1
|
Pan ZN, Zhuang LL, Zhao HS, Yin SY, Chu M, Liu XY, Bao HC. Propylparaben exposure impairs G2/M and metaphase-anaphase transition during mouse oocyte maturation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116798. [PMID: 39083874 DOI: 10.1016/j.ecoenv.2024.116798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Propylparaben (PrPB) is a known endocrine disrupting chemicals that is widely applied as preservative in pharmaceuticals, food and cosmetics. PrPB has been detected in human urine samples and human serum and has been proven to cause functional decline in reproduction. However, the direct effects of PrPB on mammalian oocyte are still unknown. Here, we demonstrationed that exposure to PrPB disturbed mouse oocyte maturation in vitro, causing meiotic resumption arrest and first polar body extrusion failure. Our results indicated that 600 μM PrPB reduced the rate of oocyte germinal vesicle breakdown (GVBD). Further research revealed that PrPB caused mitochondrial dysfunction and oxidative stress, which led to oocyte DNA damage. This damage further disturbed the activity of the maturation promoting factor (MPF) complex Cyclin B1/ Cyclin-dependent kinase 1 (CDK1) and induced G2/M arrest. Subsequent experiments revealed that PrPB exposure can lead to spindle morphology disorder and chromosome misalignment due to unstable microtubules. In addition, PrPB adversely affected the attachment between microtubules and kinetochore, resulting in persistent activation of BUB3 amd BubR1, which are two spindle-assembly checkpoint (SAC) protein. Taken together, our studies indicated that PrPB damaged mouse oocyte maturation via disrupting MPF related G2/M transition and SAC depended metaphase-anaphase transition.
Collapse
Affiliation(s)
- Zhen-Nan Pan
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Li-Li Zhuang
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Hui-Shan Zhao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Shu-Yuan Yin
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Min Chu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Xiao-Yan Liu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China.
| | - Hong-Chu Bao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China.
| |
Collapse
|
2
|
Gao SC, Dong MZ, Zhao BW, Liu SL, Guo JN, Sun SM, Li YY, Xu YH, Wang ZB. Fangchinoline inhibits mouse oocyte meiosis by disturbing MPF activity. Toxicol In Vitro 2024; 99:105876. [PMID: 38876226 DOI: 10.1016/j.tiv.2024.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Fangchinoline (FA) is an alkaloid derived from the traditional Chinese medicine Fangji. Numerous studies have shown that FA has a toxic effect on various cancer cells, but little is known about its toxic effects on germ cells, especially oocytes. In this study, we investigated the effects of FA on mouse oocyte maturation and its potential mechanisms. Our results showed that FA did not affect meiosis resumption but inhibited the first polar body extrusion. This inhibition is not due to abnormalities at the organelle level, such as chromosomes and mitochondrial, which was proved by detection of DNA damage and reactive oxygen species. Further studies revealed that FA arrested the oocyte at the metaphase I stage, and this arrest was not caused by abnormal kinetochore-microtubule attachment or spindle assembly checkpoint activation. Instead, FA inhibits the activity of anaphase-promoting complexes (APC/C), as evidenced by the inhibition of CCNB1 degeneration. The decreased activity of APC/C may be due to a reduction in CDC25B activity as indicated by the high phosphorylation level of CDC25B (Ser323). This may further enhance Maturation-Promoting Factor (MPF) activity, which plays a critical role in meiosis. In conclusion, our study suggests that the metaphase I arrest caused by FA may be due to abnormalities in MPF and APC/C activity.
Collapse
Affiliation(s)
- Shi-Cai Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yuan-Hong Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Ma C, Ruan H, Cheng H, Xu Z, Wu C, Liang D, Xiang H, Cao Y, Ding Z. Triphenyltin chloride exposure inhibits meiotic maturation of mouse oocytes by disrupting cytoskeleton assembly and cell cycle progression. Toxicol In Vitro 2024; 98:105834. [PMID: 38657713 DOI: 10.1016/j.tiv.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Triphenyltin chloride (TPTCL) is widely used in various industrial and agricultural applications. This study aimed to elucidate the mechanisms underlying the toxicological effects of TPTCL on oocytes. The obtained findings revealed that TPTCL exposure reduced polar body extrusion (PBE) and induced meiotic arrest. Mechanistically, TPTCL disrupted meiotic spindle assembly and chromosome alignment. Further analysis indicated a significant decrease in p-MAPK expression, and disturbances in the localization of Pericentrin and p-Aurora A in TPTCL exposed oocytes, which suggesting impaired microtubule organizing center (MTOC)function. Moreover, TPTCL exposure enhance microtubule acetylation and microtubule instability. Therefore, the spindle assembly checkpoint (SAC) remained activated, and the activity of the anaphase-promoting complex (APC) was inhibited, thereby preventing oocytes from progressing into the entering anaphase I (AI) stage. TPTCL exposure also augmented the actin filaments in the cytoplasm. Notably, mitochondrial function appeared unaffected by TPTCL, as evidenced indicated by stable mitochondrial membrane potential and ATP content. Furthermore, TPTCL treatment altered H3K27me2, H3K27me3 and H3K9me3 levels, suggesting changes in epigenetic modifications in oocytes. Taken together, our results suggest that TPTCL disrupts cytoskeleton assembly, continuously activates SAC, inhibits APC activity, and blocks meiotic progression, ultimately impair oocyte maturation.
Collapse
Affiliation(s)
- Cong Ma
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Huiru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Dan Liang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China
| | - Huifen Xiang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| | - Yunxia Cao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| | - Zhiming Ding
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| |
Collapse
|
4
|
Ma C, Xu Y, Chen H, Huang Y, Wang S, Zhang P, Li G, Xu Z, Xu X, Ding Z, Xiang H, Cao Y. Bisphenol Z exposure inhibits oocyte meiotic maturation by rupturing mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116312. [PMID: 38608383 DOI: 10.1016/j.ecoenv.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The use of bisphenol A (BPA) has been restricted due to its endocrine-disrupting effects. As a widely used alternative to BPA today, environmental levels of bisphenol Z (BPZ) continue to rise and accumulate in humans. Oocyte quality is critical for a successful pregnancy. Nevertheless, the toxic impacts of BPZ on the maturation of mammalian oocytes remain unexplored. Therefore, the impacts of BPZ and BPA on oocyte meiotic maturation were compared in an in vitro mouse oocyte culture model. Exposure to 150 μM of both BPZ and BPA disrupted the assembly of the meiotic spindle and the alignment of chromosomes, and BPZ exerted stronger toxicological effects than BPA. Furthermore, BPZ resulted in aberrant expression of F-actin, preventing the formation of the actin cap. Mechanistically, BPZ exposure disrupted the mitochondrial localization pattern, reduced mitochondrial membrane potential and ATP content, leading to impaired mitochondrial function. Further studies revealed that BPZ exposure resulted in oxidative stress and altered expression of genes associated with anti-oxidative stress. Moreover, BPZ induced severe DNA damage and triggered early apoptosis in oocytes, accompanied by impaired lysosomal function. Overall, the data in this study suggest that BPZ is not a safe alternative to BPA. BPZ can trigger early apoptosis by affecting mitochondrial function and causing oxidative stress and DNA damage in oocytes. These processes disrupt cytoskeletal assembly, arrest the cell cycle, and ultimately inhibit oocyte meiotic maturation.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Yan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Huilei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Yue Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Shanshan Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Pin Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Guojing Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Zhiming Ding
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
5
|
Song Y, Lei H, Cao Z, Zhang C, Chen C, Wu M, Zhang H, Du R, Lijun L, Chen X, Zhang L. Long-Term Triclocarban Exposure Induced Enterotoxicity by Triggering Intestinal AhR-Mediated Inflammation and Disrupting Microbial Community in Mice. Chem Res Toxicol 2024; 37:658-668. [PMID: 38525689 DOI: 10.1021/acs.chemrestox.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Exposure to triclocarban (TCC), a commonly used antibacterial agent, has been shown to induce significant intestine injuries and colonic inflammation in mice. However, the detailed mechanisms by which TCC exposure triggered enterotoxicity remain largely unclear. Herein, intestinal toxicity effects of long-term and chronic TCC exposure were investigated using a combination of histopathological assessments, metagenomics, targeted metabolomics, and biological assays. Mechanically, TCC exposure caused induction of intestinal aryl hydrocarbon receptor (AhR) and its transcriptional target cytochrome P4501A1 (Cyp1a1) leading to dysfunction of the gut barrier and disruption of the gut microbial community. A large number of lipopolysaccharides (LPS) are released from the gut lumen into blood circulation owing to the markedly increased permeability and gut leakage. Consequently, toll-like receptor-4 (TLR4) and NF-κB signaling pathways were activated by high levels of LPS. Simultaneously, classic macrophage phenotypes were switched by TCC, shown with marked upregulation of macrophage M1 and downregulation of macrophage M2 that was accompanied by striking upregulation of proinflammatory factors such as Il-1β, Il-6, Il-17, and Tnf-α in the intestinal lamina propria. These findings provide new evidence for the TCC-induced enterotoxicity.
