1
|
Reindl AR, Wolska L, Grajewska A, Kucharska K, Kalicki M, Pawliczka I. One health perspective on environmental contaminants - rare earth and trace element exposure in baltic grey seal across life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179540. [PMID: 40311339 DOI: 10.1016/j.scitotenv.2025.179540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Affiliation(s)
- Andrzej R Reindl
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland.
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Grajewska
- Institute of Meteorology and Water Management - National Research Institute, Gdynia, Poland
| | - Katarzyna Kucharska
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Poland
| | | | | |
Collapse
|
2
|
Song W, Wu Z, Yi W, Wang S, Zhang H, Liu J. Rare earth elements in the Yellow River estuary, China: Composition, distribution, and pollution insights. MARINE POLLUTION BULLETIN 2025; 212:117599. [PMID: 39855062 DOI: 10.1016/j.marpolbul.2025.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Rare earth elements (REE) are emerging aquatic trace pollutants. A total of 191 sediment samples were analyzed from the Yellow River estuary to study the REE geochemical behavior and environmental impact. The results showed that the samples contained high REE levels, and the average total amount of REE was 195.28 μg/g. REE enrichment was prominent in northern and northeastern fine-grained sediment zones, less near the coast, and the enrichment level was correlated with sediment grain size and land-based influences. Although the REE content varied greatly among the sampling stations, the distribution patterns were similar. They all had a right-dipping negative slope pattern, were relatively enriched in the light rare earth elements (LREE), and were characterized by a V-type REE distribution pattern with an Eu deficit. Evaluation using Geoaccumulation Index (Igeo), Contamination Factor (CF) and Pollution Load Index (PLI) showed that the sediments in the Yellow River estuary were generally in a state of slight REE pollution.
Collapse
Affiliation(s)
- Wei Song
- Key Laboratory of coastal zone geological environment protection, Shandong Geology and Mineral Exploration and Development Bureau, Shandong Provincial NO.4 Institute of Geological and Mineral Survey, Weifang 261021, China
| | - Zhen Wu
- Key Laboratory of coastal zone geological environment protection, Shandong Geology and Mineral Exploration and Development Bureau, Shandong Provincial NO.4 Institute of Geological and Mineral Survey, Weifang 261021, China; College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
| | - Weihong Yi
- Key Laboratory of coastal zone geological environment protection, Shandong Geology and Mineral Exploration and Development Bureau, Shandong Provincial NO.4 Institute of Geological and Mineral Survey, Weifang 261021, China
| | - Shenyu Wang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Hongbin Zhang
- Key Laboratory of coastal zone geological environment protection, Shandong Geology and Mineral Exploration and Development Bureau, Shandong Provincial NO.4 Institute of Geological and Mineral Survey, Weifang 261021, China
| | - Jinqing Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
3
|
Pinto J, Cunha M, Leite C, Soares AMVM, Freitas R, Pereira E. Investigating the effects of anthropogenic yttrium contamination: Biochemical alterations in the gills and digestive gland of exposed mussels (Mytilus galloprovincialis). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104650. [PMID: 39909114 DOI: 10.1016/j.etap.2025.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
The rapid growth of electronic waste, including fluorescent lamp waste (FLW), has led to an increase in elements like yttrium (Y) and other rare earth elements (REE) in aquatic environments due to improper waste management. However, there are no guidelines for permissible concentrations of these elements in the environment. This study examines the biochemical impacts of varying Y concentrations (50, 100, and 200 µg L-1), mimicking a FLW discharge, on the gills and digestive gland of Mytilus galloprovincialis exposed for 14 days. Energy reserves, antioxidant and biotransformation enzymes, lipid peroxidation (LPO), and neurotoxicity were measured. Results showed a limited antioxidant capacity in the gills at the highest Y concentration. Additionally, increased LPO levels in both organs suggest oxidative stress-induced damage. The study underscores the need for regulations to address Y contamination and safeguard aquatic ecosystems, proposing a reference value for permissible concentrations based on the observed effects.
Collapse
Affiliation(s)
- João Pinto
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Marta Cunha
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carla Leite
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Amadeu M V M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Rosa Freitas
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Eduarda Pereira
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
4
|
Liu Q, Jiang Z, Qiu M, Andersen ME, Crabbe MJC, Wang X, Zheng Y, Qu W. Subchronic Exposure to Low-Level Lanthanum, Cerium, and Yttrium Mixtures Altered Cell Cycle and Increased Oxidative Stress Pathways in Human LO-2 Hepatocytes but Did Not Cause Malignant Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22002-22013. [PMID: 39629941 DOI: 10.1021/acs.est.4c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Human exposures to rare earth elements are increasing with expanded use in aerospace, precision instruments, and new energy batteries, materials, and fertilizers. Individually these elements have low toxicity, although few investigations have examined the health effects of longer-term mixture exposures. We used the LO-2 cell line to examine the effects of graded exposures to lanthanum, cerium, and yttrium (LCY) mixtures at 1-, 100-, and 1000-fold their human background levels (0.31 μg/L La, 0.25 μg/L Ce, and 0.12 μg/L Y) on cell cycle, oxidative stress, and nuclear factor erythroid-2-related factor (NRF2) pathway biomarkers, assessing responses every 10 passages up to 100 passages. Cell migration, concanavalin A, malignant transformation, and tumorigenesis in nude mice were also examined. Mixed LCY exposures activated oxidative stress and the NRF2 pathway by the 30th passage and increased the proportion of cells in the S phase and cell cycle-specific biomarkers by the 40th passage. LCY exposures did not cause malignant transformation of hepatocytes or induced tumorigenesis in nude mice but enhanced cell proliferation, migration, and agglutination. Importantly, LCY mixtures with longer-term exposure activated the NRF2 pathway and altered the hepatocyte cell cycle at doses far below those used in previous toxicological studies. The consequences of LCY mixtures for public health merit further study.
Collapse
Affiliation(s)
- Qinxin Liu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Meiyue Qiu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Melvin E Andersen
- ScitoVation LLC. 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, United Kingdom
| | - Xia Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University No.308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
5
|
Leite C, Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. Complex interactions of rare earth elements in aquatic systems: Comparing observed and predicted cellular responses on Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176608. [PMID: 39349203 DOI: 10.1016/j.scitotenv.2024.176608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Recent societal and technological developments have led to new sources of contamination, particularly from electronic waste (e-waste). The rapid increase in e-waste, combined with inadequate disposal and recycling practices has resulted in rising levels of hazardous substances in aquatic systems, including rare-earth elements (REEs). However, the effects of REEs on aquatic organisms remain poorly understood. This lack of understanding is concerning since REEs can simultaneously appear in aquatic systems. Thus, this study aimed to evaluate the impacts of Yttrium (Y), Lanthanum (La), and Gadolinium (Gd), individually and as mixtures on the mussel species Mytilus galloprovincialis. Biomarkers related to metabolism, energy reserves, defence enzymes, redox balance, cellular damage, and neurotoxicity were analyzed. The results obtained showed that Y alone caused minimal stress, while Gd, La, and their mixtures induced from moderate to severe stress, increasing metabolic activity, and enzyme responses. This study highlights the ecological impacts of REEs mixtures on aquatic organisms. The complex interactions and additive effects, especially with Gd, underline the need for further research on contaminant mixtures.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Madalena Andrade
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, 08003 Barcelona, Spain
| | - Eduarda Pereira
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Varrà MO, Husáková L, Iacumin P, Piroutková M, Rossi M, Patočka J, Ghidini S, Zanardi E. A synergistic solution for fighting fraudulent practices in squid using light stable isotope ratios and lanthanide tracers. Food Chem 2024; 459:140303. [PMID: 38991452 DOI: 10.1016/j.foodchem.2024.140303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
To identify a novel optimized strategy for preventing fraudulent substitutions of squid species and origins, forty European squids (Loligo vulgaris) and forty flying squids (Todarodes sagittatus) from the Mediterranean Sea and Atlantic Ocean were analyzed for δ13C, δ15N, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu using isotope ratio mass spectrometry and inductively coupled plasma-mass spectrometry. While δ13C and δ15N variations were mainly species-related, they alone could not reliably distinguish samples. To address this issue, decision rules were developed using Classification and Regression Tree analysis. Threshold values for δ13C (-19.91‰), δ15N (14.87‰), and Pr (0.49 μg kg-1) enabled successful discrimination among Mediterranean European squids, Atlantic European squids, Mediterranean flying squids, and Atlantic flying squids, achieving over 90% accuracy, 81% precision, 80% sensitivity, and 93% specificity. This method holds promise for enhancing traceability and safety in the seafood industry, ensuring product integrity and consumer trust.
