1
|
Mu D, Li P, De Baets B. Biogeochemical mechanisms and biomarkers of groundwater salinization in Jinghuiqu Irrigation District, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125631. [PMID: 40328118 DOI: 10.1016/j.jenvman.2025.125631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Groundwater salinization poses significant challenges to water resource management, agriculture, and ecosystem sustainability. However, the biogeochemical mechanisms and microbial responses underlying this process in irrigation districts are still poorly understood. This study integrated hydrochemical ratios (Cl--Cl-/Br-, Cl--NO3-/Cl-), stable isotopes (δ2H, δ18O, δ15N-NO3-, δ18O-NO3-), and the MixSIAR model to investigate the dominant factors contributing to salinization in the Jinghuiqu Irrigation District. The results showed that TDS concentrations in groundwater samples ranged from 688 to 5420 mg/L, with 82 % of the samples exceeding WHO drinking water standards. Groundwater salinization was predominantly driven by mineral dissolution and evaporation, compounded by agricultural and domestic inputs. 16S rRNA microbial sequencing identified Candidatus Omnitrophus from the phylum Verrucomicrobiota as a potential biomarker for saline groundwater. PICRUSt2 predictions revealed that the functional traits of microorganisms in saline groundwater tend to enhance adaptability, whereas those in fresh groundwater are more oriented toward growth and metabolism. Spearman correlation analysis showed strong correlations between carbon fixation and nitrification (r = 0.69) and thiosulfate oxidation (r = 0.60). Additionally, as groundwater salinization progressed, the abundance of nitrate- and sulfate-reducing bacteria increased, further impacting nitrogen, sulfur, and carbon cycles. This study deepens knowledge of the biogeochemical processes driving groundwater salinization in irrigation districts and provides new insights for research and management of groundwater salinization in these regions.
Collapse
Affiliation(s)
- Dawei Mu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
2
|
Li M, Qu S, Yu G, Bai Y, Yang X, Liu Z, Wu R, Ma H, Miao P, Huang F, Yu R. Hydrochemical insights into spatiotemporal characteristics of groundwater salinization and health risk assessment of fluoride in the south bank of Yellow River irrigation area, Northwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:115. [PMID: 40082291 DOI: 10.1007/s10653-025-02423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
The groundwater salinization problem in the south bank of the Yellow River irrigation area is severe, restricting the sustainability of groundwater resources. However, the groundwater salinization formation mechanism is unclear. Accordingly, this study analyzed the chemical characteristics and salinization mechanism of groundwater based on hydrochemical analyses (self-organizing maps, SOM), isotope analyses (δ18O and δD), and quantitative models (Rayleigh distillation model), as well as evaluating the potential health risks of fluoride. The results indicated that surface water and groundwater in the study area had high salinity and weak alkalinity, with the fluoride and total nitrogen (TN) content exceeding Grade III water standards. Additionally, only 42% of the water samples were suitable for drinking, with nitrogen sources being the main cause of water quality deterioration. Around half of the samples were unsuitable for irrigation. The spatial and temporal distribution of total dissolved solids (TDS) in the irrigation area was influenced by autumn irrigation. Overall, groundwater salinization was primarily attributed to evaporite dissolution, cation exchange, silicate weathering, and human inputs. Evaporation was not the main influencing factor. In addition, the non-carcinogenic risk of fluoride in the water body decreased as follows: infants > children > adult females > adult males. The results of this study deepen understanding of the relationship between changes in groundwater quality and the ecological environment in semi-arid inland areas, thereby promoting the rational utilization and scientific management of groundwater resources in the irrigation area.
Collapse
Affiliation(s)
- Muhan Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Shen Qu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| | - Guanglei Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yansong Bai
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xu Yang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zeyuan Liu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Rina Wu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Hongli Ma
- Ordos River and Lake Protection Center, Ordos, 017000, China
| | - Ping Miao
- Ordos River and Lake Protection Center, Ordos, 017000, China
| | - Fuyang Huang
- School of Environment and Resources, Southwest University of Sciences and Technology, Mianyang, 621010, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
3
|
Mu D, Li P, De Baets B, Li D, Li Z, He S. A multi-perspective exploration of the salinization mechanisms of groundwater in the Guanzhong Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177421. [PMID: 39521077 DOI: 10.1016/j.scitotenv.2024.177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
A comprehensive understanding of the salinization of groundwater in the Guanzhong Basin, China, is crucial for ensuring sustainable groundwater development. However, the mechanism driving salinization in different regions of the basin remains unclear. Therefore, this study employed multivariate statistical methods, hydrochemical analysis, isotope studies, and hydrochemical modeling to uncover the factors and processes influencing groundwater salinization. The results indicate significant regional variations in total dissolved solids (TDS), with concentrations exceeding 1000 mg/L predominantly occurring to the north of the Weihe River and the east of the Jinghe River. The correlations of groundwater chloride (Cl-) with Cl/Br molar ratio and stable isotopes show that groundwater salinity in the Guanzhong Basin is mainly controlled by mineral dissolution, and evaporation. In addition, human activities, such as vertical irrigation recharge and excessive fertilizer use, exacerbate local salinity levels. Irrigation activities worsen the shallow groundwater salt enrichment in the runoff zone of the central basin, revealed by the high salinity (TDS>3000 mg/L), high Cl/Br ratios (>2000), moderate δ2H (-57.5 to -67.5 ‰) and moderate δ18O (-8.1 to -8.9 ‰). High salinity (TDS>1000 mg/L), high nitrate concentration (>100 mg/L), and moderate Cl- (100 to 500 mg/L) indicate the impact of excessive fertilizer use. It is worth noting that intensive groundwater withdrawal disrupts the dynamic balance within the aquifer, causing shallow high-saline groundwater to percolate downward, thereby increasing the risk of deep groundwater pollution. The research enhances the understanding of groundwater salinity transport and provides insights into the effects of groundwater salinization in the irrigation area.