Collapse
Affiliation(s)
- Yuchen Song
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wu
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, Guangxi, China
| | - Huabao Zhang
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Lijun
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Chen
- The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, Guangxi, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Imaging, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Wang J, Zhao C, Feng J, Sun P, Zhang Y, Han A, Zhang Y, Ma H. Advances in understanding the reproductive toxicity of endocrine-disrupting chemicals in women. Front Cell Dev Biol 2024; 12:1390247. [PMID: 38606320 PMCID: PMC11007058 DOI: 10.3389/fcell.2024.1390247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Recently, there has been a noticeable increase in disorders of the female reproductive system, accompanied by a rise in adverse pregnancy outcomes. This trend is increasingly being linked to environmental pollution, particularly through the lens of Endocrine Disrupting Chemicals (EDCs). These external agents disrupt natural processes of hormones, including synthesis, metabolism, secretion, transport, binding, as well as elimination. These disruptions can significantly impair human reproductive functions. A wealth of animal studies and epidemiological research indicates that exposure to toxic environmental factors can interfere with the endocrine system's normal functioning, resulting in negative reproductive outcomes. However, the mechanisms of these adverse effects are largely unknown. This work reviews the reproductive toxicity of five major environmental EDCs-Bisphenol A (BPA), Phthalates (PAEs), Triclocarban Triclosan and Disinfection Byproducts (DBPs)-to lay a foundational theoretical basis for further toxicological study of EDCs. Additionally, it aims to spark advancements in the prevention and treatment of female reproductive toxicity caused by these chemicals.
Collapse
Affiliation(s)
- Jinguang Wang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Chunwu Zhao
- Gastrointestinal Surgery Center of Weifang People’s Hospital, Weifang, China
| | - Jie Feng
- Gynecology and Obstetrics Department, Fangzi District People’s Hospital, Weifang, China
| | - Pingping Sun
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuhua Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Ailing Han
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuemin Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Huagang Ma
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| |
Collapse
|
7
|
Rajabi-Toustani R, Hu Q, Wang S, Qiao H. How Do Environmental Toxicants Affect Oocyte Maturation Via Oxidative Stress? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:69-95. [PMID: 39030355 DOI: 10.1007/978-3-031-55163-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In mammals, oogenesis initiates before birth and pauses at the dictyate stage of meiotic prophase I until luteinizing hormone (LH) surges to resume meiosis. Oocyte maturation refers to the resumption of meiosis that directs oocytes to advance from prophase I to metaphase II of meiosis. This process is carefully modulated to ensure a normal ovulation and successful fertilization. By generating excessive amounts of oxidative stress, environmental toxicants can disrupt the oocyte maturation. In this review, we categorized these environmental toxicants that induce mitochondrial dysfunction and abnormal spindle formation. Further, we discussed the underlying mechanisms that hinder oocyte maturation, including mitochondrial function, spindle formation, and DNA damage response.
Collapse
Affiliation(s)
- Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qinan Hu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuangqi Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.
| |
Collapse
|
8
|
Zhang H, Luo Q, Hu C, Song Q, Zhou Y, Su X, Li Y, Xia W, Zheng Y, Xu S, Cai Z. Trimester-specific exposure to triclocarban during pregnancy: Associations with oxidative stress and size at birth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168100. [PMID: 39491196 DOI: 10.1016/j.scitotenv.2023.168100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Triclocarban (TCC) is an extensively used antimicrobial agent that exhibits endocrine disrupt potential, but its effects on fetal growth remain largely unknown. Herein, we measured TCC, its four hydroxylated metabolites and two dechlorination products, as well as the oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in maternal urine samples collected across three trimesters of pregnancy in Wuhan, China. Linear mixed-effect models and multiple linear regression models were applied for correlation analysis. TCC was detected in >97 % of urine samples after conjugate hydrolysis (geometric mean: 0.249-0.335 ng/mL). An interquartile range increase in TCC was associated with a 6.65 % increase in 8-OHdG (95 % confidence interval: 2.15-11.16 %). Urinary TCC in the first trimester was inversely associated with body weight in infant girls, with significant p-value for trend (ptrend = 0.011) across tertiles of TCC concentrations. Urinary 8-OHdG in the third trimester was associated with reduced ponderal index in infant boys (ptrend = 0.020). Urinary levels of TCC correlated well with its transformation products (2'-OH-TCC, 3'-OH-TCC, 6-OH-TCC, 4'-DHC, and DCC). No clear association was found between these metabolites and 8-OHdG, as well as size at birth. Our results revealed the potential exposure risks of TCC during the early life stage, future replications in other populations are needed.
