1
|
Rao JN, Parsai T. Pollution and toxicity of heavy metals in wildfires-affected soil and surface water: A review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125845. [PMID: 39954764 DOI: 10.1016/j.envpol.2025.125845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/13/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Wildfires, both natural and man-made, release and mobilize hazardous substances such as heavy metal(loids) (HM), which are known carcinogens. Following intense rainfall events, HM bound to soil organic matter are transported from the soil to surface water, resulting in water quality degradation. This study reviews the pollution status of HM in wildfire-affected soil and surface water, as well as their toxic effects on aquatic organisms and humans. The rate of HM release during wildfires depends on factors such as the type of tree burned and fire severity. The mobility of HM from soil to surface water is influenced by soil pH, organic matter content, rainfall intensity, and duration. The risk priority number (RPN) analysis indicates that both wildfire-affected soil and surface water require remediation to address HM contamination. HM concentrations in both soil and surface water decrease over time due to soil erosion, wind, storm events, and the depletion of burnt residues. The greatest percentage changes in HM concentrations in burned soils compared to unburned soils were observed for vanadium (340%), nickel (260%), and arsenic (110%). In surface water, the highest increases were seen for iron (740%), vanadium (530%), and aluminium (510%). Wildfire-affected water has been shown to cause toxic effects in aquatic organisms, including DNA damage, oxidative stress, and lipid peroxidation. The consumption of HM-contaminated water and fish poses significant health risks to humans. Therefore, post-fire monitoring of wildfire-affected areas is essential for designing treatment plants, assessing risks, and establishing maximum allowable HM concentrations in water.
Collapse
Affiliation(s)
- Jakki Narasimha Rao
- Department of Civil Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, 600036, India.
| | - Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
2
|
Tong Q, Xu MD, Dong WJ, Long XZ, Han XY, Cui LY. Influence of wildfire ash concentration on development, survival, and skin and gut microbiota of Rana dybowskii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177718. [PMID: 39581444 DOI: 10.1016/j.scitotenv.2024.177718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Climate changes can increase wildfires and thereby endanger the habitats and survival of amphibians, but relevant research is limited. The gut and skin microbiota plays a critical role in amphibian protection. Wildfire ash may negatively impact amphibians, causing inflammation and microbiota disruption, but the impact on microbial communities is still uncertain. In this study, the impact of wildfire ash on the cutaneous and gut microbiota of Rana dybowskii was investigated over a 28-day period using five groups with aqueous extracts of ash. Polycyclic aromatic hydrocarbons in the ash were analyzed. Body mass, development, survival rates, and microbiota diversity were tested. Significant differences in body mass, development rates, and survival rates among the treatment groups were observed. The survival and development rates at lower concentrations of ash (T0 and T0_75) were more similar to those under control conditions. Analyses of alpha and beta diversity revealed significant changes in microbiota composition across ash concentrations, with specific phyla and genera affected. Linear discriminant analysis effect analysis identified distinct microbiota associated with each treatment group, demonstrating the specific influence of ash concentrations on the microbiota composition of tadpoles. BugBase analysis revealed significant differences in the same phenotypes in gut microbiota, but not in nine skin microbiota phenotypes across groups. This research underscores the sensitivity of amphibian microbiota to environmental changes and provides insights into the ecological consequences of wildfires on aquatic ecosystems.
Collapse
Affiliation(s)
- Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China.
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Wen-Jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China.
| |
Collapse
|
3
|
Lei Y, Lei TH, Lu C, Zhang X, Wang F. Wildfire Smoke: Health Effects, Mechanisms, and Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21097-21119. [PMID: 39516728 DOI: 10.1021/acs.est.4c06653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Wildfires are becoming more frequent and intense on a global scale, raising concerns about their acute and long-term effects on human health. We conducted a systematic review of the current epidemiological evidence on wildfire health risks and a meta-analysis to investigate the association between wildfire smoke exposure and various health outcomes. We discovered that wildfire smoke increases the risk of premature deaths and respiratory morbidity in the general population. Meta-analysis of cause-specific mortality and morbidity revealed that wildfire smoke had the strongest associations with cardiovascular mortality (RR: 1.018, 95% CI: 1.014-1.021), asthma hospitalization (RR: 1.054, 95% CI: 1.026-1.082), and asthma emergency department visits (RR: 1.117, 95% CI: 1.035-1.204) in the general population. Subgroup analyses of age found that adults and elderly adults were more susceptible to the cardiopulmonary effects of wildfire smoke. Next, we systematically addressed the toxicological mechanisms of wildfire smoke, including direct toxicity, oxidative stress, inflammatory reactions, immune dysregulation, genotoxicity and mutations, skin allergies, inflammation, and others. We discuss wildfire smoke risk mitigation strategies including public health interventions, regulatory measures, and personal actions. We conclude by highlighting current research limitations and future directions for wildfire research, such as elucidating the complex interactions of wildfire smoke components on human health, developing personalized risk assessment tools, and improving resilience and adaptation strategies to mitigate the health effects of wildfires in changing climate.