Collapse
Affiliation(s)
- Dawei Mu
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Dongfeng Li
- PowerChina Sinohydro Bureau 3 Co., LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an 710024, Shaanxi, China
| | - Zhaoyu Li
- PowerChina Sinohydro Bureau 3 Co., LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an 710024, Shaanxi, China
| | - Song He
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an 710065, Shaanxi, China
| |
Collapse
|
4
|
Qu S, Zhao Y, Zhang K, Wang J, Li M, Yang X, Ren X, Hao Y, Yu R. Multi-isotopes (δD, δ 18O water, 87Sr/ 86Sr, δ 34S and δ 18O sulfate) as indicators for groundwater salinization genesis and evolution of a large agricultural drainage lake basin in Inner Mongolia, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174181. [PMID: 38917902 DOI: 10.1016/j.scitotenv.2024.174181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Groundwater salinization, a major eco-environmental problem in arid and semi-arid areas, can accelerate soil salinization, reducing crop productivity and imbalances in ecosystem diversity. This study classified water samples collected from the Ulansuhai Lake basin into five clusters using self-organizing maps (SOM). On this basis, multiple isotopes (δ18Owater, δD, 87Sr/86Sr, δ18Osulfate and δ34S) and isotopic models (Rayleigh fractionation and Bayesian isotope mixing models) were used to identify and quantify the genesis and evolution of groundwater salinization. The results showed that the samples were brackish or saline water, and the hydrochemical types were dominated by Na + K-Cl (SO4). It has been proved that the processes associated with groundwater salinization in the Ulansuhai Lake basin were dominated by water-rock interaction and human inputs. Among them, evaporite dissolution contributed substantially to groundwater salinity. Furthermore, salt inputs from human activities cannot be negligible. Based on the model calculations, evaporite dissolution accounted for the most significant proportion of all sources, with a mean value of 53 %. In addition, human inputs from regular agricultural activities (28 % from sewage and manure and 8 % from fertilizers) constituted another vital source of groundwater salinization associated with extensive agricultural activities in the study area. This study's results can deepen our understanding of the genesis of groundwater salinization and the evolution of the agricultural drainage lake basin. This knowledge will assist the Environmental Protection Department in developing effective policies for groundwater management in the Yellow River Basin.
Collapse
Affiliation(s)
- Shen Qu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Yuanzhen Zhao
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Keyi Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Juliang Wang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Muhan Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xu Yang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaohui Ren
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanling Hao
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
5
|
Zhang H, Han X, Wang G, Zhou L, Huang D, Chen X, Zhang F. Hydrogeochemical and isotopic evidences of the underlying produced water intrusion into shallow groundwater in an oil production area, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170242. [PMID: 38278275 DOI: 10.1016/j.scitotenv.2024.170242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The extensive use of fossil fuels (e.g., oil) poses a hidden danger to groundwater quality. However, inorganic pollution has received limited attention compared to organic pollution. In this study, the potential contaminant sources to shallow groundwater were investigated using hydrochemical (e.g., major and trace elements) and isotopic (δ2H and δ18O) methods at an oil field, northwest China, with emphasis on the identification of produced water (PW; oil production-related water) intrusion. The results showed that the groundwater samples can be chemically and isotopically classified into two groups: Group A (severely polluted) and B (slightly or non- polluted). The hydrochemical characteristics of Group A were similar to that of PW, with a comparable Na+/Cl- ratio and elevated levels of Na+, Ca2+, Cl-, Br-, Sr, Ba, Li, B and total volatile organic compounds (TVOCs; volatile and semi-volatile) concentration, but lower HCO3- and SO42- contents, and depleted δ2H and δ18O, which was not suitable for drinking. Groundwater salinity sources involve mineral dissolution (silicate, carbonate and evaporite), cation exchange and anaerobic microbial degradation, as well as deep PW intrusion (especially in Group A). The Cl mixing model showed that PW contributed 13.63-27.78 % to Group A, supported by the results of the isotope mixing model based on δ2H and δ18O (24.43-33.29 %). An overall pollution conceptual model involves three modes: fracturing, surface infiltration, and groundwater lateral runoff. This study validates the effectiveness of Na, Cl, Br, Sr, Ba, Li and B as favorable tracers for monitoring PW intrusion.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Xu Han