Collapse
Affiliation(s)
- Hongna Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Qiong Luo
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chengchen Hu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Qian Song
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China; Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuli Su
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Shunqing Xu
- School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
9
|
Ma C, Yang Z, Zhang S, Zhang X, Wang S, Cheng H, Liu Y, Ruan H, Xu Z, Liang C, Liang D, Ding Z, Liu Y, Cao Y. Carbendazim exposure inhibits mouse oocytes meiotic maturation in vitro by destroying spindle assembly. Food Chem Toxicol 2023; 179:113966. [PMID: 37506866 DOI: 10.1016/j.fct.2023.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Successful fertilization and early embryonic development heavily depend on the quality of the oocytes. Carbendazim (CBZ), a broad-spectrum fungicide, is widely available in the environment and has adverse effects on organisms. The present study focused on exploring the potential reproductive toxicity of CBZ exposure by investigating its effects on the maturation of mouse oocytes. The results demonstrated that although no disruptions were observed in the G2/M stage transition for meiosis resumption, CBZ did hinder the polar body extrusion (PBE) occurring during oocyte maturation. Cell cycle distribution analysis revealed that CBZ exposure interfered with the meiotic process, causing oocytes to be arrested at the metaphase I (MI) stage. The subsequent investigation highlighted that CBZ exposure impeded the spindle assembly and chromosomal alignment, which was linked to a decline in the level of p-MAPK. Additionally, CBZ exposure adversely affected the kinetochore-microtubule (K-MT) attachment, leading to the persistent activation of the spindle-assembly checkpoint (SAC). The study further noticed a substantial rise in the acetylation of α-tubulin and a reduction in spindle microtubule stability in CBZ-treated oocytes. In addition, the distribution pattern of estrogen receptor alpha (ERα) was altered in oocytes treated with CBZ, with abnormal aggregation on the spindles. CBZ exposure also resulted in altered histone modifications. A notable finding from this research was that the meiotic maturation of some oocytes remained unaffected even after CBZ treatment. However, during the ensuing metaphase II (MII) stage, these oocytes displayed anomalies in their spindle morphology and chromosome arrangement and diminished ability to bind to the sperm. The observations made in this study underscore the potential for CBZ to disrupt the meiotic maturation of oocytes, leading to a decline in the overall quality of oocytes.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Zhuonan Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Shouxin Zhang
- Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Xueke Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Siyuan Wang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Huiru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Yang Liu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Chunmei Liang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Dan Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| | - Yajing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
10
|
Yang SJ, Wang YS, Zhang LD, Ding ZM, Zhou X, Duan ZQ, Liu M, Liang AX, Huo LJ. High-dose synthetic phenolic antioxidant propyl gallate impairs mouse oocyte meiotic maturation through inducing mitochondrial dysfunction and DNA damage. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37052413 DOI: 10.1002/tox.23807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Propyl gallate (PG) is one of the most widely used antioxidants in food products, cosmetics and pharmaceutical industries. Increased research has suggested that exposure to PG influences reproductive health in humans and animals. However, until now, it has not yet been confirmed whether PG would impact oocyte quality. In this study, the hazardous effects of PG on oocyte meiotic maturation were investigated in mice. The findings showed that PG exposure compromises oocyte meiosis by inducing mitochondrial stress which activates apoptosis to trigger oocyte demise. Moreover, DNA damage was significantly induced in PG-treated oocytes, which might be another cause of oocyte developmental arrest and degeneration. Besides, the level of histone methylation (H3K27me2 and H3K27me3) in oocyte was also significantly increased by PG exposure. Furthermore, PG-induced oxidative stress was validated by the increased level of reactive oxygen species (ROS), which might be the underlying reason for these abnormities. In conclusion, the foregoing findings suggested that PG exposure impaired oocyte meiotic maturation by yielding mitochondrial stress to activate apoptosis, inducing DNA damage and oxidative stress, and altering histone methylation level.
Collapse
Affiliation(s)
- Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Dan Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xu Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
11
|
Zhang Y, He L, Yang Y, Cao J, Su Z, Zhang B, Guo H, Wang Z, Zhang P, Xie J, Li J, Ye J, Zha Z, Yu H, Hong A, Chen X. Triclocarban triggers osteoarthritis via DNMT1-mediated epigenetic modification and suppression of COL2A in cartilage tissues. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130747. [PMID: 36680903 DOI: 10.1016/j.jhazmat.2023.130747] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Triclocarban (TCC) is a widely used environmental endocrine-disrupting chemical (EDC). Articular injury of EDCs has been reported; however, whether and how TCCs damage the joint have not yet been determined. Herein, we revealed that exposure to TCC caused osteoarthritis (OA) within the zebrafish anal fin. Mechanistically, TCC stimulates the expression of DNMT1 and initiates DNA hypermethylation of the type II collagen coding gene, which further suppresses the expression of type II collagen and other extracellular matrices. This further results in decreased cartilage tissue and narrowing of the intraarticular space, which is typical of the pathogenesis of OA. The regulation of OA occurrence by TCC is conserved between zebrafish cartilage tissue and human chondrocytes. Our findings clarified the hazard and potential mechanisms of TCC towards articular health and highlighted DNMT1 as a potential therapeutic target for OA caused by TCC.
Collapse
Affiliation(s)
- Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Liu He
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Yiqi Yang
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Huiying Guo
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhenyu Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Peiguang Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Junye Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Jieruo Li
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinshao Ye
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhengang Zha
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China..
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China..
| |
Collapse
|
12
|
Ding ZM, Wang SK, Zhang SX, Chen YW, Wang YS, Yang SJ, Cao YX, Miao YL, Huo LJ. Acute exposure of triclocarban affects early embryo development in mouse through disrupting maternal-to-zygotic transition and epigenetic modifications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114572. [PMID: 36706524 DOI: 10.1016/j.ecoenv.2023.114572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Triclocarban (TCC) is a broad-spectrum antibacterial agent used globally, and high concentrations of this harmful chemical exist in the environment. The human body is directly exposed to TCC through skin contact. Moreover, TCC is also absorbed through diet and inhaled through breathing, which results in its accumulation in the body. The safety profile of TCC and its potential impact on human health are still not completely clear; therefore, it becomes imperative to evaluate the reproductive toxicity of TCC. Here, we explored the effect of TCC on the early embryonic development of mice and its associated mechanisms. We found that acute exposure of TCC affected the early embryonic development of mice in a dose-dependent manner. Approximately 7600 differentially expressed genes (DEGs) were obtained by sequencing the transcriptome of 2-cell mouse embryos; of these, 3157 genes were upregulated and 4443 genes were downregulated in the TCC-treated embryos. GO and KEGG analysis revealed that the enriched genes were mainly involved in redox processes, RNA synthesis, DNA damage, apoptosis, mitochondria, endoplasmic reticulum, Golgi apparatus, cytoskeleton, peroxisome, RNA polymerase, and other components or processes. Moreover, the Venn analysis showed that the zygotic genome activation (ZGA) was affected and the degradation of maternal effector genes was inhibited. TCC induced changes in the epigenetic modification of 2-cell embryos. The level of DNA methylation increased significantly. Further, the levels of H3K27ac, H3K9ac, and H3K27me3 histone modifications decreased significantly, whereas those of H3K4me3 and H3K9me3 modifications increased significantly. Additionally, TCC induced oxidative stress and DNA damage in the 2-cell embryos. In conclusion, acute exposure of TCC affected early embryo development, destroyed early embryo gene expression, interfered with ZGA and maternal gene degradation, induced changes in epigenetic modification of early embryos, and led to oxidative stress and DNA damage in mouse early embryos.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Shang-Ke Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Medical Laboratory Animal Center, Weifang Medical University, Weifang 261000, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Biochip Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; Biochip Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China; Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; . Hubei Province's Engineering Research Center in Buffalo Breeding & Products, Wuhan 430070, China
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China.
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; . Hubei Province's Engineering Research Center in Buffalo Breeding & Products, Wuhan 430070, China.
| |
Collapse
|
13
|
Jiang Y, Wang D, Zhang C, Jiao Y, Pu Y, Cheng R, Li C, Chen Y. Nicotinamide mononucleotide restores oxidative stress-related apoptosis of oocyte exposed to benzyl butyl phthalate in mice. Cell Prolif 2023:e13419. [PMID: 36756972 PMCID: PMC10392047 DOI: 10.1111/cpr.13419] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Benzyl butyl phthalate (BBP) is a chemical softener and plasticizer commonly used in toys, food packaging, wallpaper, detergents and shampoos. The estrogenic actions of BBP have detrimental effects on humans and animals. In this study, the specific influence of BBP on mouse oocyte maturation was investigated using in vivo and in vitro models. The experiment first verified that BBP exposure significantly affected the rate of oocyte exclusion of the first polar body, although it did not affect germinal vesicle breakdown (GVBD) through in vitro oocyte culture system. Results of in vitro fertilization show that BBP exposure affects blastocyst rate. Subsequently, the results obtained by immunofluorescence staining technology showed that oocyte spindle organization, chromosomal arrangement and the distribution of cortical actin were disrupted by BBP exposure, and led to the failure of oocyte meiotic maturation and the subsequent early embryo development. Singe-cell transcriptome analysis found that BBP exposure altered the expression levels of 588 genes, most associated with mitochondria-related oxidative stress. Further analysis demonstrated that the detrimental effects of BBP involved the disruption of mitochondrial function and oxidative stress-induced early apoptosis. Nicotinamide mononucleotide (NMN) supplementation reduced the adverse effects of BBP. Collectively, these findings revealed a mechanism of BBP-induced toxicity on female reproduction and showed that NMN provides an effective treatment for BBP actions.