Collapse
Affiliation(s)
- Maria Olga Varrà
- Department of Food and Drug, University of Parma, 43126 Parma, Italy
| | - Lenka Husáková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573 HB/D, Pardubice, CZ-532 10, Czech Republic
| | - Paola Iacumin
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Martina Piroutková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573 HB/D, Pardubice, CZ-532 10, Czech Republic
| | - Mattia Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Jan Patočka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573 HB/D, Pardubice, CZ-532 10, Czech Republic
| | - Sergio Ghidini
- Department of Veterinary Medicine and Animal Sciences Milan University, 26900 Lodi, Italy
| | - Emanuela Zanardi
- Department of Food and Drug, University of Parma, 43126 Parma, Italy.
| |
Collapse
|
7
|
Riedel JA, Smolina I, Donat C, Svendheim LH, Farkas J, Hansen BH, Olsvik PA. Into the deep: Exploring the molecular mechanisms of hyperactive behaviour induced by three rare earth elements in early life-stages of the deep-sea scavenging amphipod Tmetonyx cicada (Lysianassidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175968. [PMID: 39226952 DOI: 10.1016/j.scitotenv.2024.175968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
With increasing socio-economic importance of the rare earth elements and yttrium (REY), Norway has laid out plans for REY mining, from land-based to deep-sea mining, thereby enhancing REY mobility in the marine ecosystem. Little is known about associated environmental consequences, especially in the deep ocean. We explored the toxicity and modes of action of a light (Nd), medium (Gd) and heavy (Yb) REY-Cl3 at four concentrations (3, 30, 300, and 3000 μg L-1) in the Arcto-boreal deep-sea amphipod Tmetonyx cicada. At the highest concentration, REY solubility was limited and increased with atomic weight (Nd < Gd < Yb). Lethal effects were practically restricted to this treatment, with the lighter elements being more acutely toxic than Yb (from ∼50 % mortality in the Gd-group at dissolved 689-504 μg L-1 to <20 % in the Yb-group at ca. 2000 μg L-1), which could be a function of bioavailability. All three REY induced hyperactivity at the low-medium concentrations. Delving into the transcriptome of T. cicada allowed us to determine a whole array of potential (neurotoxic) mechanisms underlying this behaviour. Gd induced the vastest response, affecting serotonin-synthesis; sphingolipid-synthesis; the renin-angiotensin system; mitochondrial and endoplasmic reticulum functioning (Gd, Nd); and lysosome integrity (Gd, Yb); as well as the expression of hemocyanin, potentially governing REY-uptake (Gd, Yb). While Nd and Yb shared only few pathways, suggesting a link between mode of action and atomic weight/radius, almost all discussed mechanisms imply the disruption of organismal Ca-homeostasis. Despite only fragmental genomic information available for crustaceans to date, our results provide novel insight into the toxicophysiology of REY in marine biota. The neurotoxic/behavioural effects in T. cicada at concentrations with potential environmental relevance warn about the possibility of bottom-up ecological consequences in mining exposed fjords and deep-sea ecosystems, calling for follow-up studies and regulatory measures prior to the onset of REY mining in Norway.
Collapse
Affiliation(s)
- Juliane Annemieke Riedel
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway.
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - Coline Donat
- IUT de Saint Étienne, Université Jean Monnet, 28 Av. Léon Jouhaux, 42100 Saint-Étienne, France
| | | | - Julia Farkas
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Bjørn Henrik Hansen
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Pål Asgeir Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| |
Collapse
|
8
|
Markich SJ, Hall JP, Dorsman JM, Brown PL. Toxicity of rare earth elements (REEs) to marine organisms: Using species sensitivity distributions to establish water quality guidelines for protecting marine life. ENVIRONMENTAL RESEARCH 2024; 261:119708. [PMID: 39089443 DOI: 10.1016/j.envres.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
A lack of chronic rare earth element (REE) toxicity data for marine organisms has impeded the establishment of numerical REE water quality benchmarks (e.g., guidelines) to protect marine life and assess ecological risk. This study determined the chronic no (significant) effect concentrations (N(S)ECs) and median-effect concentrations (EC50s) of eight key REEs (yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy) and lutetium (Lu)) for 30 coastal marine organisms (encompassing 22 phyla and five trophic levels from temperate and tropical habitats). Organisms with calcifying life stages were most vulnerable to REEs, which competitively inhibit calcium uptake. The most sensitive organism was a sea urchin, with N(S)ECs ranging from 0.64 μg/L for Y to 1.9 μg/L for La and Pr, and EC50s ranging from 4.3 μg/L for Y to 14.4 μg/L for Pr. Conversely, the least sensitive organism was a cyanobacterium, with N(S)ECs ranging from 121 μg/L for Y to 469 μg/L for Pr, and EC50s ranging from 889 μg/L for Y to 3000 μg/L for Pr. Median sensitivity varied 215-fold across all organisms. The two-fold difference in median toxicity (μmol/L EC50) among REEs (Y ∼ Gd > Lu ∼ Nd ∼ Dy ∼ Ce > La ∼ Pr) was attributed to offset differences in binding affinity (log K) to cell surface receptors and the percentage of free metal ion (REE3+) in the test waters. The toxicity (EC50) of the remaining REEs (samarium, europium, terbium, holmium, thulium and ytterbium) was predicted using a combination of physicochemical data and measured EC50s for the eight tested REEs, with good agreement between predicted and measured EC50s for selected organisms. Numerical REE water quality guidelines to protect marine life were established using species sensitivity distributions (e.g., for 95 % species protection, values ranged from 1.1 μg/L for Y to 3.0 μg/L for La, Pr or Lu).
Collapse
Affiliation(s)
- Scott J Markich
- Aquatic Solutions International, Long Reef, NSW, 2097, Australia; School of Natural Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia.
| | - Jeremy P Hall
- Aquatic Solutions International, Airlie Beach, QLD, 4802, Australia
| | - Jude M Dorsman
- Aquatic Solutions International, Long Reef, NSW, 2097, Australia
| | | |
Collapse
|
9
|
Ferraro A, Siciliano A, Spampinato M, Morello R, Trancone G, Race M, Guida M, Fabbricino M, Spasiano D, Fratino U. A multi-disciplinary approach based on chemical characterization of foreshore sediments, ecotoxicity assessment and statistical analyses for environmental monitoring of marine-coastal areas. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106780. [PMID: 39406169 DOI: 10.1016/j.marenvres.2024.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024]
Abstract
The present work aims at providing a multi-disciplinary approach for environmental monitoring in marine-coastal areas. A monitoring campaign of 13 months (October 2022-October 2023) was carried out on sandy foreshore sediments (SFSs). The SFSs were analysed for potentially toxic elements (PTEs) and rare earth elements (REEs) content determination. In the investigated area, variable contamination trends were assessed through Friedman and Nemenyi tests. Further results also indicated the usefulness of statistical data elaboration in the identification of potential contamination sources. In fact, from Spearman test, significant positive correlations (between 0.650 and 0.981) were observed among PTEs of possible anthropogenic origin (such as Co, Cr, Cu, Pb, V, and Zn). For REEs, La and Nd showed strong correlations with Ce (0.909 and 0.920, respectively). The study also integrated luminescence inhibition (Aliivibrio fischeri), algal growth inhibition (Phaeodactylum tricornutum), and embryotoxicity assessment (Paracentrotus lividus) on sediment elutriates showing varying degrees of toxicity. Also these data were analysed through statistics in order to highlight possible correlations between contaminants and observed ecotoxicological effects on the involved bioindicators. The results outline an approach useful for more comprehensive monitoring of marine areas quality and identification of suitable environmental restoration strategies.
Collapse
Affiliation(s)
- Alberto Ferraro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy.