- Geology Institute of China Chemical Geology and Mine Bureau, Beijing 100028, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Ling Zhou
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Dandan Huang
- School of Water Resources & Environment Engineering, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Fan Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
6
|
Wang S, Chen J, Zhang S, Bai Y, Zhang X, Chen D, Tong H, Liu B, Hu J. Hydrogeochemical characterization, quality assessment, and potential nitrate health risk of shallow groundwater in Dongwen River Basin, North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19363-19380. [PMID: 38355859 DOI: 10.1007/s11356-024-32426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Assessing groundwater geochemical formation processes and pollution circumstances is significant for sustainable watershed management. In the present study, 58 shallow groundwater samples were taken from the Dongwen River Basin (DRB) to comprehensively assess the hydrochemical sources, groundwater quality status, and potential risks of NO3- to human health. Based on the Box and Whisker plot, the cation's concentration followed the order of Ca2+ > Mg2+ > Na+ > K+, while anions' mean levels were HCO3- > SO42- > NO3- > Cl-. The NO3- level in groundwater samples fluctuated between 4.2 and 301.3 mg/L, with 67.2% of samples beyond the World Health Organization (WHO) criteria (50 mg/L) for drinking. The Piper diagram indicated the hydrochemical type of groundwater and surface water were characterized as Ca·Mg-HCO3 type. Combining ionic ratio analysis with principal component analysis (PCA) results, agricultural activities contributed a significant effect on groundwater NO3-, with soil nitrogen input and manure/sewage inputs also potential sources. However, geogenic processes (e.g., carbonates and evaporite dissolution/precipitation) controlled other ion compositions in the study area. The groundwater samples with higher NO3- values were mainly found in river valley regions with intense anthropogenic activities. The entropy weight water quality index (EWQI) model identified that the groundwater quality rank ranged from excellent (70.7%) and good (25.9%) to medium (3.4%). However, the hazard quotient (HQ) used in the human health risk assessment (HHRA) model showed that above 91.38% of groundwater samples have a NO3- non-carcinogenic health risk for infants, 84.48% for children, 82.76% for females, and 72.41% for males. The findings of this study could provide a scientific basis for the rational development and usage of groundwater resources as well as for the preservation of the inhabitants' health in DRB.
Collapse
Affiliation(s)
- Shou Wang
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jing Chen
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China.
| | - Shuxuan Zhang
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Yanjie Bai
- State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Xiaoyan Zhang
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Dan Chen
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Hao Tong
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Bingxiao Liu
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jiahong Hu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology of CAS, Shijiazhuang, 050021, Hebei, China
| |
Collapse
|
7
|
Sarkar S, Das K, Mukherjee A. Groundwater Salinity Across India: Predicting Occurrences and Controls by Field-Observations and Machine Learning Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3953-3965. [PMID: 38359304 DOI: 10.1021/acs.est.3c06525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Elevated groundwater salinity is unsuitable for drinking and harmful to crop production. Thus, it is crucial to determine groundwater salinity distribution, especially where drinking and agricultural water requirements are largely supported by groundwater. This study used field observation (n = 20,994)-based machine learning models to determine the probabilistic distribution of elevated groundwater salinity (electrical conductivity as a proxy, >2000 μS/cm) at 1 km2 across parts of India for near groundwater-table conditions. The final predictions were made by using the best-performing random forest model. The validation performance also demonstrated the robustness of the model (with 77% accuracy). About 29% of the study area (including 25% of entire cropland areas) was estimated to have elevated salinity, dominantly in northwestern and peninsular India. Also, parts of the northwestern and southeastern coasts, adjoining the Arabian Sea and the Bay of Bengal, were assessed with elevated salinity. The climate was delineated as the dominant factor influencing groundwater salinity occurrence, followed by distance from the coast, geology (lithology), and depth of groundwater. Consequently, ∼330 million people, including ∼109 million coastal populations, were estimated to be potentially exposed to elevated groundwater salinity through groundwater-sourced drinking water, thus substantially limiting clean water access.