Collapse
Affiliation(s)
- Yi Jiang
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Di Wang
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Cheng Zhang
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Yangyang Jiao
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Yanan Pu
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Rong Cheng
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Chunyu Li
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China.,Research Institute of Health Jiangsu, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Ren J, Wang B, Li L, Li S, Ma Y, Su L, Liu G, Liu Y, Dai Y. Glutathione ameliorates the meiotic defects of copper exposed ovine oocytes via inhibiting the mitochondrial dysfunctions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114530. [PMID: 36630773 DOI: 10.1016/j.ecoenv.2023.114530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 05/28/2023]
Abstract
Regardless of the essential role of copper (Cu) in the physiological regulation process of mammalian reproduction, excessive exposure to Cu triggers the meiotic defects of porcine oocytes via compromising the mitochondrial functions. However, the connections between the excessive Cu exposure and meiotic defects of ovine oocytes have not been reported. In this study, the effect of copper sulfate (CuSO4) exposure on the meiotic potentials of ovine oocytes was analyzed. Subsequently, the ameliorative effect of glutathione (GSH) supplementation on the meiotic defects of CuSO4 exposed ovine oocytes was investigated. For these purposes, the in vitro maturation (IVM) of ovine cumulus oocyte complexes (COCs) was conducted in the presence of 5, 10, 20 and 40 μg/mL of CuSO4 supplementation. Subsequently, different concentrations of GSH (2, 4 and 8 mM) were added to the IVM medium containing CuSO4 solution. After IVM, the assay, including nuclear maturation, spindle organization, chromosome alignment, cytoskeleton assembly, cortical granule (CGs) dynamics, mitochondrial function, reactive oxygen species (ROS) generation, apoptosis, epigenetic modification and fertilization capacity of ovine oocytes were performed. The results showed that excessive Cu exposure triggered the meiotic defects of ovine oocytes via promoting the mitochondrial dysfunction related oxidative stress damage. Moreover, the GSH supplementation, not only ameliorated the decreased maturation potential and fertilization defect of CuSO4 exposed oocytes, but inhibited the mitochondrial dysfunction related oxidative stress damage, ROS generation, apoptosis and altered H3K27me3 expression in the CuSO4 exposed oocytes. Combined with the gene expression pattern, the finding in the present study provided fundamental bases for the ameliorative effect of GSH supplementation on the meiotic defects of CuSO4 exposed oocytes via inhibiting the mitochondrial dysfunctions, further benefiting these potential applications of GSH supplementation in the mammalian IVM system and livestock breeding suffering from the excessive Cu exposure.
Collapse
Affiliation(s)
- Jingyu Ren
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, No. 22 Zhaowuda Road, Hohhot, Zip Code: 010031, Inner Mongolia, China
| | - Liping Li
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Shubin Li
- Center of Reproductive Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Yuzhen Ma
- Center of Reproductive Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Zip Code: 010050, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Zip Code: 010050, Inner Mongolia, China.
| | - Yongbin Liu
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China.
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China.
| |
Collapse
|
15
|
Yang R, Liu S, Yin N, Zhang Y, Faiola F. Tox21-Based Comparative Analyses for the Identification of Potential Toxic Effects of Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14668-14679. [PMID: 36178254 DOI: 10.1021/acs.est.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, U.K
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Bromoacetic acid impairs mouse oocyte in vitro maturation through affecting cytoskeleton architecture and epigenetic modification. Chem Biol Interact 2022; 368:110192. [PMID: 36174739 DOI: 10.1016/j.cbi.2022.110192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
As a major public health achievement, disinfection of drinking water significantly decreases outbreaks of waterborne disease, but produces drinking water disinfection by-products (DBPs) unfortunately. The haloacetic acids (HAAs) including bromoacetic acid (BAA), the second major class of DBPs, are considered as a global public health concern. BAA has been identified as cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic in somatic cells. However, the toxic effects of BAA on oocyte maturation remain obscure. Herein, we documented that exposure to BAA compromised mouse oocyte maturation in vitro, causing blocked polar body extrusion (PBE). Meiotic progression analysis demonstrated that exposure to BAA induced the activated spindle assembly checkpoint (SAC) mediated metaphase I (MI) arrest in oocytes. Further study revealed that exposure to BAA resulted in the hyperacetylation of α-tubulin, disrupting spindle assembly and chromosome alignment, which is responsible for the activation of SAC. Besides, the organization of actin, the other major component of cytoskeleton in oocytes, was disturbed after BAA exposure. In addition, exposure to BAA altered the status of histone H3 methylation and 5 mC, indicative of the damaged epigenetic modifications. Moreover, we found that exposure to BAA induced DNA damage in a dose-dependent manner in oocytes. Collectively, our study evidenced that exposure to BAA intervened mouse oocyte maturation via disrupting cytoskeletal dynamics, damaging epigenetic modifications and inducing accumulation of DNA damage.
Collapse
|
17
|
Octocrylene exposure impairs mouse oocyte quality by inducing spindle defects and mitochondria dysfunction. Toxicology 2022; 479:153306. [PMID: 36049589 DOI: 10.1016/j.tox.2022.153306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
Abstract
One of organic ultraviolet (UV) filters, Octocrylene (OCL), is mainly used in various cosmetic products, which is being frequently detected in soil, sediment, aquatic systems and food chain. There is evidence confirmed the reproductive toxicity of OCL in Japanese medaka. However, less was known about the effects of OCL exposure on oocyte quality. Here, we investigated the impacts of OCL on mouse oocyte maturation and quality by exposing oocytes to OCL in vitro at concentrations of 8, 22, 30, 40 and 50nM. The results showed that OCL markedly reduced mouse oocyte germinal vesicle breakdown (GVBD) at 50nM and polar body extrusion (PBE) rates at 40 and 50nM. OCL exposure further disrupted spindle assembly and chromosome alignment, finally inducing aneuploid. Mitochondrial function was also damaged by OCL exposure, leading to ROS overproduction and apoptosis in oocytes. Moreover, OCL treatment impaired the distribution of cortical granules and sperm binding ability of oocytes. In summary, these data demonstrated that OCL could disturb the oocyte meiotic maturation and reduce oocyte quality.
Collapse
|
18
|
Poly(I:C) exposure during in vitro fertilization disrupts first cleavage of mouse embryos and subsequent blastocyst development. J Reprod Immunol 2022; 151:103635. [DOI: 10.1016/j.jri.2022.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
|
19
|
Nasab H, Rajabi S, Mirzaee M, Hashemi M. Association of urinary triclosan, methyl triclosan, triclocarban, and 2,4-dichlorophenol levels with anthropometric and demographic parameters in children and adolescents in 2020 (case study: Kerman, Iran). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30754-30763. [PMID: 34993832 PMCID: PMC8739350 DOI: 10.1007/s11356-021-18466-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/29/2021] [Indexed: 05/28/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can be a major risk factor for noncommunicable illnesses, especially when children are exposed to them. The purpose of this study was to assess the urine concentrations of triclosan (TCS), methyl triclosan (MTCS), triclocarban (TCC), and 2,4-dichlorophenol (2,4-DCP) and its association with anthropometric and demographic parameters in children and adolescents aged 6-18 living in Kerman, Iran, in 2020. A GC/MS instrument was used to measure the concentrations of the analytes. TCS, MTCS, TCC, and 2,4-DCP geometric mean concentrations (µg/L) were 4.32 ± 2.08, 1.73 ± 0.88, 4.66 ± 10.25, and 0.19 ± 0.14, respectively. TCS, MTCS, TCC, and 2,4-DCP were shown to have a positive and significant association with BMI z-score and BMI (p-value < 0.01). TCS and MTCS have a positive, strong, and substantial association (p-value < 0.01, r = 0.74). There was no significant association between the waist circumference (WC) and the analytes studied. In addition, there was a close association between analyte concentration and demographic parameters (smoking, education, income, etc.) overall. In Kerman, Iran, the current study was the first to look into the association between TCS, MTCS, TCC, and 2,4-DCP analytes and anthropometric and demographic data. The levels of urinary TCS, MTCS, TCC, 2,4-DCP, and anthropometric parameters in children and adolescents are shown to have a significant association in this study. However, because the current study is cross-sectional and it is uncertain if a single experiment accurately reflects long-term exposure to these analytes, more research is needed to determine the impact of these analyses on the health of children and adolescents.