Collapse
Affiliation(s)
- Ying Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tze-Huan Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410008, China
| | - Xue Zhang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Faming Wang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium
| |
Collapse
|
4
|
Xu MD, Dong WJ, Long XZ, Yang XW, Han XY, Cui LY, Tong Q. Impact of wildfire ash on skin and gut microbiomes and survival of Rana dybowskii. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134729. [PMID: 38805811 DOI: 10.1016/j.jhazmat.2024.134729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Climate change and human activities escalate the frequency and intensity of wildfires, threatening amphibian habitats and survival; yet, research on these impacts remains limited. Wildfire ash alters water quality, introduces contaminants, and may disrupt microbial communities, impacting gut and skin microbiota; however, the effects on gut and skin microbiota remain unclear. Rana dybowskii were exposed to five concentrations (0 g L-1, 1.25 g L-1, 2.5 g L-1, 5 g L-1, and 10 g L-1) of aqueous extracts of wildfire ashes (AEAs) for 30 days to assess AEAs' metal content, survival, and microbiota diversity via Illumina sequencing. Our results showed that the major elements in ash were Ca > K > Mg > Al > Fe > Na > Mn, while in AEA they were K > Ca > Na > Mg > As > Al > Cu. A significant decrease in amphibian survival rates with increased AEA concentration was shown. The beta diversity analysis revealed distinct shifts in microbiota composition. Notably, bacterial genera associated with potential health risks showed increased abundance in skin microbiota, emphasising the potential for ash exposure to affect amphibian health. Functional prediction analyses revealed significant shifts in metabolic pathways related to health and disease, indicating that wildfire ash exposure may influence amphibian health through changes in microbial functions. This study highlights the urgent need for strategies to mitigate wildfire ash impacts on amphibians, as it significantly alters microbiota and affects their survival and health.
Collapse
Affiliation(s)
- Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Wen-Jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xue-Wen Yang
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China
| | - Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China.
| |
Collapse
|
5
|
Dong WJ, Xu MD, Yang XW, Yang XM, Long XZ, Han XY, Cui LY, Tong Q. Rice straw ash and amphibian health: A deep dive into microbiota changes and potential ecological consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171651. [PMID: 38490417 DOI: 10.1016/j.scitotenv.2024.171651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Rice straw is burned as a result of agricultural practices and technical limitations, generating significant volumes of ash that might have environmental and ecological consequences; however, the effects on organisms have not been researched. Amphibians depend on their gut and skin microbiomes. Ash exposure may cause inflammation and changes in microbial diversity and function in frogs' skin and gut microbiota due to its chemical composition and physical presence, but the implications remain unclear. Rana dybowskii were exposed to five aqueous extracts of ashes (AEA) concentrations for 30 days to study survival, metal concentrations, and microbial diversity, analyzing the microbiota of the cutaneous and gut microbiota using Illumina sequencing. Dominant elements in ash: K > Ca > Mg > Na > Al > Fe. In AEA, K > Na > Ca > Mg > As > Cu. Increased AEA concentrations significantly reduced frog survival. Skin microbiota alpha diversity varied significantly among all treatment groups, but not gut microbiota. Skin microbiota differed significantly across treatments via Bray-Curtis and weighted UniFrac; gut microbiota was only affected by Bray-Curtis. Skin microbiota varied significantly with AEA levels in Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes, while the gut microbiota's dominant phyla, Firmicutes, Bacteroidetes, and Proteobacteria, remained consistent across all groups. Lastly, the functional prediction showed that the skin microbiota had big differences in how it worked and looked, which were linked to different health and environmental adaptation pathways. The gut microbiota, on the other hand, had smaller differences. In conclusion, AEA exposure affects R. dybowskii survival and skin microbiota diversity, indicating potential health and ecological impacts, with less effect on gut microbiota.