Collapse
Affiliation(s)
- Soumyajit Sarkar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Kousik Das
- Department of Environmental Science and Engineering, SRM University-AP, Amravati, Andhra Pradesh 522502, India
- Centre for Geospatial Technology, SRM University-AP, Amravati, Andhra Pradesh 522502, India
| | - Abhijit Mukherjee
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
8
|
Zhang Q, Qian H, Ren W, Xu P, Li W, Yang Q, Shang J. Salinization of shallow groundwater in the Jiaokou Irrigation District and associated secondary environmental challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168445. [PMID: 37949127 DOI: 10.1016/j.scitotenv.2023.168445] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Understanding groundwater salinization of irrigation areas and related secondary environmental challenges is important for ensuring sustainable development. However, the mechanism under which groundwater salinization forms under the influence of long-term anthropogenic activities remains unclear. Therefore, this study analyzed the spatiotemporal variation in groundwater salinization and the underlying mechanism, and discussed the secondary environmental challenges in an irrigation area. The Jiaokou Irrigation District, North China, was adopted as a case study. The results showed a slight downward trend in groundwater salinity over the past two decades at a rate of 0.0229 g/L/y. Higher groundwater salinity was observed in areas with shallow groundwater depth. This correlation was mainly attributed to evaporative concentration, with secondary processes including natural weathering, depth of water-table, and fertilizer leaching. Drainage ditches may reduce groundwater salinity. Groundwater was transformed from freshwater to salt water and then to brackish water during the runoff process. The former transformation is mainly related to evaporation and fertilization. The latter transformation could be related to the inverse relationship between the distance to the Wei River and sediment permeability, with sediment permeability positively related to groundwater flow and leading to the discharge of salt into the Wei River. The secondary environmental challenges related to groundwater salinization in irrigation areas, mainly manifested in deterioration of irrigation water quality, soil salinization, and increased fluorine concentration. This study can act as a theoretical and practical reference for the development and utilization of water resources, ecological protection, and soil salinization in typical irrigation districts.
Collapse
Affiliation(s)
- Qiying Zhang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
| | - Hui Qian
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China.
| | - Wenhao Ren
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Panpan Xu
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Weiqing Li
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Qiaoyang Yang
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Jiatao Shang
- Wugong County Water Conservancy Bureau, Xianyang City, Shaanxi Province, China
| |
Collapse
|
9
|
Chen J, Wang S, Zhang S, Bai Y, Zhang X, Chen D, Hu J. Identifying the hydrochemical features, driving factors, and associated human health risks of high-fluoride groundwater in a typical Yellow River floodplain, North China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8709-8733. [PMID: 37707643 DOI: 10.1007/s10653-023-01748-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Fluoride enrichment (> 1.5 mg/L) in groundwater has become a global threat, particularly given the hazards to human health. This study collected 58 unconfined groundwater samples from Fengpei Plain in June 2022 for hydrochemical and stable isotope analyses combined with multiple methods to explore sources, influencing factors, and potential health hazards of groundwater F-. The results showed that groundwater F- concentration ranged from 0.08 to 8.14 mg/L, with an average of 1.91 mg/L; over 41.4% of them exceeded the acceptable level of 1.5 mg/L prescribed by the World Health Organization (WHO). The dominant hydrochemical facies changed from Ca·Mg-HCO3 and Ca·Mg-SO4·Cl type in low-F- groundwater to Na-HCO3 and Na-SO4·Cl water types in high-F- groundwater. The Self-Organizing Map (SOM) and ionic correlation analysis indicated that F- is positively correlated to pH, EC, Na+, K+, SO42-, and TDS, but negatively to Ca2+ and δ18O. Groundwater F- accumulation was primarily driven by F--bearing minerals dissolution such as fluorite. Simultaneously, the carbonates precipitation, positive cation exchange processes, and salt effect were conducive to groundwater F- enrichment. However, competitive adsorption between OH-/HCO3- and F-, evaporation, and anthropogenic activities only had a weak effect on the F- enrichment in groundwater. The hazard quotient (HQ) assessment results show that 67.2% of groundwater samples pose a non-carcinogenic risk (HQ > 1) for infants, followed by 53.4% for children, 32.8% for females, and 25.9% for males. The Monte Carlo simulation results agreed with those of the deterministic model that minors are more susceptible than adults. These findings are vital to providing insights into the geochemical behavior, driving factors, and drinking water safety of high-F- groundwater worldwide.
Collapse
Affiliation(s)
- Jing Chen
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Shou Wang
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China.
| | - Shuxuan Zhang
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Yanjie Bai
- Nanjing Hydraulic Research Institute, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China
| | - Xiaoyan Zhang
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Dan Chen
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jiahong Hu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology of CAS, Shijiazhuang, 050021, Hebei, China
| |
Collapse
|
10
|
Jiang C, Li M, Li C, Huang W, Zheng L. Combining hydrochemistry and 13C analysis to reveal the sources and contributions of dissolved inorganic carbon in the groundwater of coal mining areas, in East China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7065-7080. [PMID: 37572235 DOI: 10.1007/s10653-023-01726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
East China is a highly aggregated coal-grain composite area where coal mining and agricultural production activities are both flourishing. At present, the geochemical characteristics of dissolved inorganic carbon (DIC) in groundwater in coal mining areas are still unclear. This study combined hydrochemical and carbon isotope methods to explore the sources and factors influencing DIC in the groundwater of different active areas in coal mining areas. Moreover, the 13C isotope method was used to calculate the contribution rates of various sources to DIC in groundwater. The results showed that the hydrochemical types of groundwater were HCO3-Ca·Na and HCO3-Na. The main water‒rock interactions were silicate and carbonate rock weathering. Agricultural areas were mainly affected by the participation of HNO3 produced by chemical fertilizer in the weathering of carbonate rocks. Soil CO2 and carbonate rock weathering were the major sources of DIC in the groundwater. Groundwater in residential areas was primarily affected by CO2 from the degradation of organic matter from anthropogenic inputs. Sulfate produced by gypsum dissolution, coal gangue accumulation leaching and mine drainage participated in carbonate weathering under acidic conditions, which was an important factor controlling the DIC and isotopic composition of groundwater in coal production areas. The contribution rates of groundwater carbonate weathering to groundwater DIC in agricultural areas and coal production areas ranged from 57.46 to 66.18% and from 54.29 to 62.16%, respectively. In residential areas, the contribution rates of soil CO2 to groundwater DIC ranged from 51.48 to 61.84%. The results will help clarify the sources and circulation of DIC in groundwater under the influence of anthropogenic activities and provide a theoretical reference for water resource management.