Collapse
Affiliation(s)
- Habibeh Nasab
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Rajabi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moghaddameh Mirzaee
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
20
|
Measurement of Urinary Triclocarban and 2,4-Dichlorophenol Concentration and Their Relationship with Obesity and Predictors of Cardiovascular Diseases among Children and Adolescents in Kerman, Iran. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:2939022. [PMID: 35096073 PMCID: PMC8794682 DOI: 10.1155/2022/2939022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
Exposure to Endocrine-Disrupting Chemicals (EDCs) at an early age can lead to chronic diseases. 2,4-Dichlorophenol (2,4-DCP) and Triclocarban (TCC) are among EDCs that disrupt the endocrine system and alter the body's metabolism. In the present study, the hypothesis that exposure to 2,4-DCP and TCC affects obesity and predictors of cardiovascular diseases was investigated. Fasting Blood Sugar (FBS), Total Cholesterol (TC), Triglyceride (TG), Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL (tests were performed on 79 children and adolescents. Also, blood pressure, Body Mass Index (BMI), and BMI z-score were measured to examine the hypothesis. Urinary concentrations of TCC and 2,4-DCP were measured by Gas Chromatography-Mass Spectrometry (GC/MS). Mean concentrations of TCC and 2,4-DCP (µg/L) were higher in obese individuals (5.50 ± 2.35, 0.29 ± 0.13, respectively). After adjusting for possible confounding factors, the results showed an increase in TCC concentration among girls and a decrease in 2,4-DCP among boys with increasing age. The 2,4-DCP concentration among girls increased by 0.007 and 0.01 units with a one-unit increase in Diastolic Blood Pressure (DBP) and FBS, respectively. There was a significant relationship between TCC and TG (Odds Ratio (OR) = 1.02,
-value = 0.007), LDL (OR = 1.05,
-value = 0.003), and HDL (OR = 0.88,
-value = 0.002). There was also a significant relationship between 2,4-DCP and TG (OR = 1.02,
-value = 0.002), LDL (OR = 1.12,
-value = 0.007), and HDL (OR = 0.92,
-value = 0.02). Exposure to TCC and 2,4-DCP can increase some heart risk factors and increase the risk of cardiovascular diseases and obesity. However, to confirm the results of the present study, it is necessary to conduct further studies, such as cohort and case-control studies, with a larger sample size to examine the causal relationships.
Collapse
|
21
|
Shang JZ, Li SR, Li XQ, Zhou YT, Ma X, Liu L, Niu D, Duan X. Simazine perturbs the maturational competency of mouse oocyte through inducing oxidative stress and DNA damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113105. [PMID: 34954678 DOI: 10.1016/j.ecoenv.2021.113105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Simazine is a triazine pesticides that typically detected in ground water and soil, and can reportedly affect reproductive health in humans and animals. However, the effect of simazine on female germ cell development remains unclear. In the present study, we observed that simazine exposure decreased oocyte maturation competence and embryonic developmental capacity. Importantly, simazine exposure disrupted microtubule stability and actin polymerization, resulting in failure of spindle assembly and migration. In addition, simazine exposure impaired mitochondrial function and cytosolic Ca2+ homeostasis in both oocyte and 2-cell embryos, thus increasing the levels of reactive oxygen species (ROS). Moreover, simazine exposure induced DNA damage and early apoptosis during oocyte maturation. Collectively, our results demonstrate that simazine exposure-induced mitochondrial dysfunction and apoptosis are major causes of poor oocytes quality.
Collapse
Affiliation(s)
- Jian-Zhou Shang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Shi-Ru Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao-Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu-Ting Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
22
|
Wei KN, Wang XJ, Zeng ZC, Gu RT, Deng SZ, Jiang J, Xu CL, Li W, Wang HL. Perfluorooctane sulfonate affects mouse oocyte maturation in vitro by promoting oxidative stress and apoptosis induced bymitochondrial dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112807. [PMID: 34562787 DOI: 10.1016/j.ecoenv.2021.112807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctane sulphonate (PFOS), as a surfactant, is widely applied in the agricultural production activities and has become a potential menace to human health. The mechanism of its effect on the maturation of mammalian oocytes is unclear. This study explored the toxic effect of PFOS on mouse oocyte maturation in vitro. The results revealed that PFOS under a concentration of 600 μM could significantly reduce the polar body extrusion rate (PBE) of mouse oocytes and cause symmetrical cell division. Further experiments showed that PFOS resulted in the abnormal cytoskeleton of the oocytes, causing the abnormal spindles and misplaced chromosomes, as well as the impaired dynamics of actin. Moreover, PFOS exposure inhibited the process of oocyte meiosis, which reflected in the slower spindle migration and continuous activation of spindle assembly checkpoint (SAC), then ultimately increased the probability of aneuploidy. Most importantly, PFOS exposure reduced the quality of oocytes, specifically by disrupting the function of mitochondria, inducing cell oxidative stress, and triggering early apoptosis. Furthermore, the level of methylation of histones is additionally influenced. In summary, our findings showed that PFOS exposure interfered with the maturation of mouse oocytes through affecting cytoskeletal dynamics, meiotic progression, oocyte quality, and histone modifications.
Collapse
Affiliation(s)
- Kang-Na Wei
- Department of Gynaecology and Obstetrics, Xiang'an Hospital of Xiamen University, Xiamen 361102, Fujian, China; Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China.
| | - Xin-Jie Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China.
| | - Zhao-Cheng Zeng
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China.
| | - Ruo-Ting Gu
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Shu-Zi Deng
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China; College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
| | - Jiang Jiang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China.
| | - Chang-Long Xu
- The Reproductive Medical Center of Nanning Second People's Hospital, Nanning 530031, Guangxi, China
| | - Wei Li
- Department of Gynaecology and Obstetrics, Xiang'an Hospital of Xiamen University, Xiamen 361102, Fujian, China.
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
23
|
Xing CH, Wang Y, Liu JC, Pan ZN, Zhang HL, Sun SC, Zhang Y. Melatonin reverses mitochondria dysfunction and oxidative stress-induced apoptosis of Sudan I-exposed mouse oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112783. [PMID: 34544023 DOI: 10.1016/j.ecoenv.2021.112783] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Sudan I is one of the industry dyes and widely used in cosmetics, wax agent, solvent and textile. Sudan I has multiple toxicity such as carcinogenicity, mutagenicity, genotoxicity and oxidative damage. However, Sudan I has been illegally used as colorant in food products, triggering worldwide attention about food safety. Nevertheless, the toxicity of Sudan I on reproduction, particularly on oocyte maturation is still unclear. In the present study, using mouse in vivo models, we report the toxicity effects of Sudan I on mouse oocyte. The results reflect that Sudan I exposure disrupts spindle organization and chromosomes alignment as well as cortical actin distribution, thus leading to the failure of polar body extrusion. Based on the transcriptome results, it is found that the exposure of Sudan I leads to the change in expression of 764 genes. Moreover, it's further reflected that the damaging effects of Sudan I are mediated by the destruction of mitochondrial functions, which induces the accumulated ROS to stimulate oxidative stress-induced apoptosis. As an endogenous hormone, melatonin within the ovarian follicle plays function on improving oocyte quality and female reproduction by efficiently suppressing oxidative stress. Moreover, melatonin supplementation also improves oocyte quality and increases fertilization rate during in vitro culture. Consistent with these, we find that in vivo supplementation of melatonin efficaciously suppresses mitochondrial dysfunction and the accompanying apoptosis, thus reverses oocyte meiotic deteriorations. Collectively, our results prove the reproduction toxicity of Sudan I for the exposure of Sudan I reduces the oocyte quality, and demonstrate the protective effects of melatonin against Sudan I-induced meiotic deteriorations.