| | - Antonietta Siciliano
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cintia 4, Naples, 80126, Italy
| | - Marisa Spampinato
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cintia 4, Naples, 80126, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Raffaele Morello
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Gennaro Trancone
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125, Naples, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, Cassino, 03043, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cintia 4, Naples, 80126, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125, Naples, Italy
| | - Danilo Spasiano
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Umberto Fratino
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| |
Collapse
|
10
|
Cunha M, Nardi A, Botelho MJ, Sales S, Pereira E, Soares AMVM, Regoli F, Freitas R. Can exposure to Gymnodinium catenatum toxic blooms influence the impacts induced by Neodymium in Mytilus galloprovincialis mussels? What doesn't kill can make them stronger? JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134220. [PMID: 38636232 DOI: 10.1016/j.jhazmat.2024.134220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
The presence in marine shellfish of toxins and pollutants like rare earth elements (REEs) poses a major threat to human well-being, coastal ecosystems, and marine life. Among the REEs, neodymium (Nd) stands out as a widely utilized element and is projected to be among the top five critical elements by 2025. Gymnodinum catenatum is a phytoplankton species commonly associated with the contamination of bivalves with paralytic shellfish toxins. This study evaluated the biological effects of Nd on the mussel species Mytilus galloprovincialis when exposed to G. catenatum cells for fourteen days, followed by a recovery period in uncontaminated seawater for another fourteen days. After co-exposure, mussels showed similar toxin accumulation in the Nd and G. catenatum treatment in comparison with the G. catenatum treatment alone. Increased metabolism and enzymatic defenses were observed in organisms exposed to G. catenatum cells, while Nd inhibited enzyme activity and caused cellular damage. Overall, this study revealed that the combined presence of G. catenatum cells and Nd, produced positive synergistic effects on M. galloprovincialis biochemical responses compared to G. catenatum alone, indicating that organisms' performance may be significantly modulated by the presence of multiple co-occurring stressors, such those related to chemical pollution and harmful algal blooms. ENVIRONMENTAL IMPLICATIONS: Neodymium (Nd) is widely used in green technologies like wind turbines, and this element's potential threats to aquatic environments are almost unknown, especially when co-occurring with other environmental factors such as blooms of toxic algae. This study revealed the cellular impacts induced by Nd in the bioindicator species Mytilus galloprovincialis but further demonstrated that the combination of both stressors can generate a positive defense response in mussels. The present findings also demonstrated that the impacts caused by Nd lasted even after a recovery period while a previous exposure to the toxins generated a faster biochemical improvement by the mussels.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90131, Italy
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Sabrina Sales
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Eduarda Pereira
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90131, Italy
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Marginson H, MacMillan GA, Wauthy M, Sicaud E, Gérin-Lajoie J, Dedieu JP, Amyot M. Drivers of rare earth elements (REEs) and radionuclides in changing subarctic (Nunavik, Canada) surface waters near a mining project. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134418. [PMID: 38688225 DOI: 10.1016/j.jhazmat.2024.134418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The emergence of mining projects for rare earth elements (REEs) in response to rising global demand and geopolitical factors introduces environmental concerns, such as the suspected release of anthropogenic REEs to aquatic systems and the coexistence of radionuclides (U, Th). Northern regions confront heightened challenges from limited research and accelerated climate change. Drivers of REEs in surface waters (including George and Koroc rivers, their tributaries, and thermokarst lakes) were studied (2017-2023) in subarctic Canada within a climate transition zone, near a prospective REE mine. Dissolved REEs (<0.45 μm) correlated positively with Al, Fe, Th, U, Cl- and DOC. A novel relationship with water temperature demonstrated an approximate 10-fold decrease in REE concentrations over the environmental gradient (2-20 ℃), suggesting complex implications for REE speciation under climate pressures. Optical analyses further predicted REEs were mobilized by humic-rich, terrestrial DOC, with correlations presenting a possible co-transport with Al, Fe and Th. Relationships for redox-sensitive Ce anomalies (Ce/Ce* = 0.18-1.2) with multi-valent trace metals (Al, Fe, Ti) and DOC were suggestive of a preferential adsorption of Ce by inorganic colloids in low-DOC systems. Findings emphasized the potential for changes in REE geochemistry with ongoing northern surface warming and vegetation shifts.
Collapse
Affiliation(s)
- H Marginson
- GRIL, Département de sciences biologiques, Complexe des Sciences, Université de Montréal, Québec, Canada
| | - G A MacMillan
- GRIL, Département de sciences biologiques, Complexe des Sciences, Université de Montréal, Québec, Canada
| | - M Wauthy
- GRIL, Département de sciences biologiques, Complexe des Sciences, Université de Montréal, Québec, Canada
| | - E Sicaud
- Département de géographie, Université de Montréal, Canada; Centre d'Études Nordiques, Québec, Canada
| | - J Gérin-Lajoie
- Université du Québec à Trois-Rivières, Québec, Canada; Centre d'Études Nordiques, Québec, Canada
| | - J-P Dedieu
- Centre d'Études Nordiques, Québec, Canada; Institut des Géosciences de l'Environnement (IGE), Université Grenoble-Alpes et CNRS, France
| | - M Amyot
- GRIL, Département de sciences biologiques, Complexe des Sciences, Université de Montréal, Québec, Canada; Centre d'Études Nordiques, Québec, Canada.
| |
Collapse
|
12
|
Pereto C, Baudrimont M, Coynel A. Global natural concentrations of Rare Earth Elements in aquatic organisms: Progress and lessons from fifty years of studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171241. [PMID: 38417499 DOI: 10.1016/j.scitotenv.2024.171241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Rare Earth Elements (REEs) consist of a coherent group of elements with similar physicochemical properties and exhibit comparable geochemical behaviors in the environment, making them excellent tracers of environmental processes. For the past 50 years, scientific communities investigated the REE concentrations in biota through various types of research (e.g. exploratory studies, environmental proxies). The extensive development of new technologies over the past two decades has led to the increased exploitation and use of REEs, resulting in their release into aquatic ecosystems. The bioaccumulation of these emerging contaminants has prompted scientific communities to explore the fate of anthropogenic REEs within aquatic ecosystems. To achieve this, it is necessary to determine the natural concentration levels of REEs in aquatic organisms and the factors controlling REE dynamics. However, knowledge gaps still exist, and no comprehensive approach currently exists to assess the REE concentrations at the ecosystem scale or the factors controlling these concentrations in aquatic organisms. Based on a database comprising 102 articles, this study aimed to: i) provide a retrospective analysis of research topics over a 50-year period; ii) establish reference REE concentrations in several representative phyla of aquatic ecosystems; and iii) examine the global-scale influences of habitat and trophic position as controlling factors of REE concentrations in organisms. This study provides reference concentrations for 16 phyla of freshwater or marine organisms. An influence of habitat REE concentrations on organisms has been observed on a global scale. A trophic dilution of REE concentrations was highlighted, indicating the absence of biomagnification. Lastly, the retrospective approach of this study revealed several research gaps and proposed corresponding perspectives to address them. Embracing these perspectives in the coming years will lead to a better understanding of the risks of anthropogenic REE exposure for aquatic organisms.
Collapse
Affiliation(s)
- Clément Pereto
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| | - Magalie Baudrimont
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| | - Alexandra Coynel
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
13
|
Shen YW, Zhao CX, Zhao H, Dong SF, Guo Q, Xie JJ, Lv ML, Yuan CG. Insight study of rare earth elements in PM 2.5 during five years in a Chinese inland city: Composition variations, sources, and exposure assessment. J Environ Sci (China) 2024; 138:439-449. [PMID: 38135409 DOI: 10.1016/j.jes.2023.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 12/24/2023]
Abstract
The booming development of rare earth industry and the extensive utilization of its products accompanied by urban development have led to the accelerated accumulation of rare earth elements (REEs) as emerging pollutants in atmospheric environment. In this study, the variation of REEs in PM2.5 with urban (a non-mining city) transformation was investigated through five consecutive years of sample collection. The compositional variability and provenance contribution of REEs in PM2.5 were characterized, and the REEs exposure risks of children and adults via inhalation, ingestion and dermal absorption were also evaluated. The results showed an increase in the total REEs concentration from 46.46 ± 35.16 mg/kg (2017) to 81.22 ± 38.98 mg/kg (2021) over the five-year period, with Ce and La making the largest contribution. The actual increment of industrial and traffic emission source among the three pollution sources was 1.34 ng/m3. Coal combustion source displayed a downward trend. Ingestion was the main exposure pathway for REEs in PM2.5 for both children and adults. Ce contributed the most to the total intake of REEs in PM2.5 among the population, followed by La and Nd. The exposure risks of REEs in PM2.5 in the region were relatively low, but the trend of change was of great concern. It was strongly recommended to strengthen the concern about traffic-related non-exhaust emissions of particulate matter.
Collapse
Affiliation(s)
- Yi-Wen Shen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Chang-Xian Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Hao Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Shuo-Fei Dong
- Agilent Technologies Co. Ltd. (China), Beijing 100102, China
| | - Qi Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Jiao-Jiao Xie
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Mei-Ling Lv
- Agilent Technologies Co. Ltd. (China), Beijing 100102, China
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
14
|
Falandysz J, Kilanowicz A, Fernandes AR, Zhang J. Rare earth contamination of edible vegetation: Ce, La, and summed REE in fungi. Appl Microbiol Biotechnol 2024; 108:268. [PMID: 38506962 PMCID: PMC10954923 DOI: 10.1007/s00253-024-13087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
The increasing and diversified use of rare earth elements (REE) is considered a potential source of pollution of environmental media including soils. This work documents critically overview data on the occurrence of REE in the fruiting bodies of wild and farmed species of edible and medicinal mushrooms, as this was identified as the largest published dataset of REE occurrence in foodstuff. Most of the literature reported occurrences of cerium (Ce) and lanthanum (La), but a number of studies lacked data on all lanthanides. The Ce, La, and summed REE occurrences were assessed through the criteria of environmental geochemistry, analytical chemistry, food toxicology, mushroom systematics, and ecology. Ce and La accumulate similarly in fruiting bodies and are not fractionated during uptake, maintaining the occurrence patterns of their growing substrates. Similarly, there is no credible evidence of variable REE uptake because the evaluated species data show natural, unfractionated patterns in accordance with the Oddo-Harkins' order of environmental lanthanide occurrence. Thus, lithosphere occurrence patterns of Ce and La as the first and the third most abundant lanthanides are reflected in wild and farmed mushrooms regardless of substrate and show that Ce is around twice more abundant than La. The current state of knowledge provides no evidence that mushroom consumption at these REE occurrence levels poses a health risk either by themselves or when included with other dietary exposure. Macromycetes appear to bio-exclude lanthanides because independently reported bioconcentration factors for different species and collection sites, typically range from < 1 to 0.001. This is reflected in fruiting body concentrations which are four to two orders of magnitude lower than growing substrates. KEY POINTS: •Original REE occurrence patterns in soils/substrates are reflected in mushrooms •No evidence for the fractionation of REE during uptake by fungi •Mushrooms bio-exclude REE in fruiting bodies.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland.
