1
|
Tambat VS, Patel AK, Singhania RR, Chen CW, Dong CD. Marine vanadium pollution: Sources, ecological impacts and cutting-edge mitigation strategies. MARINE POLLUTION BULLETIN 2024; 209:117199. [PMID: 39486201 DOI: 10.1016/j.marpolbul.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Vanadium (V) is a hazardous element with widespread environmental presence, particularly in marine environments, due to both natural and industrial sources. This review examines vanadium's impact on marine organisms, highlighting its disruption of metabolic processes in fish, microalgae, and crustaceans, leading to oxidative stress, impaired growth and reproduction. Vanadium accumulation in marine food chains poses risks to higher organisms, including humans. Conventional vanadium removal methods, e.g., filtering and reverse osmosis, are costly and energy-intensive. Alternatively, bioremediation offers a sustainable solution, particularly using microalgae and thraustochytrids. Microalgae can detoxify and immobilize vanadium through adsorption and biodegradation, contributing to carbon capture and producing value-added products. Advances in bioprocess engineering, including regulating key parameters such as temperature and pH during biomass harvesting and using chelating agents, have enhanced this bioremediation approach, making it a viable option for industrial-scale applications and aligning with Sustainable Development Goals by integrating environmental protection with renewable energy production.
Collapse
Affiliation(s)
- Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
2
|
Liu P, Zhang X, Lin L, Cao Y, Lin X, Ye L, Yan J, Gao H, Wen J, Mysore KS, Liu J. Nodulation Signaling Pathway 1 and 2 Modulate Vanadium Accumulation and Tolerance of Legumes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306389. [PMID: 38225717 DOI: 10.1002/advs.202306389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Vanadium (V) pollution potentially threatens human health. Here, it is found that nsp1 and nsp2, Rhizobium symbiosis defective mutants of Medicago truncatula, are sensitive to V. Concentrations of phosphorus (P), iron (Fe), and sulfur (S) with V are negatively correlated in the shoots of wild-type R108, but not in mutant nsp1 and nsp2 shoots. Mutations in the P transporter PHT1, PHO1, and VPT families, Fe transporter IRT1, and S transporter SULTR1/3/4 family confer varying degrees of V tolerance on plants. Among these gene families, MtPT1, MtZIP6, MtZIP9, and MtSULTR1; 1 in R108 roots are significantly inhibited by V stress, while MtPHO1; 2, MtVPT2, and MtVPT3 are significantly induced. Overexpression of Arabidopsis thaliana VPT1 or M. truncatula MtVPT3 increases plant V tolerance. However, the response of these genes to V is weakened in nsp1 or nsp2 and influenced by soil microorganisms. Mutations in NSPs reduce rhizobacterial diversity under V stress and simplify the V-responsive operational taxonomic unit modules in co-occurrence networks. Furthermore, R108 recruits more beneficial rhizobacteria related to V, P, Fe, and S than does nsp1 or nsp2. Thus, NSPs can modulate the accumulation and tolerance of legumes to V through P, Fe, and S transporters, ion homeostasis, and rhizobacterial community responses.
Collapse
Affiliation(s)
- Peng Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Xinfei Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Lin Lin
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Yanyan Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Xizhen Lin
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Liaoliao Ye
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Jun Yan
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jinlong Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| |
Collapse
|
3
|
Aihemaiti A, Liang S, Cai Y, Li R, Yan F, Zhang Z. Effects of ferrous sulfate modification on the fate of phosphorous in sewage sludge biochar and its releasing mechanisms in heavy metal contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106214-106226. [PMID: 37726629 DOI: 10.1007/s11356-023-29867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
Modifications of sludge biochar with metal-based materials can enhance its fertilizing efficiency and improve safety. To elucidate the effects of ferrous sulfate modification on the fate of phosphorus in sludge biochar and its effect on phosphorus fractionation in soil, we investigated the changes in fractionation and bioavailability of phosphorus in modified sludge biochar and studied the changes in soil characteristics, microbial diversity and response, bioavailability, plant uptake of phosphorus, and heavy metals in contaminated soils after treatment with ferrous sulfate modified sludge biochar. The results demonstrated that ferrous sulfate modifications were conducive to the formation of moderately labile phosphorus in sludge biochar, and the concentrations increased by a factor of 2.7 compared to control. The application of ferrous sulfate-modified sludge biochar to alkaline heavy metal-contaminated soils enhanced the bioavailable, labile, and moderately labile phosphorus contents by a factor of 2.9, 3.0, and 1.6, respectively, whereas it obviously reduced the leachability and bioavailability of heavy metals in soils, exhibited great potentials in the fertilization and remediation of actual heavy metal-contaminated soils in mining areas. The biochar-induced reduction in soil pH, enhancement of organic matter, surface oxygen-containing functional groups, the abundance of Gammaproteobacteria, and its phosphonate degradation activity were primarily responsible for the solubilization of phosphorus from modified biochar in heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Aikelaimu Aihemaiti
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Shuoyang Liang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Yingying Cai
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Rui Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Feng Yan
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- The Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Zuotai Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.