Collapse
Affiliation(s)
- Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Li W, He Y, Zhao H, Peng L, Li J, Rui R, Ju S. Grape Seed Proanthocyanidin Ameliorates FB 1-Induced Meiotic Defects in Porcine Oocytes. Toxins (Basel) 2021; 13:toxins13120841. [PMID: 34941679 PMCID: PMC8706835 DOI: 10.3390/toxins13120841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
Fumonisin B1 (FB1), as the most prevalent and toxic fumonisin, poses a health threat to humans and animals. The cytotoxicity of FB1 is closely related to oxidative stress and apoptosis. The purpose of this study is to explore whether Grape seed proanthocyanidin (GSP), a natural antioxidant, could alleviate the meiotic maturation defects of oocytes caused by FB1 exposure. Porcine cumulus oocyte complexes (COCs) were treated with 30 μM FB1 alone or cotreated with 100, 200 and 300 μM GSP during in vitro maturation for 44 h. The results show that 200 μM GSP cotreatment observably ameliorated the toxic effects of FB1 exposure, showing to be promoting first polar body extrusion and improving the subsequent cleavage rate and blastocyst development rate. Moreover, 200 μM GSP cotreatment restored cell cycle progression, reduced the proportion of aberrant spindles, improved actin distribution and protected mitochondrial function in FB1-exposed oocytes. Furthermore, reactive oxygen species (ROS) generation was significantly decreased and the mRNA levels of CAT, SOD2 and GSH-PX were obviously increased in the 200 μM GSP cotreatment group. Notably, the incidence of early apoptosis and autophagy level were also significantly decreased after GSP cotreatment and the mRNA expression levels of BAX, CASPASE3, LC3 and ATG5 were markedly decreased, whereas BCL2 and mTOR were observably increased in the oocytes after GSP cotreatment. Together, these results indicate that GSP could exert significant preventive effects on FB1-induced oocyte defects by ameliorating oxidative stress through repairing mitochondrial dysfunction.
Collapse
|
25
|
Yang M, Xiao Z, Chen Z, Ru Y, Wang J, Jiang J, Wang X, Wang T. S100A1 is Involved in Myocardial Injury Induced by Exhaustive Exercise. Int J Sports Med 2021; 43:444-454. [PMID: 34688220 DOI: 10.1055/a-1642-8352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Many studies have confirmed that exhaustive exercise has adverse effects on the heart by generating reactive oxygen species (ROS). S100A1 calcium-binding protein A1 (S100A1) is a regulator of myocardial contractility and a protector against myocardial injury. However, few studies have investigated the role of S100A1 in the regulation of myocardial injury induced by exhaustive exercise. In the present study, we suggested that exhaustive exercise led to increased ROS, downregulation of S100a1, and myocardial injury. Downregulation of S100a1 promoted exhaustive exercise-induced myocardial injury and overexpression of S100A1 reversed oxidative stress-induced cardiomyocyte injury, indicating S100A1 is a protective factor against myocardial injury caused by exhaustive exercise. We also found that downregulation of S100A1 promoted damage to critical proteins of the mitochondria by inhibiting the expression of Ant1, Pgc1a, and Tfam under exhaustive exercise. Our study indicated S100A1 as a potential prognostic biomarker or therapeutic target to improve the myocardial damage induced by exhaustive exercise and provided new insights into the molecular mechanisms underlying the myocardial injury effect of exhaustive exercise.
Collapse
Affiliation(s)
- Miaomiao Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.,Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 301617, China
| | - Zhigang Xiao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.,School of Materials Science and Engineering,Tianjin University of Technology, Tianjin 300384, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yongxin Ru
- Institute of Hematology and Blood Diseases Hospital Peaking Union Medical College, Tianjin 300020, China
| | - Jun Wang
- Air Force Medical Center, Medical Evaluation Department, Beijing 100042, China
| | - Jianhua Jiang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Tianhui Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.,Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 301617, China
| |
Collapse
|
26
|
Yang Y, Pan L, Zhou Y, Xu R, Miao J, Gao Z, Li D. Damages to biological macromolecules in gonadal subcellular fractions of scallop Chlamys farreri following benzo[a]pyrene exposure: Contribution to inhibiting gonadal development and reducing fertility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117084. [PMID: 33848904 DOI: 10.1016/j.envpol.2021.117084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (B[a]P), a representative polycyclic aromatic hydrocarbon (PAH) compound in marine ecosystem, has great potential for chronic toxicity to marine animals. It is becoming increasingly apparent that reproductive system is the major target of B[a]P, but the adverse effects of B[a]P on subcellular fractions in bivalve gonads have not been elucidated. Scallops Chlamys farreri are used as the experimental species since they are sensitive to environmental pollutants. This study was conducted to investigate how B[a]P affected the gonadal subcellular fractions, including plasma membrane, nucleus, mitochondria and microsome in scallops, and whether subcellular damages were related to reproductive toxicity. The results showed that mature gametes' counts were significantly decreased in B[a]P-treated scallops. Three biological macromolecules (viz., DNA, lipids and proteins) in gonadal subcellular fractions obtained by differential centrifugation suffered damages, including DNA damage, lipid peroxidation and protein carbonylation in B[a]P treatment groups. Interestingly, mitochondria and microsome were more vulnerable to lipid peroxidation and protein carbonylation than plasma membrane and nucleus, meanwhile males were more susceptible to DNA damage than females under B[a]P exposure. In addition, histological analysis showed that B[a]P delayed gonadal development in C. farreri. To summarize, our results indicated that B[a]P caused damages to biological macromolecules in gonadal subcellular fractions and then induced damages to gonadal tissues of C. farreri, which further inhibited gonadal development and ultimately leaded to reduction in fertility. This study firstly reports the impacts of PAHs on subcellular fractions in bivalves and their relationship with reproductive toxicity. Moreover, exposure of reproductive scallops to B[a]P leads to defects in reproduction, raising concerns on the possible long-term consequences of PAHs for natural populations of bivalves.
Collapse
Affiliation(s)
- Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
27
|
Deng SZ, Xu CL, Xu ZF, Zhou LY, Xie SJ, Wei KN, Jin YC, Zeng ZC, Yang XJ, Tan SH, Wang HL. Perfluorodecanoic acid induces meiotic defects and deterioration of mice oocytes in vitro. Toxicology 2021; 460:152884. [PMID: 34358620 DOI: 10.1016/j.tox.2021.152884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Perfluorodecanoic acid (PFDA) is a member of the perfluoroalkyl substances, which are toxic to organic functions. Recently, it has been found in follicular fluid, seriously interfering with reproduction. Follicular fluid provides the oocyte with necessary resources during the process of oocytes maturation. However, the effects of PFDA on the oocyte need investigation. Our study evaluated the impacts of PFDA on the meiosis and development potential of mouse oocytes by exposing oocytes to PFDA in vitro at 350, 400, and 450 μM concentrations. The results showed that exposure to PFDA resulted in the first meiotic prophase arrest by obstructing the function of the maturation-promoting factor. It also induced the dysfunction of the spindle assembly checkpoint, expedited the progression of the first meiotic process, and increased the risk of aneuploidy. The oocytes treated with PFDA had a broken cytoskeleton which also contributed to meiotic maturation failure. Besides, PFDA exposure caused mitochondria defections, increased the reactive oxygen species level in oocytes, and consequently induced oocyte apoptosis. Moreover, PFDA produced epigenetic modifications in oocytes and increased the frequency of mature oocytes with declined development potential. In summary, our data indicated that PFDA disturbs the meiotic process and induces oocyte quality deterioration.
