dandan Pan
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoqin Wu
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Panpan Chen
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zongyuan Zhao
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Fugang Fan
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Youxue Wang
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Meiqing Zhu
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jiaying Xue
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yi Wang
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
20
|
Mo L, Wang Q, Bi E. Effects of endogenous and exogenous dissolved organic matter on sorption behaviors of bisphenol A onto soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112312. [PMID: 33711663 DOI: 10.1016/j.jenvman.2021.112312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The transport of organic contaminants in groundwater might be greatly affected by coexistence of dissolved organic matter (DOM) from different sources. In this study, the effects of endogenous and exogenous DOMs (referred to as DOMen and DOMex, respectively) on sorption behavior of bisphenol A (BPA) onto two reference soils were investigated by batch experiments and microscopic characterization. The results showed that BPA sorption onto soils was dominated by soil organic matter content and affected by DOM properties. The effect of DOMen on BPA sorption was also related to the inorganic components of the two soils. The decrease of organic matter content reduced the sorption capacity of fluvo-aquic soil. However, because the content of available inorganic components in black soil was high, after removing DOMen, more inorganic sites were exposed to increase the sorption capacity. In addition, DOMen could form complexes with BPA in solution, thus the removal of DOMen promoted BPA sorption onto black soil. Under the experimental conditions, contribution of DOMex to the total sorption of BPA onto both soils was not more than 30%. Results of dialysis experiments and soil sorption experiments indicated that effects of coexisting DOMex on BPA sorption was related to the affinity of DOMex to soils and complexation of BPA and DOMex. Since the affinity of DOMex to fluvo-aquic soil was relatively low, the complex of BPA and DOMex in solution was the main inhibition mechanism for BPA sorption. For black soil, higher complexation proportion of BPA with DOMex adsorbed onto soil which promoted BPA sorption onto soil. The findings are of significance for understanding the co-migration of DOM with BPA through soils.
Collapse
Affiliation(s)
- Limei Mo
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, And MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Qiaohui Wang
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, And MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Erping Bi
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, And MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
21
|
Duan D, Tong J, Xu Q, Dai L, Ye J, Wu H, Xu C, Shi J. Regulation mechanisms of humic acid on Pb stress in tea plant (Camellia sinensis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115546. [PMID: 32892024 DOI: 10.1016/j.envpol.2020.115546] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Though the interaction between humic acid (HA) and heavy metals has been widely reported, the effects of HA on the toxicity of heavy metals to plants are still in debate. In this study, the regulation mechanisms of HA on Pb stress in tea plant (Camellia sinensis L.) was investigated through hydroponic experiments, and the experimental results were explained by using transmission electron microscope (TEM), scanning transmission X-ray microscopes (STXM) and isobaric tags for relative and absolute quantitation (iTRAQ) differential proteomics. Significant alleviation of Pb stress was found with HA coexistence. TEM results showed that HA greatly mitigated the damage of cells caused by Pb stress. Compared with sole Pb treatment, the addition of HA increased the contents of pectin and pectic acid in the cell wall by 10.5% and 30.5%, while arabinose (Ara) and galactose (Gal) decreased by 20.5% and 15.9%, respectively, which were beneficial for increasing Pb adsorption capacity of the cell wall and promoting cell elongation. Moreover, iTRAQ differential proteomics analysis proved that HA strengthened the antioxidant system, promoted the synthesis of cell wall, and stabilized protein and sulfur-containing substance metabolism in molecular level. Notably, the concentration of calcium (Ca) in the cell wall of HA coexistence treatment was 47.4% higher than Pb treatment. STXM results also indicated that the distribution of Ca in the cell wall was restored with the presence of HA. This might promote the formation of the egg-box model, thus alleviating Pb stress in cells. Our results reveal the regulation mechanisms of HA on Pb detoxification in plants and provide useful information for improving the safety of agricultural products.
Collapse
Affiliation(s)
- Dechao Duan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Towards Environment Co., Ltd, Hangzhou, 310012, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Luying Dai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; CETHIK Research Institute, Hangzhou, 310012, China
| | - Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Towards Environment Co., Ltd, Hangzhou, 310012, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Occurrence, environmental implications and risk assessment of Bisphenol A in association with colloidal particles in an urban tropical river in Malaysia. Sci Rep 2020; 10:20360. [PMID: 33230250 PMCID: PMC7683680 DOI: 10.1038/s41598-020-77454-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/03/2020] [Indexed: 01/20/2023] Open
Abstract
Phase distribution of emerging organic contaminants is highly influential in their presence, fate and transport in surface water. Therefore, it is crucial to determine their state, partitioning behaviour and tendencies in water environments. In this study, Bisphenol A was investigated in both colloidal and soluble phases in water. BPA concentrations ranged between 1.13 and 5.52 ng L−1 in the soluble phase and n.d-2.06 ng L−1 in the colloidal phase, respectively. BPA was dominant in the soluble phase, however, the colloidal contribution ranged between 0 and 24% which implied that colloids can play a significant role in controlling BPA’s transportation in water. Urban and industrial areas were the main sources of BPA while forest areas displayed lower levels outside the populated domains. pH levels were between 6.3 and 7.4 which might have affected BPA’s solubility in water to some extent. The particle size distribution showed that the majority of the particles in river samples were smaller than 1.8 µm in diameter with a small presence of nanoparticles. Zeta potential varied between − 25 and − 18 mV, and these negative values suggested instability of particles. Furthermore, BPA was positively correlated with BOD, COD and NH3–N which might indicate that these organic compounds were released concurrently with BPA. RQ assessment showed low levels of risk towards algae and fish in the study area.
Collapse
|
23
|
Liu H, Pu Y, Tong T, Zhu X, Sun B, Zhang X. Photochemical Generation of Methyl Chloride from Humic Aicd: Impacts of Precursor Concentration, Solution pH, Solution Salinity and Ferric Ion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020503. [PMID: 31941122 PMCID: PMC7013589 DOI: 10.3390/ijerph17020503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 12/02/2022]
Abstract
Methyl chloride (CH3Cl) is presently understood to arise from biotic and abiotic processes in marine systems. However, the production of CH3Cl via photochemical processes has not been well studied. Here, we reported the production of CH3Cl from humic acid (HA) in sunlit saline water and the effects of the concentration of HA, chloride ions, ferric ions and pH were investigated. HA in aqueous chloride solutions or natural seawater were irradiated under an artificial light, and the amounts of CH3Cl were determined using a purge-and-trap and gas chromatography-mass spectrometry. CH3Cl was generated upon irradiation and its amount increased with increasing irradiation time and the light intensity. The formation of CH3Cl increased with an increase of HA concentration ranging from 2 mg L−1 to 20 mg L−1 and chloride ion concentration ranging from 0.02 mol L−1 to 0.5 mol L−1. The photochemical production of CH3Cl was pH-dependent, with the highest amount of CH3Cl generating near neutral conditions. Additionally, the generation of CH3Cl was inhibited by ferric ions. Finally, natural coastal seawater was irradiated under artificial light and the concentration of CH3Cl rose significantly. Our results suggest that the photochemical process of HA may be a source of CH3Cl in the marine environment.
Collapse
|