Collapse
Affiliation(s)
- Wen-Jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xue-Wen Yang
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiu-Mei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Barkoski J, Van Fleet E, Liu A, Ramsey S, Kwok RK, Miller AK. Data Linkages for Wildfire Exposures and Human Health Studies: A Scoping Review. GEOHEALTH 2024; 8:e2023GH000991. [PMID: 38487553 PMCID: PMC10937504 DOI: 10.1029/2023gh000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/17/2024]
Abstract
Wildfires are increasing in frequency and intensity, with significant consequences that impact human health. A scoping review was conducted to: (a) understand wildfire-related health effects, (b) identify and describe environmental exposure and health outcome data sources used to research the impacts of wildfire exposures on health, and (c) identify gaps and opportunities to leverage exposure and health data to advance research. A literature search was conducted in PubMed and a sample of 83 articles met inclusion criteria. A majority of studies focused on respiratory and cardiovascular outcomes. Hospital administrative data was the most common health data source, followed by government data sources and health surveys. Wildfire smoke, specifically fine particulate matter (PM2.5), was the most common exposure measure and was predominantly estimated from monitoring networks and satellite data. Health data were not available in real-time, and they lacked spatial and temporal coverage to study health outcomes with longer latency periods. Exposure data were often available in real-time and provided better temporal and spatial coverage but did not capture the complex mixture of hazardous wildfire smoke pollutants nor exposures associated with non-air pathways such as soil, household dust, food, and water. This scoping review of the specific health and exposure data sources used to underpin these studies provides a framework for the research community to understand: (a) the use and value of various environmental and health data sources, and (b) the opportunities for improving data collection, integration, and accessibility to help inform our understanding of wildfires and other environmental exposures.
Collapse
Affiliation(s)
- J. Barkoski
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - E. Van Fleet
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - A. Liu
- Department of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthDurhamNCUSA
- Kelly Government SolutionsRockvilleMDUSA
| | - S. Ramsey
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - R. K. Kwok
- Department of Health and Human ServicesNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - A. K. Miller
- Department of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthDurhamNCUSA
| |
Collapse
|
7
|
Lopez AM, Pacheco JL, Fendorf S. Metal toxin threat in wildland fires determined by geology and fire severity. Nat Commun 2023; 14:8007. [PMID: 38086795 PMCID: PMC10716285 DOI: 10.1038/s41467-023-43101-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Accentuated by climate change, catastrophic wildfires are a growing, distributed global public health risk from inhalation of smoke and dust. Underrecognized, however, are the health threats arising from fire-altered toxic metals natural to soils and plants. Here, we demonstrate that high temperatures during California wildfires catalyzed widespread transformation of chromium to its carcinogenic form in soil and ash, as hexavalent chromium, particularly in areas with metal-rich geologies (e.g., serpentinite). In wildfire ash, we observed dangerous levels (327-13,100 µg kg-1) of reactive hexavalent chromium in wind-dispersible particulates. Relatively dry post-fire weather contributed to the persistence of elevated hexavalent chromium in surficial soil layers for up to ten months post-fire. The geographic distribution of metal-rich soils and fire incidents illustrate the broad global threat of wildfire smoke- and dust-born metals to populations. Our findings provide new insights into why wildfire smoke exposure appears to be more hazardous to humans than pollution from other sources.