Collapse
Affiliation(s)
- Shu-Zi Deng
- College of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China; Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chang-Long Xu
- The Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi, 530031, China
| | - Zhong-Feng Xu
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Li-Ying Zhou
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shu-Juan Xie
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kang-Na Wei
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Gynaecology and Obstetrics, The Affiliated Xiang-An Hospital of Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuan-Chang Jin
- College of Biology and Agriculture (College of Food Science and Technology), Zunyi Normal College, Zunyi, 563006, China
| | - Zhao-Cheng Zeng
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiang-Jun Yang
- Department of Gynaecology and Obstetrics, The Affiliated Zhong-Shan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Shu-Hua Tan
- College of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
28
|
Santana ER, Martins EC, Spinelli A. Electrode modified with nitrogen-doped graphene quantum dots supported in chitosan for triclocarban monitoring. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Niu D, Chen KL, Wang Y, Li XQ, Liu L, Ma X, Duan X. Hexestrol Deteriorates Oocyte Quality via Perturbation of Mitochondrial Dynamics and Function. Front Cell Dev Biol 2021; 9:708980. [PMID: 34295902 PMCID: PMC8290218 DOI: 10.3389/fcell.2021.708980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Hexestrol (HES) is a synthetic non-steroidal estrogen that was widely used illegally to boost the growth rate in livestock production and aquaculture. HES can also be transferred to humans from treated animals and the environment. HES has been shown to have an adverse effect on ovarian function and oogenesis, but the potential mechanism has not been clearly defined. To understand the potential mechanisms regarding how HES affect female ovarian function, we assessed oocyte quality by examining the critical events during oocyte maturation. We found that HES has an adverse effect on oocyte quality, indicated by the decreased capacity of oocyte maturation and early embryo development competency. Specifically, HES-exposed oocytes exhibited aberrant microtubule nucleation and spindle assembly, resulting in meiotic arrest. In addition, HES exposure disrupted mitochondrial distribution and the balance of mitochondrial fission and fusion, leading to aberrant mitochondrial membrane potential and accumulation of reactive oxygen species. Lastly, we found that HES exposure can increase cytosolic Ca2+ levels and induce DNA damage and early apoptosis. In summary, these results demonstrate that mitochondrial dysfunction and perturbation of normal mitochondrial fission and fusion dynamics could be major causes of reduced oocyte quality after HES exposure.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Kun-Lin Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiao-Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Lu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
30
|
Silva GAL, Araújo LB, Silva LCR, Gouveia BB, Barberino RS, Lins TLBG, Monte APO, Macedo TJS, Santos JMS, Menezes VG, Silva RLS, Matos MHT. Gallic acid promotes the in vitro development of sheep secondary isolated follicles involving the phosphatidylinositol 3-kinase pathway. Anim Reprod Sci 2021; 230:106767. [PMID: 34030069 DOI: 10.1016/j.anireprosci.2021.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
This study was conducted to evaluate the effect of addition of gallic acid as the single antioxidant to the base medium for in vitro culture of sheep secondary follicles and if the phosphatidylinositol 3-kinase (PI3K) pathway is involved in the action of gallic acid. Secondary follicles were isolated and cultured for 12 days in α-MEM supplemented with bovine serum albumin (BSA), insulin, glutamine, hypoxanthine, transferrin, selenium, and ascorbic acid (control medium: α-MEM+) or in α-MEM supplemented with BSA, insulin, glutamine, hypoxanthine and different concentrations of gallic acid (25, 50 or 100 μM), thus replacing transferrin, selenium and ascorbic acid in the medium. Follicle morphology, glutathione (GSH), and mitochondrial activity, and meiotic resumption were evaluated. Furthermore, inhibition of PI3K pathway was performed by pretreatment with LY294002. After 12 days of culture, the follicle survival in a medium containing 100 μM gallic acid was similar (P > 0.05) to α-MEM+ and greater (P < 0.05) compared with other gallic acid concentrations. Antrum formation, follicle diameter, GSH, and mitochondrial activity, and meiotic resumption, however, were greater (P < 0.05) when 100 μM gallic acid was included in the α-MEM+ culture medium compared with the control medium. Furthermore, LY294002 inhibited (P < 0.05) follicle survival, development, and meiotic resumption stimulated by 100 μM gallic acid. In conclusion, concentration of 100 μM of gallic acid can be a substitute for transferrin, selenium, and ascorbic acid in the base medium during in vitro culture of sheep secondary follicles, inducing follicle development likely through the PI3K pathway.
Collapse
Affiliation(s)
- Gizele A L Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Luana B Araújo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Larissa C R Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Bruna B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Thae Lanne B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Alane P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Taís J S Macedo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Jamile M S Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Vanúzia G Menezes
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Regina L S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil.
| |
Collapse
|
31
|
The Different Facets of Triclocarban: A Review. Molecules 2021; 26:molecules26092811. [PMID: 34068616 PMCID: PMC8126057 DOI: 10.3390/molecules26092811] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed.
Collapse
|
32
|
Oral isoniazid causes oxidative stress, oocyte deterioration and infertility in mice. Toxicology 2021; 455:152749. [PMID: 33771660 DOI: 10.1016/j.tox.2021.152749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022]
Abstract
Isoniazid (INH), a synthetic first-line tuberculosis antibiotic, has been widely used in clinical treatment. It has been reported to cause toxic effects at multiple tissue sites and also increases the incidence of adverse pregnancy outcomes; but the mechanism of action of INH on the reproductive system of female mammals remains unclear. Here, we demonstrate that oral INH (40 mg/kg/day every other day for 28 days) severely affects oocyte maturation and fertilization, late blastocyst development and fertility. We found that INH could disrupt standard spindle assembly, chromosome arrangement, and actin filament dynamics, which compromised meiotic progression of mouse oocytes. INH treatment increased the level of reactive oxygen species (ROS) and activated the oxidative stress response pathway, Keap1-Nrf2. It also caused apoptosis of oocytes and mitochondrial dysfunction. Our findings demonstrate that oral INH reduces fertility and damages the mammalian reproductive system by altering cytoskeletal dynamics and Juno expression, inducing oxidative stress and apoptosis, and activating the Keap1-Nrf2 signaling pathway in mouse oocytes.