| | - Anna Kilanowicz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Panlong District, Kunming, 650200, China
| |
Collapse
|
15
|
Leite C, Russo T, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. From the cellular to tissue alterations induced by two rare earth elements in the mussel species Mytilus galloprovincialis: Comparison between exposure and recovery periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169754. [PMID: 38163599 DOI: 10.1016/j.scitotenv.2023.169754] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The global effort to achieve carbon neutrality has led to an increased demand for renewable energy technologies and their raw materials, namely rare earth elements (REEs). These elements possess unique properties and are used in various applications. However, the increased use of REE-based technologies has resulted in higher amounts of electronic waste, leading to elevated REEs concentrations found in the aquatic environment, with poorly understood threats to wildlife. Praseodymium (Pr) and europium (Eu) are two REEs that, despite their potential environmental risks, have almost unknown effects on aquatic organisms. Therefore, the present study aimed to assess the impacts of different concentrations of Pr and Eu (0, 10, 20, 40, and 80 μg/L) in the mussel species Mytilus galloprovincialis, as well as their ability to recover from exposure to the highest concentration. Mussels accumulated both elements in a dose-dependent manner, with the accumulation of Pr being higher. Accompanying the increase of metabolism, mussels exposed to Pr not only enhanced the activity of the antioxidant enzymes superoxide dismutase (up to 40 μg/L) and glutathione reductase (at 80 μg/L) but also the activity of the biotransformation enzymes carboxylesterases (CbE's) and glutathione S-transferases (GSTs) (at 80 μg/L). Nevertheless, these defence mechanisms were not sufficient to prevent cellular damage. All the Eu concentrations induced cellular damage, despite an increase in the activity of biotransformation enzymes (CbE's and GSTs) in mussel tissue. According to the histopathology assessment, mussels were not able to recover after exposure to both elements and lower concentrations induced higher injuries in digestive tubules. This study highlights that exposure to Pr and Eu had adverse effects on M. galloprovincialis, even at the lowest tested concentration, which may eventually impact mussels' growth, reproductive capacity, and survival.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - João Pinto
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal.
| |
Collapse
|
16
|
Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. How predicted temperature and salinity changes will modulate the impacts induced by terbium in bivalves? CHEMOSPHERE 2024; 351:141168. [PMID: 38215828 DOI: 10.1016/j.chemosphere.2024.141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The threat of climate change, which includes shifts in salinity and temperature, has generated a global concern for marine organisms. These changes directly impact them and may alter their susceptibility to contaminants, such as terbium (Tb), found in electronic waste. This study assessed how decreased and increased salinity, as well as increased temperature, modulates Tb effects in Mytilus galloprovincialis mussels. After an exposure period of 28 days, Tb bioaccumulation and biochemical changes were evaluated. Results indicated no significant modulation of salinity and temperature on Tb accumulation, suggesting detoxification mechanisms and adaptations. Further analysis showed that Tb exposure alone caused antioxidant inhibition and neurotoxicity. When exposed to decreased salinity, these Tb-exposed organisms activated defense mechanisms, a response indicative of osmotic stress. Moreover, increased salinity also led to increased oxidative stress and metabolic activity in Tb-exposed organisms. Additionally, Tb-exposed organisms responded to elevated temperature with altered biochemical activities indicative of damage and stress response. Such responses suggested that Tb effects were masked by osmotic and heat stress. This study provides valuable insights into the interactions between temperature, salinity, and contaminants such as Tb, impacting marine organisms. Understanding these relationships is crucial for mitigating climate change and electronic waste effects on marine ecosystems.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Piarulli S, Riedel JA, Fossum FN, Kermen F, Hansen BH, Kvæstad B, Olsvik PA, Farkas J. Effects of gadolinium (Gd) and a Gd-based contrast agent (GBCA) on early life stages of zebrafish (Danio rerio). CHEMOSPHERE 2024; 350:140950. [PMID: 38114019 DOI: 10.1016/j.chemosphere.2023.140950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Gadolinium (Gd) is one of the rare earth elements (REY) and is widely used in magnetic resonance imaging (MRI) contrast agents. Anthropogenic Gd enrichment has frequently been found in wastewater treatment plant effluents in industrialised countries, rising concerns regarding effects on aquatic biota. This study investigates the acute toxicity and sublethal effects of Gd in two forms, as inorganic salt (GdCl3) and as Gd-based contrast agent (GBCA), on early life stages of zebrafish (Danio rerio). Nominal exposure concentrations ranged from 3 to 3000 μg L-1, with an exposure duration of 96 h. None of the two tested compounds were acutely toxic to embryos and larvae. Similarly, we did not observe any effects on larval development and locomotive behaviour. However, we found significant changes in the brain activity of larvae exposed to the highest concentrations of GdCl3 and the GBCA. Our findings show that Gd can have sublethal effects on developing fish at lower concentrations than reported previously, highlighting the necessity of investigating the long-term fate and effects of GBCAs released into the aquatic environment.
Collapse
Affiliation(s)
- Stefania Piarulli
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway.
| | - Juliane A Riedel
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026, Bodø, Norway
| | - Frida N Fossum
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway
| | - Florence Kermen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway; Department of Neuroscience, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark
| | - Bjørn Henrik Hansen
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Bjarne Kvæstad
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026, Bodø, Norway
| | - Julia Farkas
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway.
| |
Collapse
|
18
|
Peter PO, Ifon BE, Nkinahamira F, Lasisi KH, Li J, Hu A, Yu CP. Harnessing the composition of dissolved organic matter in lagoon sediment in association with rare earth elements using fluorescence and UV-visible absorption spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168139. [PMID: 37890635 DOI: 10.1016/j.scitotenv.2023.168139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Dissolved Organic Matter (DOM) plays a pivotal role in influencing metal binding and mobility within lagoon sediments. However, there exists a gap in understanding the compositional alterations of DOM concerning Rare Earth Elements (REEs) across varying pollution gradients. This study aimed to characterize DOM and examine its relationship with REEs in sediment cores from different pollution levels in Yundang Lagoon, China using excitation-emission matrix-parallel factor analysis (EEM-PARAFAC). The results raveled four distinct fluorescent components. Among these, two correspond to humic-like substances, while the remaining two are attributed to protein-like substances. Remarkably, the prevalence of protein-like compounds was observed to exceed 58% of the total fluorescence intensity across all the investigated sites. Furthermore, a substantial discrepancy in total fluorescence intensity was detected between the Songbai Lake and the Inner and Outer Lagoon, indicating a variance in DOM content. In terms of REEs, the average concentration of total REEs was notably elevated within the Songbai Lake sediments (318.36 mg/kg) as compared to the Inner and Outer Lagoon sediments (296.36 and 278.05 mg/kg, respectively). Of significance is the enrichment of Light Rare Earth Elements (LREEs), particularly Ce, La, Pr, and Nd, over Heavy REEs (HREEs) across all surveyed locations. Intriguingly, a coherent trend emerged wherein the fluorescence intensity and LREE concentrations exhibited a synchronized increase from Outer to Inner to Songbai Lake core sediments. This observation substantiates a strong correlation between DOM content and pollution levels (p < 0.05). By shedding light on the intricate interplay between DOM and REEs within urban aquatic sediments, this study imparts novel insights which enrich our comprehension of urban environmental dynamics.
Collapse
Affiliation(s)
- Philomina Onyedikachi Peter
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binessi Edouard Ifon
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - François Nkinahamira
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Kayode Hassan Lasisi
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
19
|
Vesković J, Lučić M, Ristić M, Perić-Grujić A, Onjia A. Spatial Variability of Rare Earth Elements in Groundwater in the Vicinity of a Coal-Fired Power Plant and Associated Health Risk. TOXICS 2024; 12:62. [PMID: 38251017 PMCID: PMC10820410 DOI: 10.3390/toxics12010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
This study investigated the occurrence and distribution of rare earth elements (REEs), including 14 lanthanoids, scandium (Sc), and yttrium (Y), in groundwater around a large coal-fired thermal power plant (TPP). The ICP-MS technique was used to analyze 16 REEs in groundwater samples collected from monitoring wells. REE concentrations ranged from 59.9 to 758 ng/L, with an average of 290 ng/L. The most abundant was Sc, followed by La, accounting for 54.2% and 21.4% of the total REE concentration, respectively. Geospatial analysis revealed the REE enrichment at several hotspots near the TPP. The highest REE concentrations were observed near the TPP and ash landfill, decreasing with the distance from the plant and the landfill. REE fractionation ratios and anomalies suggested the Light REE dominance, comprising over 78% of the total REEs. Correlation and principal component analyses indicated similar behavior and sources for most REEs. Health risk assessment found hazard indices (HI) of 1.36 × 10-3 and 1.98 × 10-3 for adults and children, respectively, which are far below the permissible limit (HI = 1). Likewise, incremental lifetime cancer risks (ILCR) were all below 1 × 10-6. Nevertheless, ongoing ash disposal and potential accumulation in the environment could elevate the REE exposure over time.