Collapse
Affiliation(s)
- Chunlu Jiang
- School of Resources and Geoscience, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China.
| | - Ming Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Chang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Wendi Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|
11
|
Jiang C, Jiang C, Zha J, Liu H, Liu D, Zheng L. Water chemistry and stable isotope characteristics of subsidence lakes in coal mining areas, Eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43152-43167. [PMID: 36648714 DOI: 10.1007/s11356-023-25285-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Many subsidence lakes have formed in eastern China as a result of underground coal mining. These coal mining-related subsidence lakes vary in their formation time and connectivity with rivers. These factors may influence the water chemistry and hydrogen and oxygen stable isotope characteristics of the lake water. This study collected and tested subsidence lake water, atmospheric precipitation, river water, and shallow groundwater in the study area. The results showed that the water chemical types of the subsidence lake water and river water are Cl-Na and HCO3·Cl-Na and that the water chemical types of the shallow groundwater are mainly HCO3·Cl-Na and HCO3·Cl-Ca. There are no significant differences in the water chemical characteristics of subsidence lakes with different subsidence ages and types. The major ions in each water body mainly come from evaporite dissolution and silicate weathering, and ion exchange occurs. Reverse ion exchange occurs in some shallow groundwater samples. The stable isotopes of hydrogen and oxygen in the subsidence lake water, river water, and shallow groundwater are distributed along a straight line with a slope less than that of the LMWL, indicating that these water bodies have a common source, namely, precipitation. With increases in the formation time of the subsidence lakes, the heavy isotopes in the lake water gradually become depleted, and the d value gradually increases, mainly driven by precipitation dilution, weakening evaporation, river recharge, and groundwater recharge. The isotopic values of different types of lakes with the same subsidence time differ little. The research results may provide scientific guidance for the rational development and utilization of water resources in coal mining subsidence areas, enrich the study of the hydrological cycle in the area, and are of great significance for the protection of the local water balance and water environment.
Collapse
Affiliation(s)
- Chunlu Jiang
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China.
| | - Chenghong Jiang
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| | - Junzhen Zha
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| | - Hui Liu
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| | - Dou Liu
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| | - Liugen Zheng
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|
12
|
Chen X, Zheng L, Zhu M, Jiang C, Dong X, Chen Y. Quantitative identification of nitrate and sulfate sources of a multiple land-use area impacted by mine drainage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116551. [PMID: 36283198 DOI: 10.1016/j.jenvman.2022.116551] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The rapid increase in urbanization and intensive coal mining activities have accelerated the deterioration of surface water quality. Environmental problems caused by the accumulation of nitrate and sulfate from natural, urban, and agricultural sources have attracted extensive attention. Information on nitrate and sulfate sources and their transformations is crucial for understanding the nitrogen and sulfur cycles in surface water. In this study, we monitored nitrate and sulfate in three representative rivers in mining cities in northern China. The main pollution sources and biogeochemical processes were identified by using stable isotopes (δD, δ18OH2O, δ15N, δ18ONO3, δ34S and δ18OSO4) and hydrochemistry. The contribution of natural and anthropogenic sources was quantitatively estimated based on a Bayesian mixed model. The results indicated a large variation in sulfate and nitrate sources between the different rivers. Nitrate in the Tuohe River mainly derived from manure/sewage (57.9%) and soil N (26.9%), while sulfate mainly derived from manure/sewage (41.7%) and evaporite dissolution (26.8%). For the Suihe River, nitrate was primarily sourced from chemical fertilizer (37.9%) and soil nitrogen (34.8%), while sulfate was mainly sourced from manure/sewage (33.1%) and chemical fertilizer (21.4%). For the Huihe River, nitrate mainly derived from mine drainage (56.6%) and manure/sewage (30.6%), while sulfate predominantly originated from mine drainage (58.3%) and evaporite dissolution (12.9%). Microbial nitrification was the major pathway for the migration and transformation of nitrate in the surface water. However, denitrification and bacterial sulfate reduction (BSR) did not play a significant role as aerobic conditions prevailed. In this study, we elucidated the sources and transformation mechanisms of nitrate and sulfate. Additionally, we provided a reference for formulating a comprehensive strategy for effective management and remediation of surface water contaminated with nitrate and sulfate in mining cities.