Collapse
|
33
|
Li W, Zhao H, Zhuang R, Wang Y, Cao W, He Y, Jiang Y, Rui R, Ju S. Fumonisin B 1 exposure adversely affects porcine oocyte maturation in vitro by inducing mitochondrial dysfunction and oxidative stress. Theriogenology 2021; 164:1-11. [PMID: 33529806 DOI: 10.1016/j.theriogenology.2021.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 12/17/2022]
Abstract
Fumonisin B1 (FB1), as the most toxic fumonisin, is a common Fusarium mycotoxin contaminant of feed stuff and food, posing a potential health hazard to animals and humans. FB1 has been reported to cause hepatotoxicity, neurotoxicity, nephrotoxicity, immunotoxicity and embryotoxicity; however, little information is available on whether FB1 has toxic effects on mammalian oocytes. Herein, we adopted porcine oocytes as models to explore the effects and potential mechanisms of FB1 on mammalian oocytes during in vitro maturation. Porcine cumulus oocyte complexes (COCs) were exposed to 0, 20, 30 and 40 μM FB1 for 44 h during in vitro maturation, and the results reported that first polar body (PB1) extrusion was significantly inhibited when the FB1 concentration reached 30 (P < 0.01) or 40 μM (P < 0.001). Further cell cycle analysis revealed that meiotic progression was disrupted, with a larger proportion of the 30 μM FB1-treated oocytes being arrested at the germinal vesicle breakdown (GVBD) stage (P < 0.01). After being treated with 30 μM FB1 for 28 h, the percentage of oocytes with aberrant spindle assembly was observably increased (P < 0.01), and the distribution of actin filaments on the plasma membrane was significantly reduced (P < 0.05). Furthermore, an observably higher rate of abnormal mitochondrial distribution (P < 0.05) and significantly decreased mitochondrial membrane potential (MMP) (P < 0.05) were observed in FB1-exposed oocytes. In addition, ROS generation in FB1-treated oocytes was rapidly increased (P < 0.05), while the transcriptional levels of antioxidant-related genes (CAT, SOD2 and GSH-Px) were sharply decreased compared with those in the control group. Additionally, the incidence of early apoptosis in FB1-treated oocytes was also significantly increased (P < 0.05), suggesting that FB1 exposure induced oxidative stress and further triggered apoptosis in porcine oocytes. Thus, these results suggested that FB1 adversely affected oocyte maturation by disturbing cell cycle progression, destroying cytoskeletal dynamics and damaging mitochondrial function, which eventually induced oxidative stress and apoptosis in porcine oocytes.
Collapse
Affiliation(s)
- Wenhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Hongyu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Ruixue Zhuang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Wei Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yao Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Rong Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
34
|
Xu J, Qian Q, Xia M, Wang X, Wang H. Trichlorocarban induces developmental and immune toxicity to zebrafish (Danio rerio) by targeting TLR4/MyD88/NF-κB signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116479. [PMID: 33460871 DOI: 10.1016/j.envpol.2021.116479] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Trichlorocarban (TCC) is ubiquitously detected in environmental matrices, while there is a paucity of information regarding its systemic toxicity. In the present study, we observed that TCC exposure led to high embryo mortality, delayed hatching and yolk absorption, as well as increased malformations, such as closure of swim sac and yolk sac edema. Meanwhile, TCC affected the formation and branch of subintestinal veins (SIVs), intersegmental vessels and posterior cardinal veins. Especially, the SIVs were shrunk, and their branches were reduced or even broken along with reduced coverage area. TCC-induced oxidative stress and excessive apoptosis resulted from abnormal expression of the anti/pro-apoptotic genes. Significant reduction in the number and aggregation function of immune cells proved that TCC had prominent immunotoxicity to zebrafish. TCC-targeted TLR4 signaling pathway was demonstrated by abnormal expression of the marker genes (tlr4, MyD88 and nf-κb) and release of the downstream inflammatory factors (TNF-α, IL-6, etc.). Inhibition of TLR4/MyD88/NF-κB pathway by an inhibitor (CA-4948) rescued the decreasing trend of the immune cells induced by TCC. Molecular docking results demonstrated that TCC could stably bind to TLR4 receptor to form hydrogen bonds and hydrophobic interactions with amino acids. Overall, these findings reveal the underlying molecular mechanisms on TCC-induced developmental and immune toxicity to zebrafish.
Collapse
Affiliation(s)
- Jiaqi Xu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Min Xia
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
35
|
Zhang SX, Ding ZM, Ahmad MJ, Wang YS, Duan ZQ, Miao YL, Xiong JJ, Huo LJ. Bisphenol B Exposure Disrupts Mouse Oocyte Meiotic Maturation in vitro Through Affecting Spindle Assembly and Chromosome Alignment. Front Cell Dev Biol 2020; 8:616771. [PMID: 33392205 PMCID: PMC7773771 DOI: 10.3389/fcell.2020.616771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
Bisphenol B (BPB), a substitute of bisphenol A (BPA), is widely used in the polycarbonate plastic and resins production. However, BPB proved to be not a safe alternative to BPA, and as an endocrine disruptor, it can harm the health of humans and animals. In the present study, we explored the effects of BPB on mouse oocyte meiotic maturation in vitro. We found that 150 μM of BPB significantly compromised the first polar body extrusion (PBE) and disrupted the cell cycle progression with meiotic arrest. The spindle assembly and chromosome alignment were disordered after BPB exposure, which was further demonstrated by the aberrant localization of p-MAPK. Also, BPB exposure increased the acetylation levels of α-tubulin. As a result, the spindle assemble checkpoint (SAC) was continuously provoked, contributing to meiotic arrest. We further demonstrated that BPB severely induced DNA damage, but the ROS and ATP production were not altered. Furthermore, the epigenetic modifications were changed after BPB exposure, as indicated by increased K3K9me3 and H3K27me3 levels. Besides, the pattern of estrogen receptor α (ERα) dynamics was disrupted with a mass gathering on the spindle in BPB-exposed oocytes. Our collective results indicated that exposure to BPB compromised meiotic maturation and damaged oocyte quality by affecting spindle assembly and chromosome alignment, acetylation of α-tubulin, DNA damage, epigenetic modifications, and ERα dynamics in mouse oocytes.
Collapse
Affiliation(s)
- Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Jun Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| |
Collapse
|
36
|
Sales Junior SF, Vallerie Q, de Farias Araujo G, Soares LOS, Oliveira da Silva E, Correia FV, Saggioro EM. Triclocarban affects earthworms during long-term exposure: Behavior, cytotoxicity, oxidative stress and genotoxicity assessments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115570. [PMID: 32916435 DOI: 10.1016/j.envpol.2020.115570] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Triclocarban (TCC) is a contaminant of emerging concern widely applied as an antimicrobial in personal care products and introduced into the terrestrial environment through the application of biosolids (i.e., treated sewage sludge) in agriculture. Displaying the potential to bioaccumulate in the food chain and a high half-life in the soil, the presence of this compound in the environment may lead to potential ecological risks. In this context, TCC toxicity assessments in Eisenia andrei earthworms were carried out through acute, avoidance and chronic tests following cytotoxicity, antioxidant system, i.e. acatalase (CAT), glutathione-S-transferase (GST), glutathione (GSH), lipid peroxidation (LPO), and DNA damage (comet assay) evaluations. An LC50 of 3.3 ± 1.6 mg cm-2 in the acute contact test and an EC50 of 1.92 ± 0.31 mg kg-1 in the avoidance test during 72 h and 48 h, respectively, were obtained. The behavioral test indicates earthworm avoidance from 15.0 mg kg-1 of TCC. During chronic soil exposure, a 44% reduction in earthworm cell viability was observed after 14 days of exposure to 10 mg kg-1 TCC, while an increase in the percentage of amoebocyte cells also ocurred. Chronic exposure to TCC led to reduced CAT and GST activities, decreased GSH levels and increased LPO in exposed organisms. DNA damage was observed after 45 days from a 1 mg kg-1 dose of TCC. Therefore, TCC exhibits toxicological potential to Eisenia andrei earthworms, mainly during long-term exposures. This study provides mechanistic earthworm information towards understanding the environmental and human health implications of TCC exposure and draws attention to correct biosolid management.
Collapse
Affiliation(s)
- Sidney Fernandes Sales Junior
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Quentin Vallerie
- Institut Nacional Supérieur des Sciences Agronomiques, de L'Alimentation et de L'Environmental (AgroSup Dijon), 26 Boulevard Dr Petitjean, 21079, Dijon, France
| | - Gabriel de Farias Araujo
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Lorena Oliveira Souza Soares
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil; UNIRIO, Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, 22290-20, Rio de Janeiro, Brazil
| | - Evelyn Oliveira da Silva
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Fábio Veríssimo Correia
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil; UNIRIO, Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, 22290-20, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil; Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|