Collapse
Affiliation(s)
- Jelena Vesković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Milica Lučić
- Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Mirjana Ristić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Aleksandra Perić-Grujić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
20
|
Zinicovscaia I, Cepoi L, Rudi L, Chiriac T, Grozdov D. Evaluation of Holmium(III), Erbium(III), and Gadolinium(III) Accumulation by Cyanobacteria Arthrospira platensis Using Neutron Activation Analysis and Elements' Effects on Biomass Quantity and Biochemical Composition. Microorganisms 2024; 12:122. [PMID: 38257949 PMCID: PMC10818318 DOI: 10.3390/microorganisms12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Rare-earth elements are released into the aquatic environment as a result of their extensive use in industry and agriculture, and they can be harmful for living organisms. The effects of holmium(III), erbium(III), and gadolinium(III) when added to a growth medium in concentrations ranging from 10 to 30 mg/L on the accumulation ability and biochemical composition of Arthrospira platensis were studied. According to the results of a neutron activation analysis, the uptake of elements by cyanobacteria occurred in a dose-dependent manner. The addition of gadolinium(III) to the growth medium did not significantly affect the amount of biomass, whereas erbium(III) and holmium(III) reduced it up to 22% compared to the control. The effects of rare-earth elements on the content of proteins, carbohydrates, phycobiliproteins, lipids, β carotene, and chlorophyll a were evaluated. The studied elements had different effects on the primary biomolecule content, suggesting that holmium(III) and erbium(III) were more toxic than Gd(III) for Arthrospira platensis.
Collapse
Affiliation(s)
- Inga Zinicovscaia
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia;
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str., 077125 Măgurele, Romania
| | - Liliana Cepoi
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1 Academiei Str., 2028 Chisinau, Moldova; (L.C.); (L.R.); (T.C.)
| | - Ludmila Rudi
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1 Academiei Str., 2028 Chisinau, Moldova; (L.C.); (L.R.); (T.C.)
| | - Tatiana Chiriac
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1 Academiei Str., 2028 Chisinau, Moldova; (L.C.); (L.R.); (T.C.)
| | - Dmitrii Grozdov
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia;
| |
Collapse
|
21
|
El Ayari T, Ben Ahmed R, Hammemi Z, Kouki A, Chelb E, Nechi S, Trigui El Menif N. Effects of rare earth element samarium doped zinc oxide nanoparticles on Mytilus galloprovincialis (Lamarck, 1819): Filtration rates and histopathology. J Trace Elem Med Biol 2024; 81:127349. [PMID: 38006813 DOI: 10.1016/j.jtemb.2023.127349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Doping was reported to improve the photo catalytic performance, antioxidant, antibacterial and other biological properties of nanoparticles. While, improving the nanoparticle properties, doping could change toxicity profile to living organism. Hence, the aim of this work was to assess the effects of samarium doped zinc oxide nanoparticles (Sm doped ZnO NPs) on the edible mussel Mytilus galloprovincialis. METHODS Sm doped ZnO nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) techniques. 156 mussels were exposed during 7 days to a low, intermediate and high concentration of Sm doped ZnO NPs (0.5, 1 and 1.5 mg/L, respectively). The filtration rates were assessed after 1 and 2 h. Histopathological alterations were determined in gills, digestive glands and gonads using a quantitative analysis. RESULTS The filtration rates decreased in all individuals exposed to Sm doped ZnO NPs, a significant decrease was noted with the low and intermediate concentration (0.5 and 1 mg/L) of Sm doped ZnO NPs after 1 and 2 h, respectively. The histopathological index (Ih) estimated for gills, digestive glands and gonads showed differences depending on the organ and the nanoparticle concentration. The highest Ih were reported for digestive glands and female gonads exposed to the intermediate concentration (1 mg/L) of Sm doped ZnO NPs. As for gills and male gonads, the highest Ih were noted with the high concentration (1.5 mg/L) of Sm doped ZnO NPs. CONCLUSION Results from this study revealed the toxicity of Sm doped ZnO NPs in Mytilus galloprovincialis gills, digestive glands and gonads. The toxicity induced by this nanoparticle varies depending on the organ and the concentration.
Collapse
Affiliation(s)
- Tahani El Ayari
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-Monitoring, Group of Fundamental and Applied Malacology (LEB/GFAM), University of Carthage, 7021 Zarzouna, Bizerte, Tunisia.
| | - Raja Ben Ahmed
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and physiology of Aquatic Organisms Laboratory, Tunis, Tunisia
| | - Zaineb Hammemi
- Laboratoire des composes hétāéro-organiques et des matériaux nanostructurés, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Abdessalem Kouki
- Laboratoire de Microscopie électronique et de Microanalyse, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Emna Chelb
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Salwa Nechi
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Najoua Trigui El Menif
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-Monitoring, Group of Fundamental and Applied Malacology (LEB/GFAM), University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
| |
Collapse
|
22
|
Saha B, Eliason K, Golui D, Masud J, Bezbaruah AN, Iskander SM. Rare earth elements in sands collected from Southern California sea beaches. CHEMOSPHERE 2023; 344:140254. [PMID: 37742769 DOI: 10.1016/j.chemosphere.2023.140254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Rare earth elements (REEs) are considered the limiting resources for advancing clean technologies and electronics. Because global REEs reserve is limited, non-conventional and secondary sources are being investigated for recovery. Here, we investigated wet and dry sand from seven Southern California beaches for sixteen REEs. These include five light REEs, two medium REEs, and nine heavy REEs, separated by their atomic weight. The mass of the magnetically separated compounds ranged from 15.19 to 129.91 g per kg of dry sand in the studied sea beaches in Southern California. The total REEs concentration ranged from 1168.1 to 6816.7 μg per kg of wet sand (dry sand basis) and 1474.7-7483.8 μg per kg of dry sand. Cerium (Ce) and Yttrium (Y) were the most prevalent REEs in these beaches ranging from 387.4 to 2241.1 μg kg-1 and 104.5-2302.3 μg kg-1 of sand respectively. This study found light REEs concentration accounted for 70-80% of total rare earth elements in the studied beaches. The concentrations of the analyzed REEs were significantly different (p < 0.05) from each other in the studied beaches. Additionally, Pearson correlation showed that the REEs were strongly correlated (r ≥ 0.83) with each other in the reported sea beaches, indicating a similar origin of the REEs. The dominant heavy metals in the studied samples were Vanadium (V), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), and Strontium (Sr). Dominant minerals identified in sands were quartz, anorthite, ilmenite, and xenotime. All the beaches are lowly enriched with REEs, and any of the REEs caused no ecological risk or pollution. Similarly, no pollution/ecological risk was observed for the analyzed heavy metals. This study identified beach sand as a potential REEs source and demonstrated an easy separation of REEs containing magnetic compounds from sand.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | - Kira Eliason
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | - Debasis Golui
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA; Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012, India
| | - Jahangir Masud
- Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Achintya N Bezbaruah
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA; Materials and Nanotechnology Program, North Dakota State University, Fargo, ND, 58108, USA; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
23
|
Labassa M, Pereto C, Schäfer J, Hani YMI, Baudrimont M, Bossy C, Dassié ÉP, Mauffret A, Deflandre B, Grémare A, Coynel A. First assessment of Rare Earth Element organotropism in Solea solea in a coastal area: The West Gironde Mud Patch (France). MARINE POLLUTION BULLETIN 2023; 197:115730. [PMID: 37918142 DOI: 10.1016/j.marpolbul.2023.115730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Few studies exist on concentration and internal distribution of Rare Earth Elements (REEs) in marine fishes. REEs organotropism was determined in common sole (Solea solea) from the West Gironde Mud Patch (WGMP; N-E Atlantic Coast, France). The highest ∑REEs concentrations occurred in liver (213 ± 49.9 μg kg-1 DW) and gills (119 ± 77.5 μg kg-1 DW) followed by kidneys (57.7 ± 25.5 μg kg-1 DW), whereas the lowest levels were in muscles (4.53 ± 1.36 μg kg-1 DW) of Solea solea. No significant age- or sex-related differences were observed. The organotropism varied among groups of REEs. Light and heavy REEs preferentially accumulated in liver and gills, respectively. All considered organs showed different normalized REEs patterns, suggesting differences in internal distribution processes between organs. Further work should address: (1) baseline levels worldwide, and (2) factors controlling uptake and organ-specific concentration of REEs.