Collapse
Affiliation(s)
- Alandra Marie Lopez
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA
| | - Juan Lezama Pacheco
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA
| | - Scott Fendorf
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Sánchez-García C, Santín C, Neris J, Sigmund G, Otero XL, Manley J, González-Rodríguez G, Belcher CM, Cerdà A, Marcotte AL, Murphy SF, Rhoades CC, Sheridan G, Strydom T, Robichaud PR, Doerr SH. Chemical characteristics of wildfire ash across the globe and their environmental and socio-economic implications. ENVIRONMENT INTERNATIONAL 2023; 178:108065. [PMID: 37562341 DOI: 10.1016/j.envint.2023.108065] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 08/12/2023]
Abstract
The mobilisation of potentially harmful chemical constituents in wildfire ash can be a major consequence of wildfires, posing widespread societal risks. Knowledge of wildfire ash chemical composition is crucial to anticipate and mitigate these risks. Here we present a comprehensive dataset on the chemical characteristics of a wide range of wildfire ashes (42 types and a total of 148 samples) from wildfires across the globe and examine their potential societal and environmental implications. An extensive review of studies analysing chemical composition in ash was also performed to complement and compare our ash dataset. Most ashes in our dataset had an alkaline reaction (mean pH 8.8, ranging between 6 and 11.2). Important constituents of wildfire ash were organic carbon (mean: 204 g kg-1), calcium, aluminium, and iron (mean: 47.9, 17.9 and 17.1 g kg-1). Mean nitrogen and phosphorus ranged between 1 and 25 g kg-1, and between 0.2 and 9.9 g kg-1, respectively. The largest concentrations of metals of concern for human and ecosystem health were observed for manganese (mean: 1488 mg kg-1; three ecosystems > 1000 mg kg-1), zinc (mean: 181 mg kg-1; two ecosystems > 500 mg kg-1) and lead (mean: 66.9 mg kg-1; two ecosystems > 200 mg kg-1). Burn severity and sampling timing were key factors influencing ash chemical characteristics like pH, carbon and nitrogen concentrations. The highest readily dissolvable fractions (as a % of ash dry weight) in water were observed for sodium (18 %) and magnesium (11.4 %). Although concentrations of elements of concern were very close to, or exceeded international contamination standards in some ashes, the actual effect of ash will depend on factors like ash loads and the dilution into environmental matrices such as water, soil and sediment. Our approach can serve as an initial methodological standardisation of wildfire ash sampling and chemical analysis protocols.
Collapse
Affiliation(s)
- C Sánchez-García
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom
| | - C Santín
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom; Research Institute of Biodiversity (IMIB; CSIC-UniOvi-PA), Mieres, Spain
| | - J Neris
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom; Universidad de La Laguna, Tenerife, Spain
| | - G Sigmund
- Environmental Technology, Wageningen University & Research, Wageningen, The Netherlands; Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - X L Otero
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - J Manley
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom
| | | | - C M Belcher
- University of Exeter, Exeter, United Kingdom
| | - A Cerdà
- Universitat de València, Valencia, Spain
| | - A L Marcotte
- Plant Ecology and Nature Conservation, Wageningen University & Research, Wageningen, The Netherlands
| | - S F Murphy
- U.S. Geological Survey, Boulder, CO, USA
| | - C C Rhoades
- U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - G Sheridan
- The University of Melbourne, Parkville, Australia
| | - T Strydom
- South African National Parks, Skukuza, South Africa
| | - P R Robichaud
- U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - S H Doerr
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
9
|
Bessa MJ, Sarmento B, Oliveira M, Rodrigues F. In vitro data for fire pollutants: contribution of studies using human cell models towards firefighters' occupational. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:238-255. [PMID: 36883725 DOI: 10.1080/10937404.2023.2187909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Firefighters are the principal line of defense against fires, being at elevated risk of exposure to health-relevant pollutants released during fires and burning processes. Although many biomonitoring studies exist, only a limited number of human in vitro investigations in fire risk assessment are currently available. In vitro studies stand out as valuable tools to assess the toxicity mechanisms involved following exposure to fire pollutants at a cellular level. The aim of the present review was to contextualize existing in vitro studies using human cell models exposed to chemicals emitted from fire emissions and wood smoke and discuss the implications of the observed toxic outcomes on adverse health effects detected in firefighters. Most of the reported in vitro investigations focused on monocultures respiratory models and exposure to particulate matter (PM) extracts collected from fire effluents. Overall, (1) a decrease in cellular viability, (2) enhanced oxidative stress, (3) increased pro-inflammatory cytokines levels and (4) elevated cell death frequencies were noted. However, limited information remains regarding the toxicity mechanisms initiated by firefighting activities. Hence, more studies employing advanced in vitro models and exposure systems using human cell lines are urgently needed taking into consideration different routes of exposure and health-related pollutants released from fires. Data are needed to establish and define firefighters' occupational exposure limits and to propose mitigation strategies to promote beneficial human health.