- The Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
4
|
Jiao G, Huang Y, Dai H, Gou H, Li Z, Shi H, Yang J, Ni S. Responses of rhizosphere microbial community structure and metabolic function to heavy metal coinhibition. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6177-6198. [PMID: 37269417 DOI: 10.1007/s10653-023-01626-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
Metal mineral mining results in releases of large amounts of heavy metals into the environment, and it is necessary to better understand the response of rhizosphere microbial communities to simultaneous stress from multiple heavy metals (HMs), which directly impacts plant growth and human health. In this study, by adding different concentrations of cadmium (Cd) to a soil with high background concentrations of vanadium (V) and chromium (Cr), the growth of maize during the jointing stage was explored under limiting conditions. High-throughput sequencing was used to explore the response and survival strategies of rhizosphere soil microbial communities to complex HM stress. The results showed that complex HMs inhibited the growth of maize at the jointing stage, and the diversity and abundance of maize rhizosphere soil microorganisms were significantly different at different metal enrichment levels. In addition, according to the different stress levels, the maize rhizosphere attracted many tolerant colonizing bacteria, and cooccurrence network analysis showed that these bacteria interacted very closely. The effects of residual heavy metals on beneficial microorganisms (such as Xanthomonas, Sphingomonas, and lysozyme) were significantly stronger than those of bioavailable metals and soil physical and chemical properties. PICRUSt analysis revealed that the different forms of V and Cd had significantly greater effects on microbial metabolic pathways than all forms of Cr. Cr mainly affected the two major metabolic pathways: microbial cell growth and division and environmental information transmission. In addition, significant differences in rhizosphere microbial metabolism under different concentrations were found, and this can serve as a reference for subsequent metagenomic analysis. This study is helpful for exploring the threshold for the growth of crops in toxic HM soils in mining areas and achieving further biological remediation.
Collapse
Affiliation(s)
- Ganghui Jiao
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Yi Huang
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China.
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| | - Hao Dai
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Hang Gou
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Zijing Li
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Huibin Shi
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Jinyan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Shijun Ni
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| |
Collapse
|
5
|
Haak MR, Indraratne SP. Soil amendments for vanadium remediation: a review of remediation of vanadium in soil through chemical stabilization and bioremediation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4107-4125. [PMID: 36773122 DOI: 10.1007/s10653-023-01498-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Immobilization of vanadium (V) in soils is one option to prevent groundwater contamination and plant uptake. Phytoremediation, microbial remediation, and chemical stabilization using soil amendments are among the leading environmentally friendly and economically feasible techniques in V remediation. Soil amendments were used to reduce V mobility by immobilizing it in the soil matrix through chemical stabilization, while bioremediation methods such as phytoremediation and microbial remediation were used to remove V from contaminated soils. Vanadium exists in several species and among them V5+ species are the most prevalent, toxic, and soluble form and present as a negatively charged ion (H2VO4- and HVO42-) in oxic soils above pH 4. Amendments used for chemical stabilization can change the physicochemical properties enhancing immobility of V in soil. The pH of the soil environment, point of zero charge of the colloid surface, and redox conditions are some of the most important factors that determine the efficiency of the amendment. Commonly used amendments for chemical stabilization include biochar, zeolites, organic acids, various clay minerals and oxides of elements such as iron, titanium, manganese, and aluminum. For bioremediation, chelating agents and microbial communities are used to mobilize V to enhance phyto-or microbial-extraction procedures. The objectives of this review were to discuss remediation methods of V while considering V speciation and toxicity in soil, and soil amendment application for V removal from soil. The information compiled in this review can guide further research on soil amendments for optimal V remediation in largely contaminated industrial sites.
Collapse
Affiliation(s)
- Melissa Rae Haak
- Department of Environmental Studies and Sciences, Faculty of Science, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Srimathie P Indraratne
- Department of Environmental Studies and Sciences, Faculty of Science, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|
6
|
Tambat VS, Patel AK, Chen CW, Raj T, Chang JS, Singhania RR, Dong CD. A sustainable vanadium bioremediation strategy from aqueous media by two potential green microalgae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121247. [PMID: 36764381 DOI: 10.1016/j.envpol.2023.121247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Globally, environmental concerns are rapidly growing due to increasing pollution levels. Vanadium is a hazardous heavy metal that poses health issues with an exposure concentration of about 2 ppm. It is regularly discharged by some industries and poses an environmental challenge. There are no sustainable green treatment methods for discharged effluents to mitigate vanadium threats to humans and the environment. In this study, the goal was to develop a green, sustainable method for removing vanadium and to utilize the produced biomass for biofuels, thus offsetting the treatment cost. Microalgae Chlorella sorokiniana SU1 and Picochlorum oklahomensis were employed for vanadium (III) treatment. The maximum removal was 25.5 mg L-1 with biomass and lipid yields of 3.0 g L-1 and 884.4 mg L-1 respectively after 14 days of treatment. The vanadium removal capacity by microalgae was further enhanced up to 2-2.7 folds while optimizing the key parameters, pH, and temperature before removing biomass from the liquid phase. FTIR is used to analyse the reactive groups in algal cell walls to confirm vanadium adsorption and to understand the dominant and quantitative interactions. Zeta potential analysis helps to find out the most suitable pH range to facilitate the ionic bonding of biomass and thus maximum vanadium adsorption. This study addresses regulating external factors for enhancing the removal performance during microalgal biomass harvesting, which significantly enhances the removal of vanadium (III) from the aqueous phase. This strategy aims to improve the removal efficiency of microalgal treatment at an industrial scale for the bioremediation of vanadium and other inorganic pollutants.