Collapse
Affiliation(s)
- Xing Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China; School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China.
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China.
| | - Manzhou Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Xianglin Dong
- Geological Survey Division, Huaibei Coal Mining Group Corporation, Huaibei, 235001, Anhui, China
| | - Yongchun Chen
- National Engineering Laboratory of Coal Mine Ecological Environment Protection, Huainan, 232001, Anhui, China
| |
Collapse
|
13
|
Chen K, Liu Q, Yang T, Ju Q, Feng Y. Statistical analyses of hydrochemistry in multi-aquifers of the Pansan coalmine, Huainan coalfield, China: implications for water-rock interaction and hydraulic connection. Heliyon 2022; 8:e10690. [PMID: 36164538 PMCID: PMC9508562 DOI: 10.1016/j.heliyon.2022.e10690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
Understanding the groundwater hydrogeochemical processes and aquifer hydraulic connections are essential for effective prevention of water inrush in concealed coal mines. In this study, 40 groundwater samples were collected from the loose layer aquifer (LA), coal measure aquifer (CA), and limestone aquifer (LA) in the Pansan coal mine, Huanan coalfield, China, and the major ion concentrations were analyzed by bivariate diagrams (Na+ + K+ - Cl− versus Ca2+ + Mg2+ - SO42− - HCO3− and CAI-I versus CAI-II), multivariate statistical methods, and receptor model in order to identify the water-rock interactions and aquifer hydraulic connections. Piper diagram showed that groundwater in LA and TA was dominated by the Na–Cl type, while groundwater in CA was mainly of the Na–HCO3 type. Based on the results of bivariate diagrams and PCA/FA, weathering of silicate minerals and cation exchange (source 1), sulfate dissolution (source 2) and chloride dissolution (source 3) were the main processes controlling the groundwater chemistry. Unmix model revealed that the mean contribution of source 1 to CA samples was 74%, while LA and TA samples have higher contributions from evaporite dissolution (source 2 and source 3) relative to CA samples. Moreover, both clustering analysis methods (Q-type hierarchical and K-means cluster) confirmed the existence of a hydraulic connection between LA and TA in the northeastern part of the study area. It is concluded that the application of multivariate statistical analysis to interpret groundwater chemistry can provide useful guidance to prevent water inrush in coal mines.
Collapse
Affiliation(s)
- Kai Chen
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China.,State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Huainan 232001, China
| | - Qimeng Liu
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China
| | - Tingting Yang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China.,State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Huainan 232001, China
| | - Qiding Ju
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China.,State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Huainan 232001, China
| | - Yu Feng
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|
14
|
Ren M, Zheng L, Wang D, Chen X, Dong X, Wei X, Cheng H. Copper isotope ratios allowed for quantifying the contribution of coal mining and combustion to total soil copper concentrations in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119613. [PMID: 35705153 DOI: 10.1016/j.envpol.2022.119613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The most prominent source of Cu contamination in soils is metal mining and processing, partly since the Middle Age. However, coal mining and combustion can also cause (some) Cu contamination. We studied the distribution of Cu concentrations and isotope ratios in soils of the Huaibei coal mining area. The contribution of the coal mining and combustion to total Cu concentrations in soil was determined with a two-end-member mixing model based on the distinct δ65Cu values of the Cu emitted from coal mining and combustion and in native soil. The mean Cu concentration of 75 mg kg-1 exceeded the local soil background value (round to 22.13 mg kg-1). The similar δ65Cu value of grass near the coal mining and combustion operation as in gangue and flying ash indicated a superficial Cu contamination. Mining input was the dominant source of Cu in the contaminated soils, contributing up to 95% and on average 72% of the total Cu in the topsoils. The mining-derived Cu was leached to a depth of 65 cm, where still 29% of the Cu could be attributed to the mining emissions. Grasses showed lower δ65Cu values than the topsoils, because of the preferential uptake of light Cu isotopes. However, the Δ65Cugrass-soil was lower in the contaminated than the uncontaminated area because of superficial adsorption of isotopically heavy Cu from the mining emissions. Overall, in this study the distinct δ65Cu values of the mining-derived Cu emissions and the native soil allowed for the quantification of the mining-derived Cu and had already reached the subsoil and contaminated the grass by superficial adsorption in only 60 years of mining operation.