Collapse
Affiliation(s)
- Maëva Labassa
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Clément Pereto
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Jörg Schäfer
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Younes M I Hani
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Magalie Baudrimont
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Cécile Bossy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Émilie P Dassié
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Aourell Mauffret
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins (CCEM), 44311 Nantes, France
| | - Bruno Deflandre
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Antoine Grémare
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Alexandra Coynel
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
24
|
Celis JE, Espejo W, Montes IY, Sandoval M, Specht AJ, Banegas-Medina A. First report of some rare earth elements and trace elements in sands from different islands located in the Marine Natural Monument Archipelago Cayos Cochinos, Caribbean Sea. MARINE POLLUTION BULLETIN 2023; 196:115648. [PMID: 37844481 DOI: 10.1016/j.marpolbul.2023.115648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Rare earth elements (REEs) are a group of chemicals widely used in emerging technologies today, and are often labeled as potential environmental contaminants. The Cayos Cochinos Archipelago is a protected area of Honduras, Central America, with intertidal and supratidal sands, making it a prime candidate for pollution research. In December 2022, sand samples from the Cayos Cochinos area was collected and analyzed by X-ray fluorescence to determine the levels of REEs and some less-studied trace elements (TEs). Based on the findings, REEs mean contents (μg g-1 d.w.) fluctuated between 2.96 for Y to 667.1 for Nd, while TEs ranged from 10.37 for Th to 3896.2 for Sr. Also, the results showed significantly higher levels of La, Pr, Y, Sr, Ba, and Th in the supratidal zone than in the intertidal zone. The data are useful as a basis for understanding the presence of chemical elements in near-shore marine areas and subsequently help identify sustainable practices that will reduce the impacts of these chemicals.
Collapse
Affiliation(s)
- José E Celis
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Winfred Espejo
- Department of Soils & Natural Resources, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile.
| | - Isis-Yelena Montes
- Laboratory of Biology, Department of Sciences, Danlí Technological Campus, Universidad Nacional Autónoma de Honduras, Danlí, Honduras
| | - Marco Sandoval
- Department of Soils & Natural Resources, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile
| | - Aaron J Specht
- School of Health Sciences, Purdue University, West Lafayette, IN, United States of America; Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Andy Banegas-Medina
- Laboratory of Biology, Department of Sciences, Danlí Technological Campus, Universidad Nacional Autónoma de Honduras, Danlí, Honduras
| |
Collapse
|
25
|
Pereira WVDS, Ramos SJ, Melo LCA, Dias YN, Martins GC, Ferreira LCG, Fernandes AR. Human and environmental exposure to rare earth elements in gold mining areas in the northeastern Amazon. CHEMOSPHERE 2023; 340:139824. [PMID: 37586491 DOI: 10.1016/j.chemosphere.2023.139824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Rudimentary methods are used to exploit gold (Au) in several artisanal mines in the Amazon, producing hazardous wastes that may pose risks of contamination by rare earth elements (REEs). The objectives of this study were to quantify the concentrations of REEs and assess their environmental and human health risks in artisanal Au mining areas in the northeastern Amazon. Thus, 25 samples of soils and mining wastes were collected in underground, colluvial, and cyanidation exploration sites, as well as in a natural forest that was considered as a reference area. The concentrations of REEs were quantified using alkaline fusion and inductively coupled plasma mass spectrometry, and the results were used to estimate pollution indices and risks associated with the contaminants. All REEs showed higher concentrations in waste deposition areas than in the reference area, especially Ce, Sc, Nd, La, Pr, Sm, and Eu. Pollution and enrichment levels were higher in the underground and cyanidation mining areas, with very high contamination factors (6.2-27) for Ce, Eu, La, Nd, Pr, Sm, and Sc, and significant to very high enrichment factors (5.5-20) for Ce, La, Nd, Pr, and Sc. The ecological risk indices varied from moderate (167.3) to high (365.7) in the most polluted sites, but risks to human health were low in all areas studied. The results of this study indicate that artisanal Au mining has the potential to cause contamination, enrichment, and ecological risks by REEs in the northeastern Amazon. Mitigation measures should be implemented to protect the environment from the negative impacts of these contaminants.
Collapse
Affiliation(s)
- Wendel Valter da Silveira Pereira
- Institute of Agricultural Sciences, Federal Rural University of the Amazon, 66077-830, Belém, Pará, Brazil; Vale Institute of Technology - Sustainable Development, 66055-090, Belém, Pará, Brazil.
| | - Sílvio Junio Ramos
- Vale Institute of Technology - Sustainable Development, 66055-090, Belém, Pará, Brazil
| | - Leônidas Carrijo Azevedo Melo
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900, Lavras, Minas Gerais, Brazil
| | - Yan Nunes Dias
- Vale Institute of Technology - Sustainable Development, 66055-090, Belém, Pará, Brazil
| | | | | | | |
Collapse
|
26
|
Castro L, Farkas J, Jenssen BM, Piarulli S, Ciesielski TM. Biomonitoring of rare earth elements in Southern Norway: Distribution, fractionation, and accumulation patterns in the marine bivalves Mytilus spp. and Tapes spp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122300. [PMID: 37536480 DOI: 10.1016/j.envpol.2023.122300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Growing extraction and usage of rare earth elements and yttrium (REY) for medical and industrial applications has resulted in increased discharges into the marine environment. Using Mytilus spp. Mussels and Tapes spp. clams as bioindicator organisms, we analyzed 15 REY in soft tissues of specimens collected at two potentially polluted sites in Southern Norway: in the vicinity of an industry producing gadolinium-based MRI contrast agents (GBCAs) (Lindesnes) and in an industrially-affected fjord (Porsgrunn). The spatial distribution of REY and shale-normalized fractionation patterns were determined to assess the potential anthropogenic contribution of REY at the sites. At both sites, the REY fractionation pattern in soft tissue was characterized by enrichment of light rare earth elements (LREE) over heavy rare earth elements (HREE), while also displaying negative cerium and small positive gadolinium (Gd) anomalies. LREEs contributed to over 80% of the total REY concentrations, with increasing relative enrichment following higher total REY. Gd anomalies remained conserved in most sites despite significant differences in total REY; however, a high Gd anomaly (Gd/Gd* = 4.4) was found downstream of the GBCA industry spillwater outlet, indicating biotic uptake of excess anthropogenic Gd at this site. Total REY concentrations in clams in Porsgrunn were one order of magnitude higher than in mussels in Lindesnes. This may be attributable to freshwater influences in Porsgrunn, where clams collected closer to the river mouth had significantly higher total REY concentrations. This study constitutes the first assessment of REY concentrations in marine bivalves in Norway and can provide useful information for future biomonitoring studies on REY contamination.
Collapse
Affiliation(s)
- Lyen Castro
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Julia Farkas
- SINTEF Ocean, Climate and Environment, 7465, Trondheim, Norway.
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Arctic Technology, The University Center in Svalbard, 9171, Longyearbyen, Norway
| | | | - Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Arctic Technology, The University Center in Svalbard, 9171, Longyearbyen, Norway
| |
Collapse
|
27
|
Zhang X, Du W, Xu Z, Cundy AB, Croudace IW, Zhang W, Jin H, Chen J. The distribution and enrichment of trace elements in surface and core sediments from the Changjiang River Estuary, China: Evidence for anthropogenic inputs and enhanced availability of rare earth elements (REE). MARINE POLLUTION BULLETIN 2023; 193:115082. [PMID: 37352799 DOI: 10.1016/j.marpolbul.2023.115082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/05/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Huge amount of trace metals emitted through manmade activities are carried by the Changjiang River into the East China Sea. Most of them deposit in the Changjiang River Estuary and threaten the regional aquatic environment. In this study, major and trace elements of 34 archive surface sediments and two cores are examined. Sequential extraction procedures were also performed on surface sediments from 12 sites. We found that Tl, Tm, Er show distinct accumulation in surface sediments in the order of Tm > Tl > Er. Particularly, abnormally elevated HREE are observed mainly in those sites near the mouth of the estuary. Most elements exhibit an obvious reduction in the upper 30 cm of core B8, reflecting a decrease of sediment discharge from Changjiang River runoff. The increase of some trace elements recorded in the upper 20 cm of core C3 demonstrates a distinct local anthropogenic input in recent years.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Earth Sciences, Zhejiang University, Hangzhou 310027, China; Hainan Institute of Zhejiang University, Sanya 572000, China.