Collapse
Affiliation(s)
- Maria João Bessa
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, Gandra, Portugal
| | - Bruno Sarmento
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, Gandra, Portugal
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Porto, Portugal
| | | |
Collapse
|
10
|
Alshehri T, Wang J, Singerling SA, Gigault J, Webster JP, Matiasek SJ, Alpers CN, Baalousha M. Wildland-urban interface fire ashes as a major source of incidental nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130311. [PMID: 36368066 DOI: 10.1016/j.jhazmat.2022.130311] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Although metal and metalloid concentrations in wildfire ashes have been documented, the nature and concentrations of incidental nanomaterials (INMs) in wildland-urban interface (WUI) fire ashes have received considerably less attention. In this study, the total metal and metalloid concentrations of 57 vegetation, structural, and vehicle ashes and underlying soils collected at the WUI following the 2020 fire season in northern California - North Complex Fire and LNU Lightning Complex Fire - were determined using inductively coupled plasma-time of flight-mass spectrometry after microwave-assisted acid digestion. The concentrations of Ti, Zn, Cu, Ni, Pb, Sn, Sb, Co, Bi, Cr, Ba, As, Rb, and W are generally higher in structural/vehicle-derived ashes than in vegetation-derived ashes and soils. The concentrations of Ca, Sr, Rb, and Ag increased with increased combustion completeness (e.g., black ash < gray ash < white ash), whereas those of C, N, Zn, Pb, and In decreased with increased combustion completeness. The concentration of anthropogenic Ti - determined by mass balance calculations and shifts in Ti/Nb above the natural background ratios - was highest in vehicle ash (median: 30.8 g kg-1, range: 4.5-41.0 g kg-1) followed by structural ash (median: 5.5 g kg-1, range: of 0-77.4 g kg-1). Various types of carbonaceous INM (e.g., amorphous carbon, turbostratic-like carbon, and carbon associated with zinc oxides) and metal-bearing INMs (e.g., Ti, Cu, Fe, Zn, Mn, Pb, and Cr) with sizes between few nanometers to few hundreds of nanometers were evidenced in ashes using transmission electron microscopy, including energy dispersive X-ray spectroscopy. Overall, this study demonstrates the abundance of a variety of metals and metalloids in the form of INMs in WUI fire ashes. This study also highlights the need for further research into the formation, transformation, reactivity, fate, and effects of INMs during and following fires at the WUI.
Collapse
Affiliation(s)
- Talal Alshehri
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29201, United States; Environmental Health Department, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Jingjing Wang
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29201, United States
| | - Sheryl A Singerling
- National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth, Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Julien Gigault
- TAKUVIK, Université Laval/CNRS, IRL 3376, G1V 0A6 Québec, Canada
| | - Jackson P Webster
- Department of Civil Engineering, California State University Chico, 400 W 1st St, Chico, CA 95929, United States
| | - Sandrine J Matiasek
- Department of Earth and Environmental Sciences, California State University Chico, 400 W 1st St, Chico, CA 95929, United States
| | - Charles N Alpers
- US Geological Survey, California Water Science Center, 6000 J Street, Sacramento, CA 95819, United States
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29201, United States.
| |
Collapse
|
11
|
Jesus F, Mesquita F, Virumbrales Aldama E, Marques A, Gonçalves AMM, Magalhães L, Nogueira AJA, Ré A, Campos I, Pereira JL, Gonçalves FJM, Abrantes N, Serpa D. Do Freshwater and Marine Bivalves Differ in Their Response to Wildfire Ash? Effects on the Antioxidant Defense System and Metal Body Burden. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1326. [PMID: 36674083 PMCID: PMC9859076 DOI: 10.3390/ijerph20021326] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Wildfires constitute a source of contamination to both freshwater and marine ecosystems. This study aimed to compare the antioxidant defense response of the freshwater clam Corbicula fluminea and the marine cockle (Cerastoderma edule) to wildfire ash exposure and the concomitant metal body burden. Organisms were exposed to different concentrations (0%, 12.5%, 25%, 50%, and 100%) of aqueous extracts of Eucalypt ash (AEAs) from a moderate-to-high severity wildfire. The activity of various enzymes, as well as lipid peroxidation, protein content, and metal body burden, were determined after 96 h of exposure. A significant increase in the protein content of soft tissues was observed for C. edule at AEA concentrations ≥ 25%, unlike for C. fluminea. Similarly, significant effects on lipid peroxidation were observed for cockles, but not for clams. For both species, a significant effect in the total glutathione peroxidase activity was observed at AEA concentrations ≥ 25%. Relative to the control, AEAs-exposed clams showed higher Cd content, whereas AEAs-exposed cockles showed higher Cu content, thus exhibiting different responses to the exposure to wildfire ash. The susceptibility of bivalves to ashes, at environmentally relevant concentrations, raises concern about the effects of post-fire runoff to bivalve species.