Collapse
Affiliation(s)
- Mengxi Ren
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China.
| | - Dandan Wang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Xing Chen
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Xianglin Dong
- Geological Survey Division, Huaibei Coal Mining Group Corporation, Huaibei, 235001, Anhui, China
| | - Xiangping Wei
- Geological Survey Division, Huaibei Coal Mining Group Corporation, Huaibei, 235001, Anhui, China
| | - Hua Cheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| |
Collapse
|
15
|
Qingguang L, Pan W, Xuexian L, Shangyi G, Ruixue Z, Xuefang Z, Shichan Q. The effect of mining development in karst areas on water acidification and fluorine enrichment in surface watersheds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113954. [PMID: 35999768 DOI: 10.1016/j.ecoenv.2022.113954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
High fluoride water is a crucial driving factor for endemic fluorosis. As an important research content of hydrogeochemistry, the enrichment of fluorine in alkaline water has received a fair amount of scholarly attention, but the understanding of the migration and enrichment of fluorine in acid mine drainage (AMD) in karst area remains very limited. An analysis of 13 consecutive periods of hydrochemical samples (312 samples in total) revealed that the weathering of carbonates and sulfide-rich coal measures induced a pH as low as 2.29 in the Chetian River in Jinsha, Southwest China. The highest content of fluorine in AMD was 23.8 mg/L, and the average content in the basin was 1.4 mg/L. In terms of the seasonal variation in the whole basin, the fluorine content were higher in the rainy season than in the dry season. The mineral saturation index shows that the dissolution of fluorapatite and fluorite is an important source of fluorine. The chloro-alkaline indices displayed a strong ion exchange process in the basin, promoting the release of fluorine in silicate minerals. In comparison, the contribution of external inputs, such as atmospheric deposition, was less. Additionally, evaporation was shown to have a limited influence on fluorine enrichment. Meanwhile, pH was an essential factor driving the dynamic transformation of the mode of occurrence of fluorine in water. In the upstream alkaline water, the main occurrence form of fluorine was free F-, while the F/Al ratio for most of the acidic samples was ≤ 1.0, indicating the main occurrence form of fluorine was likely AlF2+. The conclusion of this study provides a new understanding for deepening the geochemical characteristics of fluorine in karst surface water.
Collapse
Affiliation(s)
- Li Qingguang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Wu Pan
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Li Xuexian
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Gu Shangyi
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Zhang Ruixue
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Zha Xuefang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Qin Shichan
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
16
|
Li C, Li Y, Cheng H, Jiang C, Zheng L. Remediation of Soil Mercury by Modified Vermiculite-Montmorillonite and Its Effect on the Growth of Brassica chinensis L. Molecules 2022; 27:5340. [PMID: 36014576 PMCID: PMC9416574 DOI: 10.3390/molecules27165340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
In this study, the surface of vermiculite-montmorillonite was modified by MnO2 loading. The modified vermiculite-montmorillonite was added to remediate the potentially toxic trace element (PTE) Hg present in soil containing coal gangue. Pot experiments were conducted to analyze and compare the pH values, Hg contents and Hg species present in coal gangue-containing soil, with and without the modified materials added, to determine whether the addition of modified materials had an effect on the growth of Brassica chinensis L. Results showed that with the addition of 35 g·kg-1 modified vermiculite-montmorillonite, the pH of soil increased by a value of 0.79, compared with that in the control group. When 15 g·kg-1 was added, the concentration of Hg in soil decreased by 98.2%. The addition of modified materials promoted the transformation of Hg in soil from a bioavailable form to an unavailable form; that is, the content of the residual form increased. The plant height and biomass of Brassica chinensis L. also increased, which indicated that the addition of modifiers can increase soil productivity, reduce the effects of PTEs on organisms in soil, and promote plant growth. Therefore, the addition of modified vermiculite-montmorillonite can achieve remediation of coal gangue-containing soil.
Collapse
Affiliation(s)
- Chang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Yuchen Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Hua Cheng
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| |
Collapse
|
17
|
Zheng L, Jiang C, Chen X, Li Y, Li C, Zheng L. Combining hydrochemistry and hydrogen and oxygen stable isotopes to reveal the influence of human activities on surface water quality in Chaohu Lake Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114933. [PMID: 35366511 DOI: 10.1016/j.jenvman.2022.114933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The input of pollutants caused by human activities induces the deterioration of surface water quality. To reveal the characteristics of surface water quality in Chaohu Lake Basin and the influence of human activities, the hydrochemistry and stable isotope composition of hydrogen and oxygen in lake water and inflow river water were analyzed. The results show that the hydrochemical type of lake water is the Na-Cl type,while river water is the Na-Cl, Ca-Cl and mixed types. The ion proportional coefficient method and principal component analysis show that surface water is controlled by weathering of evaporated salt rocks and silicate rocks, in which Cl- and SO42- are affected by fertilizers and sewage to some extent. There is a strong correlation between conventional ions and nutrient indexes, which indicates that dissolved ions are affected not only by rock weathering but also by human activities (such as the discharge of domestic sewage or nitrogen-containing wastewater and the use of fertilizers). The stable isotope values of hydrogen and oxygen in surface water are distributed at the lower right portion of the local precipitation line and are close to it, indicating that surface water mainly originates from precipitation. The high value of d-excess values in surface water indicates that evaporation is weak. As pollution indicators, EC, Cl- and NO3- indicates that the Nanfei River, Dianbu River, Shiwuli River and Pai River flow in northwestern of Chaohu Lake Basin through Hefei urban city are severely polluted, NO3- originates from manure and sewage. Rivers flowing through farmland areas are less polluted, and the use of agricultural fertilizer contributes greatly to NO3-.