| | - Wen Du
- South China University of Technology, Guangzhou 511442, China
| | - Zhijie Xu
- School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Andrew B Cundy
- GAU-Radioanalytical, School of Ocean and Earth Science, National Oceanography Centre (Southampton), University of Southampton, Southampton SO14 3ZH, UK
| | - Ian W Croudace
- GAU-Radioanalytical, School of Ocean and Earth Science, National Oceanography Centre (Southampton), University of Southampton, Southampton SO14 3ZH, UK
| | - Weiyan Zhang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Haiyan Jin
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| |
Collapse
|
28
|
Marginson H, MacMillan GA, Grant E, Gérin-Lajoie J, Amyot M. Rare earth element bioaccumulation and cerium anomalies in biota from the Eastern Canadian subarctic (Nunavik). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163024. [PMID: 36965735 DOI: 10.1016/j.scitotenv.2023.163024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
Recent increases in the demand for rare earth elements (REE) have contributed to various countries' interest in exploration of their REE deposits, including within Canada. Current limited knowledge of REE distribution in undisturbed subarctic environments and their bioaccumulation within northern species is addressed through a collaborative community-based environmental monitoring program in Nunavik (Quebec, Canada). This study provides background REE values (lanthanides + yttrium) and investigates REE anomalies (i.e., deviations from standard pattern) across terrestrial, freshwater, and marine ecosystems in an area where a REE mining project is in development. Results are characteristic of a biodilution of REE, with the highest mean total REE concentrations (ΣREE) reported in sediments (102 nmol/g) and low trophic level organisms (i.e., biofilm, macroalgae, macroinvertebrates, common mussels, and reindeer lichens; 101-102 nmol/g), and the lowest mean concentrations in higher-level consumers (i.e., goose, ptarmigan, char, whitefish, cod, sculpin and seal; 10-2 - 101 nmol/g). The animal tissues are of importance to northern villages and analyses demonstrate a species-specific bioaccumulation of REE, with mean concentrations up to 40 times greater in liver compared to muscle, with bones and kidneys presenting intermediate concentrations and the lowest in blubber. Further, a tissue-specific fractionation was presented, with significant light REE (LREE) enrichment compared to heavy REE (HREE) in consumer livers (LREE/HREE ≅ 101) and the most pronounced negative cerium (Ce) anomalies (<0.80) in liver and bones of fish species. These fractionation patterns, along with novel negative relationships presented between fish size (length, mass) and Ce anomalies suggest metabolic, ecological, and/or environmental influences on REE bioaccumulation and distribution within biota. Background concentration data will be useful in the establishment of REE guidelines; and the trends discussed support the use of Ce anomalies as biomarkers for REE processing in animal species, which requires further investigation to better understand their controlling factors.
Collapse
Affiliation(s)
- Holly Marginson
- GRIL, Département de sciences biologiques, Complexe des Sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Gwyneth A MacMillan
- GRIL, Département de sciences biologiques, Complexe des Sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Eliane Grant
- Université du Québec en Abitibi-Témiscamingue, Québec, Canada
| | - José Gérin-Lajoie
- Université du Québec à Trois-Rivières, Québec, Canada; Centre d'Études Nordiques, Québec, Canada
| | - Marc Amyot
- GRIL, Département de sciences biologiques, Complexe des Sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; Centre d'Études Nordiques, Québec, Canada.
| |
Collapse
|
29
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Assessing the impact of terbium on Mytilus galloprovincialis: Metabolic and oxidative stress responses. CHEMOSPHERE 2023:139299. [PMID: 37353169 DOI: 10.1016/j.chemosphere.2023.139299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The increasing demand for electric and electronic equipment has led to a rise in potentially hazardous electronic waste, including rare-earth elements (REEs), such as terbium (Tb), which have been already detected in aquatic systems. This study investigated the biochemical effects of anthropogenic Tb on mussels over a 28-day period. The mussels were exposed to different concentrations of Tb (0, 5, 10, 20, 40 μg/L), and biomarkers related to metabolism, oxidative stress, cellular damage, and neurotoxicity were evaluated. Bioaccumulation of Tb in the mussels' tissue increased with exposure concentrations, but the bioconcentration factor remained similar between treatments. Exposure to Tb enhanced glycogen consumption and decreased metabolic capacity which could be seen as a physiological adaptation to limit Tb accumulation. Antioxidant defenses and glutathione S-transferases showed a more complex dose-response, with enzymatic responses increasing until 10 μg/L but then returning to control levels at 20 μg/L. At 40 μg/L, enzymatic responses were also enhanced but to a lower extent than at 10 μg/L. The presence of Tb had clearly an inhibitory effect on biotransformation enzymes such as carboxylesterases in a dose-dependent manner. Likely, thanks to biochemical and physiological adaptations, no cellular damage or neurotoxicity was observed in any treatments, confirming the mussels' ability to tolerate Tb exposure. Nevertheless, prolonged exposure to these concentrations could lead to harmful consequences when facing other environmental stressors, such as misallocating energy resources for growth, reproduction, and defense mechanisms.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias Del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
30
|
Liu Z, Gu X, Lian M, Wang J, Xin M, Wang B, Ouyang W, He M, Liu X, Lin C. Occurrence, geochemical characteristics, enrichment, and ecological risks of rare earth elements in sediments of "the Yellow river-Estuary-bay" system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121025. [PMID: 36621719 DOI: 10.1016/j.envpol.2023.121025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Recent studies have suggested that rare earth elements (REEs) are contaminants of emerging concern. Moreover, the understanding of the occurrence and risks of REEs in river-estuary-bay systems is limited. The present study investigated the distributions, geochemical characteristics, and ecological risks of Y and 14 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in sediments from the Yellow River to its estuary and adjacent Laizhou Bay. The average total concentrations of Y and REEs in the sediments generally increased from the Yellow River (149 mg/kg) to the estuary (165 mg/kg) and Laizhou Bay (173 mg/kg). In the estuarine core sediments, the concentrations of Y, light REEs (LREEs), and heavy REEs (HREEs) were in the ranges of 19.5-31.4 mg/kg, 58.6-156 mg/kg, and 12.3-19.1 mg/kg, respectively, from the 1700s to 2018, showing no obvious increasing or decreasing trends. The surface and core sediments from the river to the bay were characterized by obvious fractionation between LREEs and HREEs. In sediments, Fe minerals and clay are believed to promote the accumulation of REEs, especially HREEs. The enrichment levels of REEs generally increased from the middle reaches of the Yellow River to the bay, and Gd, Tb, Dy, Ho, Yb, and Lu were the most enriched elements in the sediments. Lu had moderate potential ecological risks in sediments of "the Yellow River-estuary-bay" system, and other REEs had relatively low ecological risks. The potential ecological risk indices of Y and REEs ranged from 78.7 to 144, showing increasing trends from the Yellow River to its estuary and adjacent bay, which should raise concerns regarding emerging contaminant management around estuarine and coastal regions.
Collapse
Affiliation(s)
- Ziyu Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiang Gu
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Maoshan Lian
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jing Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ming Xin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Baodong Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Wei Ouyang
- School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Mengchang He
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
31
|
Espejo W, Chiang G, Kitamura D, Kashiwada S, O'Driscoll NJ, Celis JE. Occurrence of rare earth elements (REEs) and trace elements (TEs) in feathers of adult and young Gentoo penguins from King George Island, Antarctica. MARINE POLLUTION BULLETIN 2023; 187:114575. [PMID: 36640502 DOI: 10.1016/j.marpolbul.2023.114575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Penguins are sentinel species for marine pollution, but their role as potential biovectors of REEs or TEs to ecosystems has been poorly studied. The present study analyzed (ICP-MS) feathers of young and adult Gentoo penguins from Fildes Bay, for 63 elements (including 15 REEs). Most of the REEs were present at very low levels, ranging from 0.002 (Lu) to 0.452 (Sm) μg g-1 d.w., several orders of magnitude lower than TEs. The content of TEs varied widely, with Al, Fe, Zn, Sr, Ba, Ti and Mn as the seven having the highest concentrations in the feathers of both age groups. The results show that P. papua deposits REEs and TEs through the feathers on the penguin rockery, whose potential actual impacts and long-term fate in remote regions need deeper research. This work presents essential baseline data that will be useful for further studies on Antarctic penguins.
Collapse
Affiliation(s)
- Winfred Espejo
- Soils and Natural Resources Department, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile
| | - Gustavo Chiang
- Sustainability Research Centre-Ecology & Biodiversity Department, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Daiki Kitamura
- Research Center for Life and Environmental Sciences, Toyo University, Oura 374-0193, Japan
| | - Shosaku Kashiwada
- Research Center for Life and Environmental Sciences, Toyo University, Oura 374-0193, Japan
| | - Nelson J O'Driscoll
- Department of Earth & Environmental Sciences, Acadia University, Wolfville, NS, Canada
| | - José E Celis
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile.
| |
Collapse
|
32
|
Falandysz J. Letter to the editor: Comment on "multiannual monitoring (1974-2019) of rare earth elements in wild growing edible mushroom species in Polish forests" by Siwulski et al. https://doi.org/10.1016/j.chemosphere.2020.127173. A recurring question - What are the real concentrations and patterns of REE in mushrooms? CHEMOSPHERE 2023; 312:137219. [PMID: 36384168 DOI: 10.1016/j.chemosphere.2022.137219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Siwulski et al. (2020) investigated the occurrence of the lanthanides (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), scandium (Sc) and yttrium (Y) in 4 species of wild mushrooms, which were sampled over a 45 years period in Poland. The reported mean lanthanide concentrations for mushrooms were in the range from 539 to 1601 μg kg-1 dry weight. These values are considered as highly elevated in the light of data published earlier for the same species, where the analytical results were assessed as not being biased by errors (these could arise from contamination of the samples with soil dust or unsuitable choice of analytical methodology including the use of unsuitable analytical instrumentation for measurement). It has long been established that the lanthanides are naturally distributed in ores, soil bedrock, soils, natural waters and plants in a pattern that reflects the Oddo-Harkins rule. This pattern is correspondingly reflected in fungi, including the same species and have been published earlier by other authors. However, when the individual lanthanide concentration data of B. edulis, I. badia, L. scabrum and M. procera from the study by Siwulski et al. are plotted, they do not display the expected sawtooth (zigzag) concentration pattern - in other words, the concentration data do not follow the Oddo-Harkins rule. Lanthanides are naturally found in very low concentration in foods including wild mushrooms. There is a striking lack of convergence in the results obtained for ICP-MS techniques, and the results obtained from ICP-OES measurement (as used by Siwulski et al.). If the reasons discussed here for anomalies in the reported lanthanides data hold true, how does this affect the data for other elements in mushrooms reported in the commented article?