Collapse
Affiliation(s)
- Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Tirath Raj
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, 1304 West Pennsylvania Avenue, Urbana, IL, 61801, USA
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
7
|
Aihemaiti A, Chen J, Hua Y, Dong C, Wei X, Yan F, Zhang Z. Effect of ferrous sulfate modified sludge biochar on the mobility, speciation, fractionation and bioaccumulation of vanadium in contaminated soil from a mining area. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129405. [PMID: 35753298 DOI: 10.1016/j.jhazmat.2022.129405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
In contaminated soil, pristine biochar has poor applicability for immobilizing vanadium (V), which mainly exists as oxyanions in soil. To elucidate the immobilization potential and biotic/abiotic stabilizing mechanisms of a ferrous sulfate (FS)-modified sludge biochar in a V-contaminated soil from a mining area, we investigated the effects of biochar addition on the soil characteristics, growth of alfalfa, leachability, bioavailability, speciation, and fractionation of V, and changes in the microbial community structure and metabolic response. The results showed that the water extractable, acid-soluble (F1), and pentavalent fractions of V in soil decreased by up to 99 %, 95 %, and 55 %, respectively, whereas the reducible and (F2) oxidizable (F3) fractions increased by up to 45 % and 76 %, respectively. After the soil was treated with the FS-modified biochar for 90 d, the V concentration in the roots and shoots of alfalfa (Medicago sativa L.) decreased by up to 81.5 % and 96 %, respectively. The changes in the speciation, fractionation, and efficient immobilization of V in the studied soil were due to the combined effects of the biochar-induced decrease in soil pH, adsorption and precipitation by elevated iron concentrations, reduction and complexation due to an increase in the organic matter content, and microbial reduction by Proteobacteria.
Collapse
Affiliation(s)
- Aikelaimu Aihemaiti
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jingjing Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yunhui Hua
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chunling Dong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xuankun Wei
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Feng Yan
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; The Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Zuotai Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; The Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
8
|
Chen L, Liu JR, Hu WF, Gao J, Yang JY. Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124200. [PMID: 33092873 DOI: 10.1016/j.jhazmat.2020.124200] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Vanadium(V) is an important component of industrial activities, while it may pose toxic hazards to plants, animals, and humans at high levels. Owing to its various uses in numerous industrial processes, high amount of V is released into the soil environment. Previous literature has focused on the biogeochemistry and ecotoxicity of V in soil-plant system. Consequently, this overview presents its source, fate, phyto-uptake, phyto-toxicity, detoxification, and bioremediation based on available data, especially published from 2015 to 2020. Vanadium occurs as various chemical forms (primarily as V(V) and V(IV)) in the soil environment, and its biogeochemical behaviour is easily influenced by soil conditions including redox potential, soil pH, organic matter, and microorganisms. Vanadium mainly accumulates in plant roots with very limited translocation to shoots. However, plants such as dog's tail grass and green bean are reported to accumulate high levels of V in aboveground tissues. An insight into the processes and mechanisms that allow plants to absorb and translocate V in soil-plant system is also stressed in this overview. In plants, low levels of V have beneficial effects on plant growth and development. Nevertheless, excessive V provokes numerous deleterious effects including reducing seed germination, inhibiting root and shoot growth, depressing photosynthesis, interfering with nutrients uptake, inducing overgeneration of ROS, and leading to lipid peroxidation. Mechanisms related to detoxification strategies like sequestration in root system, compartmentation in vacuoles and cell wall, and antioxidant defence systems to endure V-induced toxicity in plants are discussed as well. The detailed knowledge of bioremediation involved in the cleanup of V-contaminated soils would immensely help understand and improve the remediation process. Furthermore, this overview outlines several research gaps requiring further investigation in order to advance our understanding of the biogeochemical roles of V in soil-plant systems.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China; College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jin-Rong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Wei-Fang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510000, Guangdong, PR China
| | - Jing Gao
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|