Collapse
Affiliation(s)
- Fátima Jesus
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipa Mesquita
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisa Virumbrales Aldama
- Faculty of Veterinary and Experimental Sciences, Catholic University of Valencia, Calle Guillem de Castro 94, 46001 Valencia, Spain
| | - Ana Marques
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M. M. Gonçalves
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Luísa Magalhães
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António J. A. Nogueira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Ré
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J. M. Gonçalves
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dalila Serpa
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Coelho L, Afonso M, Jesus F, Campos I, Abrantes N, Gonçalves FJM, Serpa D, Marques SM. Effects of Eucalypt ashes from moderate and high severity wildfires on the skin microbiome of the Iberian frog (Rana iberica). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120065. [PMID: 36055453 DOI: 10.1016/j.envpol.2022.120065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Forest fires can threaten amphibians because ash-associated contaminants transported by post-fire runoff impact both terrestrial and aquatic ecosystems. Still, the effects of these contaminants on the skin microbiome of amphibians have been overlooked. Thus, the main objective of this study was to assess the effects of ash from different severity wildfires (moderate and high) on the skin microbiome of the Iberian frog (Rana iberica). Bacterial isolates sampled from R. iberica skin microbiome were tested for their antimicrobial activity against the pathogen Aeromonas salmonicida. The isolates with antimicrobial activity were identified and further exposed to several concentrations (0, 6.25, 12.5, 25, 50, 75, and 100%) of Eucalypt (Eucalyptus globulus) aqueous extracts (AAEs) of ash from both a moderate and a high severity wildfire. The results showed that 53% of the bacterial isolates presented antimicrobial activity, with Pseudomonas being the most common genus. Exposure to AAEs had diverse effects on bacterial growth since a decrease, an increase or no effects on growth were observed. For both ash types, increasing AAEs concentrations led to an increase in the number of bacteria whose growth was negatively affected. Ash from the high severity fire showed more adverse effects on bacterial growth than those from moderate severity, likely due to the higher metal concentrations of the former. This study revealed that bacteria living in Iberian frogs' skin could be impaired by ash-related contaminants, potentially weakening the individual's immune system. Given the foreseen increase in wildfires' frequency and severity under climate change, this work raises awareness of the risks faced by amphibian communities in fire-prone regions, emphasising the importance of a rapid implementation of post-fire emergency measures for the preservation and conservation of this group of animals.
Collapse
Affiliation(s)
- Laura Coelho
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana Afonso
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fátima Jesus
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dalila Serpa
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sérgio M Marques
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Afonso M, Coelho L, Jesus F, Campos I, Abrantes N, Gonçalves FJM, Marques S, Serpa D. Effects of Pine and Eucalypt ashes on bacterial isolates from the skin microbiome of the fire salamander (Salamandra salamandra). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156677. [PMID: 35710008 DOI: 10.1016/j.scitotenv.2022.156677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination influences the diversity of the resident skin microbial community of amphibians, ultimately affecting the individual's immune system. Wildfires are expected to impact the skin microbiome, since post-fire runoff typically transports hazardous substances, that can affect terrestrial and aquatic ecosystems. The present study is the first to assess the effects of Eucalypt and Pine wildfire ash on cultivable bacterial isolates from the skin microbiome of amphibians, in particular the fire salamander (Salamandra salamandra), a common species in fire-prone Mediterranean ecosystems. To achieve this goal, samples of skin bacteria of adult individuals of S. salamandra were collected at a site without influence of wildfires. The bacterial isolates were tested against the pathogenic agent Aeromonas salmonicida for assessing their antimicrobial activity, before exposing them to a series of dilutions of aqueous extracts of Eucalypt and Pine ashes (AAEs) from high severity wildfires. From the 80 bacterial isolates collected, 48 (mostly Pseudomonas spp.) showed antimicrobial activity. Exposure of bacteria with antimicrobial activity to the Eucalypt and Pine AAEs at concentrations of 0, 6.25, 12.5, 25, 50, 75, and 100%, revealed that bacterial growth could be significantly inhibited, stimulated or unaffected by ash. Growth inhibition was found for Pine and Eucalypt AAEs at concentrations as low as 6.25% and 12.5%, respectively, but were more expressive at concentrations equal or above 50%. Eucalypt AAEs had a higher negative impact on bacterial growth than Pine AAEs, likely due to differences in metal concentrations between ash types. These findings raise concern about the future of amphibians in fire-prone regions since the foreseen increase in fire frequency and severity owing to climate changes are likely to alter the skin microbiome of amphibians, weaken the immune system and consequently increasing the incidence of infections or diseases, further contributing to the decline of the populations.