Collapse
Affiliation(s)
- Lanlan Zheng
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| | - Chunlu Jiang
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China.
| | - Xing Chen
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| | - Yanhao Li
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| | - Chang Li
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| | - Liugen Zheng
- School of Resource and Environmental Engineering, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|
18
|
Optimizing the Water Ecological Environment of Mining Cities in the Yangtze River Economic Belt Using the Cloud Model, CV-TOPSIS, and Coupling Coordination Degree. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042469. [PMID: 35206657 PMCID: PMC8879127 DOI: 10.3390/ijerph19042469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
The Yangtze River Economic Belt (YREB) is the core region for the security of mineral resources in China and is a strategic water source containing rich water resources. Coordinating the security of mineral resources and water resources in the YREB is a key problem. Establishing and optimizing the water ecological environment (WEE) is crucial for addressing this problem in mining cities, which are the main bases for the supply of mineral resources. This study applies the cloud model, CV-TOPSIS, the standard deviation ellipse, and the coupling coordination degree model to evaluate the WEE and the coordinated development state, and to optimize the WEE. The results show that: (1) the WEE of mining cities in the YREB is generally good; (2) the protection of WEE in most mining cities has achieved significant results recently, and the results in the downstream are more remarkable than those in the mid-upstream; (3) the coordinated development of WEE in regenerative mining cities is better than that of mature and declining cities; and (4) most mining cities still belong to the lagging type of water environment (heavy metal pollution has been better treated and the threat of water ecological security caused by heavy metal pollution is low). This study suggests improvements to the sewer system, promotes WEE management in the mid-upstream, and propels the transformational development of mature and declining mining cities in advance.
Collapse
|
19
|
Heng T, He XL, Yang LL, Xu X, Feng Y. Mechanism of Saline-Alkali land improvement using subsurface pipe and vertical well drainage measures and its response to agricultural soil ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118583. [PMID: 34861335 DOI: 10.1016/j.envpol.2021.118583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Salinization is recognized as a threat to agricultural productivity and land resources in global arid desert regions. To date, field soil improvement schemes have met with minimal success to date. We aimed to improve saline-alkali soils by assessing the effects of combining subsurface pipe (Pa) and vertical well (Sa) drainage measures on agricultural soils ecosystem. In a five-year field experiment, soil was sampled 0.5 m, 5 m, 7.5 m horizontally away from the Pa, and 0.5 m, 30 m, 60 m horizontally away from the Sa. Findings indicate that the soil electrical conductivity (EC) decreased from 16 dS m-1 to 3 dS m-1 at a 0-80 cm depth, and the soil desalination efficiency was great at the 0-300 cm depths (≥ 32%) than at the 400-700 cm depths (-14%-74.7%). The combined Pa and Sa drainage measures significantly decreased the species richness and quantity of soil microbial communities, and their negative impact on observed species was irreversible within 1 year. The farther the horizontal sampling conducted from the Pa and Sa, the greater the structural similarity of the microbial community at the genus level, higher the catalase, acidic protease, and neutral phosphatase activities, and lower the alkaline phosphatase activity. The overall decrease in groundwater level from 2016 to 2020 was 5.7 m. The seed cotton yield increased by 3.2 t ha-1. The results suggest that the value of saline-alkali soil can be improved by combining Pa and Sa drainage measures. Our research provides guidance for further effective utilization of agricultural water and soil resources and the sustainable development of the soil ecosystem in arid desert areas.
Collapse
Affiliation(s)
- Tong Heng
- College of Water and Architectural Engineering, Shihezi University, Shihezi, China; Xinjiang Production and Construction Group Key Laboratory of Modern Water-Saving Irrigation, Xinjiang, China
| | - Xin-Lin He
- College of Water and Architectural Engineering, Shihezi University, Shihezi, China; Xinjiang Production and Construction Group Key Laboratory of Modern Water-Saving Irrigation, Xinjiang, China.
| | - Li-Li Yang
- College of Water and Architectural Engineering, Shihezi University, Shihezi, China; Xinjiang Production and Construction Group Key Laboratory of Modern Water-Saving Irrigation, Xinjiang, China
| | - Xuan Xu
- College of Water and Architectural Engineering, Shihezi University, Shihezi, China; Xinjiang Production and Construction Group Key Laboratory of Modern Water-Saving Irrigation, Xinjiang, China
| | - Yue Feng
- College of Water and Architectural Engineering, Shihezi University, Shihezi, China; Xinjiang Production and Construction Group Key Laboratory of Modern Water-Saving Irrigation, Xinjiang, China
| |
Collapse
|