Collapse
Affiliation(s)
- Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, 1 Muszyńskiego St., 90-151, Łódź, Poland.
| |
Collapse
|
33
|
Shareef YN, Sabu KSP, Khan MF. Radiological dose and associated risk due to 210Po in commercial inter-tidal bivalves of southwest (Arabian Sea) coast of India. MARINE POLLUTION BULLETIN 2023; 186:114475. [PMID: 36521365 DOI: 10.1016/j.marpolbul.2022.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The activity concentration of 210Po was determined in edible tissues of commercial bivalves on the southwest coast of India. The 210Po activity ranged from 38.3 ± 6.9 Bq kg-1 to 91.2 ± 18.6 Bq kg-1. The annual committed effective dose (ACED) and lifetime carcinogenic risk (LCR) were calculated for different age groups to determine the potential health risk associated with bivalve consumption. The average ACED ranged from 81.5 to 194.1 μSv y-1, with the 10th and 95th percentiles being 68 and 261 μSv y-1, respectively. Lifelong mortality risk (LMTR) values ranged from 1.2 × 10-3 to 2.9 × 10-3, while lifetime morbidity risk (LMBR) values ranged from 1.9 × 10-6 to 4.9 × 10-6. The effective dose was found to be within the UNSCEAR limits.
Collapse
Affiliation(s)
- Yaseen Nawaz Shareef
- Radioecology Laboratory, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous Affiliated to Thiruvalluvar University, Serkadu, Vellore), Hakeem Nagar, Melvisharam, 632509 Ranipet District, Tamil Nadu, India
| | - Karunakaran Sreekumar Praveen Sabu
- Radioecology Laboratory, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous Affiliated to Thiruvalluvar University, Serkadu, Vellore), Hakeem Nagar, Melvisharam, 632509 Ranipet District, Tamil Nadu, India
| | - Mohan Feroz Khan
- Radioecology Laboratory, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous Affiliated to Thiruvalluvar University, Serkadu, Vellore), Hakeem Nagar, Melvisharam, 632509 Ranipet District, Tamil Nadu, India.
| |
Collapse
|
34
|
Lian Z, Han Y, Zhao X, Xue Y, Gu X. Rare earth elements in the upland soils of northern China: Spatial variation, relationships, and risk assessment. CHEMOSPHERE 2022; 307:136062. [PMID: 35981620 DOI: 10.1016/j.chemosphere.2022.136062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
While global demand for rare earth elements (REEs) is rapidly growing, recent studies have suggested that REEs are pollutants of emerging concern. In this study, the spatial distribution and risk assessments of REEs in the upland soils of northern China were comprehensively investigated. The total REE concentrations ranged from 81 to 180 mg/kg, with average concentrations of 123, 128, and 98.3 mg/kg in the northwestern, northern, and northeastern zones, respectively. The decreasing trend of REE contents from northwest to northeast might be influenced by variation in the REE metallogenic belt distribution, mining activities, and precipitation intensity in these regions. The ratio of light rare elements (LREEs) to heavy rare elements (HREEs) ranged from 5.04 to 9.06, revealing obvious fractionation between them in upland soils and indicating that LREEs enrichment was common in northern China. The significantly positive correlations between the REEs indicated that REEs might frequently coexist and share similar sources in the upland soils of northern China. Based on a modified ecological risk index (eRI), REEs were estimated to pose relatively low ecological risks to current environmental residues, with eRI values ranging from 0.564 to 0.984. Fortunately, the estimated daily intakes of REEs from soils for children (1.08-2.41 μg/kg/day) and adults (0.119-0.312 μg/kg/day) were well below the safety thresholds. However, the health risks posed by REEs in upland soils were estimated to be higher for children. Thus, the continuous monitoring of REE abundance in soils is essential to avoid potential health risks.
Collapse
Affiliation(s)
- Zhongmin Lian
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yixuan Han
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xumao Zhao
- College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Yinglan Xue
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing, 100190, China; State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing, 100012, China.
| | - Xiang Gu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
35
|
Sabu KSP, Kavitha PK, Shareef YN, Khan MF. Evaluation of the radiological dose due to 210Po in commercial clupeid fish collected in the near-shore environment of the high background natural radiation area (HBNRA) on the southwest coast of India. MARINE POLLUTION BULLETIN 2022; 182:114034. [PMID: 35981447 DOI: 10.1016/j.marpolbul.2022.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, we quantified the tissue concentration of 210Po in a variety of commercial sardine fish species of the family Clupeidae from an area of high background natural radiation area on the southwest coast of India. The smooth belly sardine Amblygaster leiogaster had the lowest 210Po concentration in its muscle (45.6 ± 7.9 Bq kg-1 fresh), while the goldstripe sardine Sardinella gibbosa had the highest (103.4 ± 10.1 Bq kg-1 fresh). The Annual Committed Effective Dose (ACED) of fried sardine and sardine curry were 134.3-304.3 μSv y-1 and 226.6-513.5 μSv y-1, respectively. Of the 210Po loss, 20 % was due to frying and 10 % to preparing sardine curry. The effective dose was found to be globally comparable and well below the world limit. Consumption of sardines containing 210Po would not pose a health hazard to the residents of Manavalakurchi.
Collapse
Affiliation(s)
- Karunakaran Sreekumar Praveen Sabu
- Department of Zoology, Thiru Kolanjiappar Government Arts College, (Affiliated to Thiruvalluvar University, Serkadu, Vellore), Virudhachalam, 606001 Cuddalore District, Tamil Nadu, India
| | - Pappireddipatty Kandasamy Kavitha
- Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous - Affiliated to Thiruvalluvar University, Serkadu, Vellore), Hakeem Nagar, Melvisharam, 632509 Ranipet District, Tamil Nadu, India
| | - Yaseen Nawaz Shareef
- Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous - Affiliated to Thiruvalluvar University, Serkadu, Vellore), Hakeem Nagar, Melvisharam, 632509 Ranipet District, Tamil Nadu, India
| | - Mohan Feroz Khan
- Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous - Affiliated to Thiruvalluvar University, Serkadu, Vellore), Hakeem Nagar, Melvisharam, 632509 Ranipet District, Tamil Nadu, India.
| |
Collapse
|
36
|
Li H, Tong R, Guo W, Xu Q, Tao D, Lai Y, Jin L, Hu S. Development of a fully automatic separation system coupled with online ICP-MS for measuring rare earth elements in seawater. RSC Adv 2022; 12:24003-24013. [PMID: 36093236 PMCID: PMC9400669 DOI: 10.1039/d2ra02833f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Rare earth elements (REEs) are useful geological indicators of marine geochemistry. However, extremely low concentrations (sub-ng L−1) and high-salt matrices result in inefficient measurements. A fully automatic separation system (ELSPE-2 Precon) is used in the online determination of ultra-trace REEs in seawater using inductively coupled plasma mass spectrometry. This system mainly comprises three sections: (i) an auto-sampler (eas-2A) with 120 positions; (ii) a poly(styrene-divinylbenzene) resin column (Prin-Cen Col007) with iminodiacetic and ethylenediaminetriacetic acid functional groups to eliminate the high-salt matrix (e.g., Na, Ca, K, Mg, Al, Ba, Fe, Sr, P, and S) and preserve the target REEs; and (iii) a Trp002 cleanup column for the reduction of the reagent and procedural blank values. The detection limits (3σ) were in the range 0.002 (Dy)–0.097 ng L−1 (La), and the long-term reproducibility (8 h) was between 80% and 120% for all REEs in a 3.5% NaCl matrix solution. The accuracy of this method was verified using a seawater reference material (NASS-6), and the measured REE concentrations were consistent with those previously reported. The proposed online system was used to investigate coastal water samples with varying salinities from the Pearl River Estuary (Guangdong, China). Variations in the REE distribution patterns of different layers of seawater were observed, which could be due to the mixing of potentially light rare earth element-enriched bottom seawater. Moreover, a positive Gd anomaly in river water and seawater might be attributed to anthropogenic pollution from hospitals and the pharmaceutical industry. A new fully automatic separation system coupled with online ICP-MS for measuring rare earth elements in seawater.![]()
Collapse
Affiliation(s)
- Haitao Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Rui Tong
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Wei Guo
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Quanhui Xu
- Guangzhou Prin-Cen Scientific Ltd, Guangzhou 510730, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, 999077, China
| | - Yang Lai
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Lanlan Jin
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Shenghong Hu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|