Collapse
Affiliation(s)
- Mariana Afonso
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Laura Coelho
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fátima Jesus
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sérgio Marques
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dalila Serpa
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Mesquita AF, Abrantes N, Campos I, Nunes C, Coimbra MA, Gonçalves FJM, Marques JC, Gonçalves AMM. Effects of wildfire ash on the growth and biochemical profiles of the aquatic macrophyte Lemna minor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106245. [PMID: 35907386 DOI: 10.1016/j.aquatox.2022.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Wildfires are a social and environmental concern to the world due to their many adverse effects, including risk to the public health and security, economic damages in prevention and fight, ecosystems pollution, land usage sustainability, and biodiversity. In the Mediterranean region, these events have increased in the last years. Although several studies evaluated the impacts of the wildfires on the structure and function of the ecosystems and their communities, there is a lack of information at the biochemical level beyond the toxicological effects to the organisms. So, aiming to evaluate the potential toxic and biochemical effects of pine and eucalypt ash from high and low severity burned areas in the aquatic environments, L. minor growth, fatty acid and carbohydrate profiles were studied. Data showed that the wildfires ash from high severity burned areas are more toxic, with a higher growth inhibition than when exposed to ash from low severity burned areas. Considering the ash from low severity burned areas, eucalypt ash revealed to be more noxious to the macrophyte than pine ash. Furthermore, it was observed a decrease in the diversity and abundance of fatty acids content, comparing with the control. An opposite trend was observed in carbohydrates which increased with the organisms' exposure to almost all ash types, except in case of the organisms exposed to eucalypt ash from high severity burned areas, where carbohydrate content decreased.
Collapse
Affiliation(s)
- Andreia F Mesquita
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- Department of Environment and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João C Marques
- University of Coimbra, MARE-Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, 3001-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; University of Coimbra, MARE-Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, 3001-456 Coimbra, Portugal.
| |
Collapse
|
15
|
Hung CM, Chen CW, Huang CP, Tsai ML, Wu CH, Lin YL, Cheng YR, Dong CD. Efficacy and cytotoxicity of engineered ferromanganese-bearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126922. [PMID: 34425433 DOI: 10.1016/j.jhazmat.2021.126922] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Phthalate esters (PAEs) are a group of ubiquitous organic environmental contaminants. Engineered ferromanganese-bearing sludge-derived biochar (SDB), synthesized using one-step pyrolysis in the temperature range between 300 and 900 °C, was used to enable Fenton-like processes that decontaminated PAE-laden sediments. SDB was thoroughly characterized using scanning electron microscopyenergy-dispersive spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Raman spectroscopy, Fourier-transform infrared spectroscopy, electron paramagnetic resonance, X-ray photoelectron spectroscopy, and fluorescence excitation-emission matrix spectroscopy coupled with parallel factor analysis. The maximum PAE degradation was remarkable at 90% in 12 h at pH 6.0 in the presence of 1.7 g L-1 of SDB 900. The highly-effective PAE degradation was mainly attributed to the synergism between FeOx and MnOx, which strengthened the activation of percarbonate (PC) via electron transfer, hydroxy addition, and hydrogen abstraction through radical (HO•) and nonradical (1O2) oxidation mechanisms, thereby facilitating PAE catalytic degradation over SDB in real sediments, which clearly proved the efficacy of ferromanganese-bearing SDB and PC for the remediation of contaminated sediments. The cytotoxicity exhibited by human skin keratinocyte cells exposure to high SDB concentration (100-400 µg mL-1) for 24-48 h was low indicating insignificant cellular toxicity and oxidative damages. This study provides a new strategy for freshwater sludge treatment and reutilization, which enables a water-cycle-based circular economy and waste-to-resource recycling.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chung-Hsin Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Yu-Rong Cheng
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|